Programming Language Technology

Exam, 13 January 2022 at 08.30 - 12.30 in HA1-4

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31772 1731), visits at 09:30 and 11:30.
Grading scale: $\operatorname{Max}=60 \mathrm{p}, \mathrm{VG}=5=48 \mathrm{p}, 4=36 \mathrm{p}, \mathrm{G}=3=24 \mathrm{p}$.
Allowed aid: an English dictionary.
Exam review: 24 January 2022 13.30-15.00 in EDIT meeting room 6128 (6th floor).
Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following kinds of constructs of $\mathrm{C} / \mathrm{C}++$:

- Program: int main() followed by a block
- Block: a sequence of statements enclosed between \{ and \}
- Statements:
- block
- variable declaration, e.g., int x;
- statement formed from an expression by adding a semicolon ;
- while statement
- Expressions, from highest to lowest precedence:
- parenthesized expression, identifier, integer literal
- addition (+), left associative
- less-than comparison ($<$), non-associative
- assignment ($\mathrm{x}=\mathrm{e}$), right associative
- Type: int or bool

You can use the standard BNFC categories Integer and Ident but none of the BNFC pragmas (coercions, terminator, separator ...). An example program is:

```
int main () {
    int x; x = 0;
    while ((x = x + 1) < 10) int x;
}

\section*{SOLUTION:}
```

Program. Prg ::= "int" "main" "(" ")" "{" Stms "}" ;
SBlock. Stm ::= "{" Stms "}"
SDecl. Stm ::= Type Ident ";"
SExp. Stm ::= Exp ";"
SWhile. Stm ::= "while" "(" Exp ")" Stm
SNil. Stms ::=
SCons. Stms ::= Stm Stms
EId. Exp3 ::= Ident
EInt. Exp3 ::= Integer
EPlus. Exp2 ::= Exp2 "+" Exp3
ELt. Exp1 ::= Exp2 "<" Exp2
EAss. Exp ::= Ident "=" Exp
_. Exp3 ::= "(" Exp ")"
_. Exp2 ::= Exp3
_. Exp1 ::= Exp2
_. Exp ::= Exp1
TInt. Type ::= "int"
TBool. Type ::= "bool"

```

Question 2 (Lexing): An identifier be a non-empty sequence of letters, digits and underscores, with the following limitation: There must be at least one letter between any two of these positions: beginning, end, and any underscore position. In other terms, if you cut the identifier into words at each underscore, each of the words needs to contain at least one letter.

Letters be subsumed under the non-terminal \(l\) and digits under \(d\), thus, the alphabet is just \(\left\{l, d,{ }_{-}\right\}\).
1. Give a regular expression for identifiers.
2. Give a deterministic finite automaton for identifiers with no more than 9 states.

Remember to mark initial and final states appropriately. (4p)

\section*{SOLUTION:}
1. RE: \(d^{*} l(l+d)^{*}\left(-d^{*} l(l+d)^{*}\right)^{*} \quad\) OR \(\quad\left(d^{*} l\right)^{+} d^{*}\left(-\left(d^{*} l\right)^{+} d^{*}\right)^{*} \quad\) OR \(\quad \ldots\)
2. DFA:


Question 3 (LR Parsing): Consider the following labeled BNF-Grammar. The starting non-terminal is C.

Cond. C ::= S "<" S ;
Sum. S ::= S "+" X ;
Atom. \(\mathrm{S}::=\mathrm{X}\);
A. \(\mathrm{X}::=\) "a" ;
B. \(\mathrm{X}::=\) "b" ;
C. \(\mathrm{X}::=\) "c" ;
D. \(\mathrm{X}::=\) "d" ;

Step by step, trace the shift-reduce parsing of the expression
\[
\mathrm{a}+\mathrm{b}<\mathrm{c}+\mathrm{d}
\]
showing how the stack and the input evolve and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and input are separated by a dot.
. \(\mathrm{a}+\mathrm{b}<\mathrm{c}+\mathrm{d} \quad--\) shift
\begin{tabular}{|c|c|c|}
\hline a & \(+\mathrm{b}<\mathrm{c}+\mathrm{d}\) & -- reduce with rule A \\
\hline X & \(+\mathrm{b}<\mathrm{c}+\mathrm{d}\) & -- reduce with rule Atom \\
\hline S & \(+\mathrm{b}<\mathrm{c}+\mathrm{d}\) & -- shift 2 \\
\hline \(S+b\) & \(<\mathrm{c}+\mathrm{d}\) & -- reduce with rule B \\
\hline \(\mathrm{S}+\mathrm{X}\) & . \(<\mathrm{c}+\mathrm{d}\) & -- reduce with rule Sum \\
\hline S & . \(<\mathrm{c}+\mathrm{d}\) & -- shift 2 \\
\hline S < c & . + d & -- reduce with rule C \\
\hline \(\mathrm{S}<\mathrm{X}\) & . + d & -- reduce with rule Atom \\
\hline \(\mathrm{S}<\mathrm{S}\) & + d & -- shift 2 \\
\hline \(\mathrm{S}<\mathrm{S}+\mathrm{d}\) & & -- reduce with rule D \\
\hline \(\mathrm{S}<\mathrm{S}+\mathrm{X}\) & & -- reduce with rule Sum \\
\hline \(\mathrm{S}<\mathrm{S}\) & & -- reduce with rule Cond \\
\hline C & & -- accept \\
\hline
\end{tabular}

\section*{Question 4 (Type checking and evaluation):}
1. Write syntax-directed type checking rules for the statement forms and blocks of Question 1. The form of the typing judgements should be \(\Gamma \vdash s \Rightarrow \Gamma^{\prime}\) where \(s\) is a statement or list of statements, \(\Gamma\) is the typing context before \(s\), and \(\Gamma^{\prime}\) the typing context after \(s\). Observe the scoping rules for variables! You can assume a type-checking judgement \(\Gamma \vdash e: t\) for expressions \(e\).
Alternatively, you can write the type checker in pseudo code or Haskell (then assume checkExpr to be defined). In any case, the typing environment must be made explicit. (6p)

SOLUTION: We use a judgement \(\Gamma \vdash s \Rightarrow \Gamma^{\prime}\) that expresses that statement \(s\) is well-formed in context \(\Gamma\) and might introduce new declarations, resulting in context \(\Gamma^{\prime}\).

A context \(\Gamma\) is a stack of blocks \(\Delta\), separated by a dot. Each block \(\Delta\) is a map from variables \(x\) to types \(t\). We write \(\Delta, x: t\) for adding the binding \(x \mapsto t\) to the map. Duplicate declarations of the same variable in the same block are forbidden; with \(x \notin \Delta\) we express that \(x\) is not bound in block \(\Delta\). We refer to a judgement \(\Gamma \vdash e: t\), which reads "in context \(\Gamma\), expression \(e\) has type \(t\) ".
\[
\begin{array}{lc}
\frac{\Gamma . \vdash s s \Rightarrow \Gamma . \Delta}{\Gamma \vdash\{s s\} \Rightarrow \Gamma} & \overline{\Gamma . \Delta \vdash t x ; \Rightarrow(\Gamma . \Delta, x: t)} x \notin \Delta \\
\frac{\Gamma \vdash e: t}{\Gamma \vdash e ; \Rightarrow \Gamma} & \frac{\Gamma \vdash e: \text { bool } \quad \Gamma . \vdash s \Rightarrow \Gamma . \Delta}{\Gamma \vdash \text { while }(e) s \Rightarrow \Gamma}
\end{array}
\]

This judgement for statements is extended to sequences of statements \(\Gamma \vdash s s \Rightarrow \Gamma^{\prime}\) by the following rules ( \(\varepsilon\) stands for the empty sequence):
\[
\overline{\Gamma \vdash \varepsilon \Rightarrow \Gamma} \quad \frac{\Gamma \vdash s \Rightarrow \Gamma^{\prime} \quad \Gamma^{\prime} \vdash s s \Rightarrow \Gamma^{\prime \prime}}{\Gamma \vdash s s s \Rightarrow \Gamma^{\prime \prime}}
\]
2. Write syntax-directed interpretation rules for the expressions of Question 1. The form of the evaluation judgement should be \(\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle\) where \(e\) denotes the expression to be evaluated in environment \(\gamma\) and the pair \(\left\langle v ; \gamma^{\prime}\right\rangle\) denotes the resulting value and updated environment.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function lookupVar can be assumed if its behavior is described. In any case, the environment must be made explicit. (6p)

SOLUTION: The evaluation judgement \(\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle\) for expressions is the least relation closed under the following rules.
\[
\begin{gathered}
\frac{\gamma \vdash i \Downarrow\langle i ; \gamma\rangle}{\gamma \vdash x \Downarrow\langle\gamma(x) ; \gamma\rangle} \\
\frac{\gamma \vdash e_{1} \Downarrow\left\langle i_{1} ; \gamma^{\prime}\right\rangle}{\gamma \vdash e_{1}+e_{2} \Downarrow\left\langle i_{1}+i_{2} ; \gamma^{\prime \prime}\right\rangle} \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle\gamma^{\prime \prime}\right\rangle \\
\frac{\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle}{\left.\gamma \vdash i_{1} ; \gamma^{\prime}\right\rangle} \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle i_{2} ; \gamma^{\prime \prime}\right\rangle \\
\frac{\left.\gamma \vdash x=e \Downarrow\left\langle v ; \gamma_{2}[x=v]\right\rangle\right\rangle}{}
\end{gathered}
\]

Herein, environment \(\gamma\) is a comma-separated list bindings of the form \(x=v\). We write \(\gamma[x=v]\) updating the value of \(x\) to \(v\).

\section*{Question 5 (Compilation):}
1. Write compilation schemes in pseudo code or Haskell for the statement, block, and expressions constructions of Question 1. The compiler should output symbolic JVM instructions (i.e. Jasmin assembler). It is not necessary to remember exactly the names of the instructions - only what arguments they take and how they work.
Service functions like addVar, lookupVar, lookupFun, newLabel, newBlock, popBlock, and emit can be assumed if their behavior is described. (9p)

SOLUTION: The state of the compiler has the following components:
(a) A potentially infinite supply of unique label names. Service function newLabel takes out one label from this supply and returns it.
(b) A stack of blocks each of which maps variable identifiers to JVM local variable addresses. Procedure newBlock pushes a new empty block onto the stack, popBlock removes the top block from the stack. Function addVar \(x\) binds \(x\) to the least yet-unallocated address in the top block and returns this address. Function lookupVar \(x\) searches, starting at the top of the stack, the blocks for the address bound to \(x\) and returns this address.
(c) A list of JVM instructions generated by the compiler so far. Function emit \((i)\) appends instruction \(i\) to this list.

Compilation of expressions, statements and blocks is performed in accordance with the Haskell-like pseudo-code below:
-- We annotate the stack usage by comments of the form \(\mathrm{S}<\mathrm{nnn}>\).
-- This is relative to the stack usage upon entry, which we set to 0 .
-- Compilation of expressions (increase stack usage by 1)
compile (EInt i) = do -- SO
emit (ldc i) -- S1
compile (EId x) = do -- SQ
a <- lookupVar x -- variable x has address a in store
emit (iload a) -- S1
compile (EAss x e) = do -- SO
compile e -- S1
a <- lookupVar x
emit (istore a) -- SQ
emit (iload a) -- S1
compile (EPlus e e') = do -- SO
compile e -- S1
compile e' -- S2
emit (iadd) -- S1
```

compile (ELt e e') = do -- SO
done <- newLabel
emit (ldc 1) -- S1; speculate that e < e' holds
compile e -- S2
compile e' -- S3
emit (if_icmplt done) -- S1; test e < e'
emit (pop) -- S0
emit (ldc 0) -- S1
emit (done:) -- S1
-- Compilation of statements (preserve stack usage)
compile (SDecl t x) = do -- S0
addVar x -- register local variable x, emit no code
compile (SExp e) = do -- SQ
compile e -- S1
emit (pop) -- S0
compile (SWhile e s) = do -- SQ
start, done <- newLabel
emit (start:) -- SQ
compile e -- S1; condition
emit (ifeq done) -- SO; if false, exit loop
newBlock
compile s
-- S0
popBlock
emit (goto start) -- SO; rerun loop
emit (done:) -- SO
-- Compilation of blocks
compile (SBlock ss) = do -- SO
newBlock
for (s : ss)
compile s
-- S0
popBlock

```
2. Give the small-step semantics of the JVM instructions you used in the compilation schemes in part 1. Write the semantics in the form
\[
i:(P, V, S) \longrightarrow\left(P^{\prime}, V^{\prime}, S^{\prime}\right)
\]
where \((P, V, S)\) is the program counter, variable store, and stack before execution of instruction \(i\), and \(\left(P^{\prime}, V^{\prime}, S^{\prime}\right)\) are the respective values after the execution. For adjusting the program counter, you can assume that each instruction has size 1. (7p)

SOLUTION: Stack \(S . v\) shall mean that the top value on the stack is \(v\), the rest is \(S\). Jump targets \(L\) are used as instruction addresses, and \(P+1\) is the instruction address following \(P\).
\begin{tabular}{llll} 
instruction & state before & & state after \\
goto \(L\) & \((P, V, S)\) & \(\rightarrow(L, V, S)\) & \\
ifeq \(L\) & \((P, V, S .0)\) & \(\rightarrow(L, V, S)\) & \\
ifeq \(L\) & \((P, V, S . v)\) & \(\rightarrow(P+1, V, S)\) & if \(v \neq 0\) \\
if_icmplt \(L\) & \((P, V, S . v . w)\) & \(\rightarrow(L, V, S)\) & if \(v<w\) \\
if_icmplt \(L\) & \((P, V, S . v . w)\) & \(\rightarrow(P+1, V, S)\) & unless \(v<w\) \\
iload \(a\) & \((P, V, S)\) & \(\rightarrow(P+1, V, S . V(a))\) & \\
istore \(a\) & \((P, V, S . v)\) & \(\rightarrow(P+1, V[a:=v], S)\) & \\
ldc \(i\) & \((P, V, S)\) & \(\rightarrow(P+1, V, S . i)\) & \\
iadd & \((P, V, S . v . w)\) & \(\rightarrow(P+1, V, S .(v+w))\) & \\
pop & \((P, V, S . v)\) & \(\rightarrow(P+1, V, S)\)
\end{tabular}

\section*{Question 6 (Functional languages):}
1. The following grammar describes a tiny simply-typed sub-language of Haskell.
\[
\begin{array}{lll}
x & & \text { identifier } \\
i & ::=0|1|-1|2|-2 \mid \ldots & \text { integer literal } \\
e & ::=i|e+e| x|\lambda x \rightarrow e| e e & \text { expression } \\
t::=\operatorname{lnt} \mid t \rightarrow t & \text { type }
\end{array}
\]

Application \(e_{1} e_{2}\) is left-associative, the arrow \(t_{1} \rightarrow t_{2}\) is right-associative.
For the following typing judgements \(\Gamma \vdash e: t\), decide whether they are valid or not. Your answer can be just "valid" or "not valid", but you may also provide a justification why some judgement is valid or invalid.
(a) \(x:\) Int \(\quad \vdash(\operatorname{lnt} \rightarrow \operatorname{lnt} \rightarrow \operatorname{lnt}) \rightarrow \operatorname{lnt}\)
(b) \(g:(\) Int \(\rightarrow \operatorname{Int}) \rightarrow \operatorname{Int}\)
\(\vdash g(\lambda x \rightarrow g x) \quad:\) Int
(c) \(f: \operatorname{lnt} \rightarrow\) Int \(\quad \vdash \lambda x \rightarrow f(f 1+f x) \quad: \operatorname{Int} \rightarrow\) Int
(d) \(x: \operatorname{Int}, g: \operatorname{lnt} \rightarrow \operatorname{lnt} \quad \vdash x(g+1) \quad: \operatorname{lnt}\)
(e) \(\quad f:(\) Int \(\rightarrow \operatorname{Int}) \rightarrow(\) Int \(\rightarrow \operatorname{Int}) \vdash(\lambda x \rightarrow f x)(\lambda f \rightarrow \lambda x \rightarrow f x):\) Int \(\rightarrow\) Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point for a wrong answer -1 points. If you choose not to give an answer for a judgement, you get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative sum is rounded up to 0 . (5p)

\section*{SOLUTION:}
(a) valid
(b) not valid ( \(g\) is self-applied)
(c) valid
(d) not valid ( \(g\) is a function, cannot add 1 to it)
(e) not valid ( \(f\) has order 2 , cannot be applied to order 2 argument)
2. Write a call-by-value interpreter for the functional language above, either with inference rules or in pseudo code or Haskell. (5p)
```

 SOLUTION:
 type Var = String
data Exp = EVar Var | EAbs Var Exp | EApp Exp Exp
| EInt Integer | EPlus Exp Exp
data Val = VInt Integer | VClos Var Exp Env
type Env = [(Var,Val)]
eval :: Exp }->\mathrm{ Env }->\mathrm{ Maybe Val
eval e0 rho = case e@ of
EAbs x e }->\mathrm{ return (VClos x e rho)
EVar x }->\mathrm{ lookup x rho
EInt n }->\mathrm{ return (VInt n)
EApp f e }->\mathrm{ do
VClos x e' rho' \leftarrow eval f rho
v }\leftarrow\mathrm{ eval e rho
eval e' ((x,v) : rho')
EPlus e1 e2 }->\mathrm{ do
VInt i1 \leftarrow eval e1 rho
VInt i2 }\leftarrow eval e2 rho
return (VInt (i1 + i2))

```
```

