
Programming Language Technology

Exam, 08 April 2021 at 08.30 – 12.30 on Canvas

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Andreas Abel. Questions may be asked in Zoom breakout room, by
email (mailto:andreas.abel@gu.se, subject: PLT exam) or telephone (+46 31 772
1731).

Exam review: Modalities will be announced later.
Allowed aids:

• All exam questions have to be solved individually.

• No communication of any form is permitted during the exam, including conversa-
tion, telephone, email, chat, asking questions in internet fora etc.

• All course materials can be used, including the book, lecture notes, previous exam
solutions, own lab solution, etc. Any material copied verbatim should be marked
as quotation with reference to the source.

• Publicly available documentation on the internet may be consulted freely to prepare
the solution. Small portions of code and text from publicly available resources may
be reused in the solution if clearly marked as quotation and properly referencing
the source.

Any violation of the above rules and further common sense rules applicable to an ex-
amination, including plagiarism or sharing solutions with others, will lead to immediate
failure of the exam (grade U), and may be subject to further persecution.
Grading scale: VG = 5, G = 4/3, U.

To pass, you need to deliver complete answers to two out of questions 1-3. (Typos,
bugs, and minor omissions are not a problem as long as your answer demonstrates good
understanding of the subject matter.) For a Chalmers grade 4 you need complete answers
to all of the questions 1-3. A VG/5 requires excellent answers on questions 1-3.

Submission instructions:

• Please answer the questions in English.

• The solutions need to be submitted as one .zip archive, named according to schema
FirstName LastName Personnummer.zip. Checklist:

– Lovelace.cf
– Sum.adb
– Question2.{txt|md|pdf|...}
– Question3.{txt|md|pdf|...}
– (other relevant files)

1

mailto:andreas.abel@gu.se

In the following, a fragment Lovelace of the Ada programming language is described,
in its syntax and semantics. Two example programs, Primes.adb and Factorial.adb
are included to clarify the specification. In the exam, you are asked to describe a grammar,
a type checker, and a compiler for Lovelace.

1. A program consists of:

(a) imports, in Lovelace fixed to the two lines

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

(b) main header: procedure identifier is

(c) a list of function definitions,

(d) a list of main variable declarations,

(e) a main block.

Running a program will execute the variable declarations and the statements of the
block (from which functions can be called).

2. A variable declaration is a non-empty comma-separated list of identifiers a colon,
a type, colon-equals, an initializing expression, and a semicolon. The scope of the
initializing expression are the functions and variables declared before, not including
the variable(s) we are just initializing. Note: If we declare several variables, the
initializing expression is evaluated again for each variable.

3. A type is Integer or Boolean.

4. A function definition consists of:

(a) header: function identifier parenthesized-parameters return type is,

(b) a list of local variable declarations,

(c) body: a block for the function, terminated by a semicolon.

The parameters are a non-empty semicolon-separated list of parameter declarations
each of which consists of: identifier colon type.

A function needs to be called (see function call expression) with the correct number
of arguments of the correct type. The call will execute the block with parameters
initialized to their respective argument value and local variables initialized to their
value (see ??.). The execution of the function ends when a return statement is
encountered.

The joint list of parameters and local variables may not have any duplicates.

5. A block for a function or procedure with name identifier is started by keyword
begin and ended by end identifier semicolon. In between is a non-empty list of
statements, each terminated by a semicolon.

6. A statement can be one of the following. The typing and execution of the statements
is like in C/C++/Java unless noted otherwise.

2

(a) A return statement: return expression. Returns from the current function
with the value of the expression.

(b) An assignment: identifier colon-equals expression.

(c) A conditional: if expression then statements, optionally followed by else
statements, terminated by end if.

(d) A while-loop: while expression loop statements end loop.

(e) A for-loop: for identifier in expression dot-dot expression loop statements
end loop. The for-loop declares a new variable identifier of type Integer, the
so-called loop variable. This variable is only in scope in the statements and it
may shadow other variables. The first expression denotes the initial value of
the loop variable and the second expression the final value. Both values are
integers and computed before the loop starts. If the final value is below the
initial value, the loop is not executed. Otherwise, the loop variable is set to the
initial value. The statement is executed, and the loop variable is incremented
by one. The actions of the previous sentence are repeated as long as the loop
variable is not larger than the final value.

(f) A print statement: put followed by a parenthesized expression of type Integer.
Prints the value and a newline character to the standard output.

7. An expression can be one of the following. Typing and interpretation of expressions
is like in C/C++/Java unless noted otherwise.

(a) A variable: identifier.

(b) A boolean constant true or false .

(c)

(d) A function call : identifier followed by a parenthesized non-empty comma-
separated list of expressions.

(e) A parenthesized expression.

(f) A infix binary operation: expression operator expression. All operators are
left associative. Operators come in four binding strengths:

i. Multiplicative operators, bind strongest:

• integer multiplication *,

• integer division div,

• integer remainder mod.

ii. Additive operators, next in binding strength:

• integer addition +,

• integer subtraction -.

iii. Relational operators, but-last in strength: Equality operators = (equal)
and /= (not equal) and integer comparison operators <, <=, >, and >=
with the usual meaning.

iv. Short-circuiting logical operators, least in binding strength:

v. boolean conjunction and then,

vi. boolean disjunction or else.

3

Operators are always applied to two expression of the same type. Equality
operators apply to booleans and to integers. Like in C/C++/Java, boolean
conjunction and disjunction are short-circuiting, i.e., if the left operand deter-
mines the value of the operation, the right operand is not evaluated.

8. An identifier starts with a letter, followed by a possibly empty sequence of letters,
digits, and underscores. (Note: this is different from BNFC’s Ident token type.)

9. An integer literal is a non-empty sequence of digits.

Comments start with double-dash (--) and last until the end of the line.
An identifier is never in scope before its declaration. The detailed scoping rules are:

1. Functions are in scope after their declaration: in their own body, in functions
defined later, and in the main block. There is no mutual recursion. All functions
must have distinct names.

2. The parameters and local variables of a function must be distinct. They are only
in scope in the corresponding initializing expressions (see above) and the function
body. They may shadow function identifiers.

3. The main variables (as well as all functions) are in scope in the main block. The
names of the main variables must be distinct from each other and from the functions.

-- Factorial.adb

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

procedure Factorial is

function factorial (n : Integer) return Integer is

begin

if n < 2 then

return 1;

else

return n * factorial(n - 1);

end if;

end factorial;

n : Integer := 7;

begin

put(factorial(n));

end Factorial;

4

-- Primes.adb

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

procedure Primes is

function prime (n : Integer) return Boolean is

i : Integer := 3;

begin

if n <= 2 then return (n = 2); end if;

if n mod 2 = 0 then return false; end if;

while i * i <= n loop

if n mod i = 0 then return false; end if;

i := i + 2;

end loop;

return true;

end prime;

-- Test 100 numbers for primality, starting with 1.

lower : Integer := 1;

upper : Integer := 100 + lower - 1;

begin

for n in lower .. upper loop

if prime(n) then

put(n);

end if;

end loop;

end Primes;

Question 1 (Grammar)

1. Write an Lovelace program Sum.adb that computes and prints the sum of the
integers from 1 to 100. This program should contain a function sum with two
integer parameters determining the range (e.g. “from 1 to 100”), and the main
block should call this function with arguments 1 and 100.

2. Write a labelled BNF grammar for Lovelace in a file Lovelace.cf and create a
parser from this grammar using BNFC. For the best evaluation, the parser should
be free of conflicts (shift/reduce and reduce/reduce).

3. Recommended: Test your parser on Primes.adb, Factorial.adb and Sum.adb.

Deliverables: files Lovelace.cf and Sum.adb.

5

SOLUTION: Grammar (file Lovelace.cf):

-- BNFC Grammar of Lovelace, a fragment of Ada

Prg. Program ::=

"with" "Ada" "." "Integer_Text_IO" ";"

"use" "Ada" "." "Integer_Text_IO" ";"

"procedure" Id "is" [Def] Body ";" ;

terminator Def ";";

Bdy. Body ::= [VarDecl] Block;

terminator VarDecl ";";

-- # Declarations

FunDef. Def ::= "function" Id "(" [ParDecl] ")" "return" Type "is" Body;

separator nonempty ParDecl ";";

ParDcl. ParDecl ::= Id ":" Type;

-- ## Variable declarations

VarDcl. VarDecl ::= [Id] ":" Type ":=" Exp;

separator nonempty Id ",";

-- # Types

TBool. Type ::= "Boolean";

TInt. Type ::= "Integer";

internal

TVoid. Type ::= "Void";

-- # Blocks

Blck. Block ::= "begin" [Stm] "end" Id;

terminator nonempty Stm ";";

-- # Statements

SReturn. Stm ::= "return" Exp;

SAssign. Stm ::= Id ":=" Exp;

SIf. Stm ::= "if" Exp "then" [Stm] "end" "if";

SIfElse. Stm ::= "if" Exp "then" [Stm] "else" [Stm] "end" "if";

SWhile. Stm ::= "while" Exp "loop" [Stm] "end" "loop";

SFor. Stm ::= "for" Id "in" Exp ".." Exp "loop" [Stm] "end" "loop";

SPut. Stm ::= "put" "(" Exp ")";

6

-- # Expressions

EVar. Exp4 ::= Id;

ETrue. Exp4 ::= "true";

EFalse. Exp4 ::= "false";

EInt. Exp4 ::= Integer;

ECall. Exp4 ::= Id "(" [Exp] ")";

EMul. Exp3 ::= Exp3 MulOp Exp4;

EAdd. Exp2 ::= Exp2 AddOp Exp3;

ECmp. Exp1 ::= Exp1 CmpOp Exp2;

ELog. Exp ::= Exp LogOp Exp1;

coercions Exp 4;

separator nonempty Exp ",";

-- # Operators

OTimes. MulOp ::= "*" ;

ODiv. MulOp ::= "div";

OMod. MulOp ::= "mod";

OPlus. AddOp ::= "+" ;

OMinus. AddOp ::= "-" ;

OLt. CmpOp ::= "<" ;

OLtEq. CmpOp ::= "<=" ;

OGt. CmpOp ::= ">" ;

OGtEq. CmpOp ::= ">=" ;

OEq. CmpOp ::= "=" ;

ONEq. CmpOp ::= "/=" ;

-- ## Short-cutting logical operators

OAnd. LogOp ::= "and" "then";

OOr. LogOp ::= "or" "else" ;

-- # Identifiers

token Id letter (letter | digit | ’_’)*;

-- # Comments

comment "--";

7

Summation program (file Sum.adb):

-- Sum.adb

with Ada.Integer_Text_IO; -- put for Integer

use Ada.Integer_Text_IO;

procedure Sum is

function sum (lower : Integer; upper : Integer) return Integer is

sum : Integer := 0;

begin

for i in lower .. upper loop

sum := sum + i;

end loop;

return sum;

end sum;

begin

put(sum(1,100));

end Sum;

8

Question 2 (Type checker): Write a specification of a type checker for the Lovelace
language of Question 1. The type checker receives an abstract syntax tree of a Lovelace
program and shall throw an error if any of the scoping or typing rules are violated.

Deliverable: submit a text document with name Question2 (plus file extension)
that contains the specification. The text document can be a plain text file possibly using
markup (like markdown) or a PDF.

The specification should have the following structure:

A. State. Describe the components of the state of the type checker and how these
components are implemented, i.e., which data structure (like list, map, integer...)
is used for each component.

B. Initialization and run: Describe how the state is initialized and how the type checker
(??) is started (i.e., which arguments are given to the type checker).

C. Syntax-directed traversal: Describe the type checker: Write an explanation how each
relevant Lovelace construct (expression, statement, block, declaration, ...) is checked
(or its type inferred). You may use judgements and rules or pseudo-code or precise
language.

D. API (optional): If you used helper functions to manipulate the state in item ??,
describe them here.

The specification can use the names from your BNFC grammar.
The specification should be written in a high-level but self-contained way so that an

informed outsider can implement the type checker easily following your specification. An
informed outsider shall be a person who has very good programming skills and good
familiarity with programming language technology in general, but no specific knowledge
about the Lovelace language nor access to the course material.

The specification will be judged on clarity and correctness.

9

SOLUTION:

A. State

The state of the type checker has two following components:
• Signature sig: a finite map from identifiers to function types (Def).
• Environment env: a finite map from identifiers to types.
• Return type returnType that is Nothing when we are checking the main procedure.

A function type consists of a list of types holding the types of the arguments and a return
type.

B. Initialization and run

The type checker receives a Program consisting of a list of function definitions, a list of
variable declarations, and a main block.

1. State component sig is initialized to the empty map.
2. The functions are checked in order first to last.
3. Component env is reset to the empty map and returnType to Nothing.
4. The variables declarations are checked in order first to last.
5. The statements of the main block are checked.

C. Type Checker

The type checker is a collection of mutually recursive procedures and functions that check
function and variable declarations and statements and infer or check types of expressions.
At any point a type error can be thrown.

A function definition, consisting of a function name, a parameter list, a return type,
a list of variable declarations, and a block with a list of statements is checked as follows:

1. If the function name is already a key in sig, throw error duplicate function. Oth-
erwise, extend sig by a binding of the function name to the function type. The
latter is a pair consisting of the list of the parameter types in left-to-right order,
and the return type.

2. Set returnType to the return type.
3. Empty env and then add the parameters with their type one by one, from first to

last. If a parameter is already in env, throw error duplicate parameter.
4. Check the variable declarations.
5. Check the statements.

A variable declaration, consisting of a list of variable names, a type, and an initializing
expression is checked as follows:

1. Check the expression against the type.

2. If we are checking the main variable declarations, throw error duplicate declaration
if one of the variable identifiers is bound in sig.

3. Bind each of the variables to the type in env. If the name of a variable is already
present in env, throw error duplicate variable.

10

Statements are checked as follows:

• List of statements: in first-to-last order, check each statement.

• Return statement return e: If returnType is Nothing, throw error illegal return.
Otherwise, check e against the returnType.

• Print statement put(e): Check e against type Integer.

• Assignment x := e: Lookup the type t of x in env. If no type is found, throw error
unbound variable. Otherwise, check e against t.

• Conditional if e then s1 [else s2] end if: Check e against type Boolean. Check
statements s1 and, if present, also statements s2.

• Loop statement while e loop s end loop: Check e against type Boolean. Check
statements s.

• Loop for x in e1 .. e2 loop s end loop: Check e1 and e2 against type Integer.
Save env. Bind x to Integer in map env. Check statements s. Restore the old
env.

To check an expression e against a type t, infer the type t′ of e. If t′ differs from t,
throw error type mismatch.

The type of an expression is inferred as follows:

• Literals true and false have type Boolean.

• Numeric literals have type Integer.

• A variable x has the type as stored in env. If the variable is not present in this
map, throw error unbound variable.

• A call to function f with arguments e1, . . . , en is inferred as follows:

1. If f is bound in env, throw error illegal call to variable.

2. If f is not bound in sig, throw error unbound function; otherwise, we have
the types of its parameters and its return type which is the type of the call.

3. If the number of arguments does not match the number of parameters, throw
error wrong number of arguments.

4. Check each argument against its respective parameter type.

• Arithmetic operations are of type Integer, provided the two expressions check
against type Integer.

• Logical operations are of type Boolean, provided the two expressions check against
type Boolean.

• Equality operators are of type Boolean, provided both arguments infer to the same
type.

• The other comparison operators are of type Boolean, provided both arguments
check against type Integer.

11

Question 3 (Compilation): Specify a compiler from Lovelace to JVM. The
compiler takes a type-correct abstract syntax tree of a Lovelace program as input and
translates this into Jasmin method definitions which are printed to the standard output.

Deliverable: submit a text document with name Question3 (plus file extension)
that contains the specification. Instructions analogous to Question 2 apply. In particular,
follow the same structure: A. State, B. Initialization and run, C. Compilation schemes,
D. API.

Restrictions of the task:

1. The compiler does not have to output a full Jasmin class file, only the methods
corresponding to the defined Lovelace functions and a main method for the main
block. (You may assume that no Lovelace function is called main.)

2. You need not output .limit pragmas (stack/locals).
3. You may simply use the Lovelace function identifiers for the corresponding Jasmin

method names.
4. You can assume a Java method that can be called to output an integer.
5. You need not care about Java modifiers like public or static.
6. It is sufficient to treat one logical, one arithmetical, and one comparison operator.
7. Choose one of if-then or if-then-else or while.

However, the compiler needs to output proper JVM instructions (not pseudo machine
code).
Good luck!

SOLUTION:

A. State

The state of the compiler consists of the following components:

1. A finite map context from identifiers to natural numbers (local variable addresses).
2. A natural number nextAddress denoting the next free slot in the JVM variable

store of the currently compiled method.
3. A stream labels of so far unused label names. Elements are taken from this stream

whenever a new label name is needed.

Since we are directly printing the generated Jasmin to the standard output, we need not
store any generated code. Further, since we pretend that we can use Lovelace function
identifiers for the corresponding Jasmin methods, we need no function “signature”.

B. Initialization and run

Given a type- and scope-correct Lovelace program, compilation proceeds as follows:

1. The component labels is initialized to an infinite stream of distinct label names,
e.g. L0, L1,

2. Each function definition is compiled (see below)
3. Output: .method main
4. The context is reset to an empty map and nextAddress to 0.

12

5. Each variable declaration is compiled (see below).
6. The main block is compiled (see below).
7. Output: return
8. Output: .end method

C. Compiler

The compiler is specified as an overloaded procedure compile in pseudo-code acting on
Lovelace abstract syntax from Question 1.

-- Definitions

compile (FunDef f pars t body):

emit (.method f)

context <- empty

nextAddress <- 0

for (x:t in pars): addVar x

compile body

emit (ldc 0)

emit (ireturn)

emit (.end method)

compile (Bdy vardecls block):

for (d in vardecls): compile d

compile block

compile (VarDcl xs t e):

for (x in xs):

compile e

a <- addVar x

emit (istore a)

-- Statements

compile (Blck ss):

for (s : ss) compile s

compile (SReturn e):

compile e

emit (ireturn)

compile (SAssign x e):

a <- lookupVar x

compile e

emit (istore a)

compile (SPut e):

13

compile e

emit (invokestatic put)

compile (SIf e s1):

done <- newLabel

compile e

emit (ifeq done)

compile s1

emit (done:)

compile (SIfElse e s1 s2):

else, done <- newLabel

compile e

emit (ifeq else)

compile s1

emit (goto done)

emit (else:)

compile s2

emit (done:)

compile (SWhile e s):

start, done <- newLabel

emit (start:)

compile e

emit (ifeq done)

compile s

emit (goto start)

emit (done:)

compile (SFor x e1 e2 s):

start, done <- newLabel

compile e2

compile e1

a <- addVar x

emit (start:)

emit (dup2) -- copy bounds for comparison

emit (if_icmplt done)

emit (istore a)

compile s

emit (iload a)

emit (ldc 1)

emit (iadd) -- bounds are again on top of stack

emit (goto start)

emit (done:)

emit pop2

releaseVar x

14

-- Expressions

compile (EInt i): emit (ldc i)

compile (ETrue) : emit (ldc 1)

compile (EFalse): emit (ldc 0)

compile (EId x):

a <- lookupVar x

emit (iload a)

compile (ECall f es):

for (e : es) compile e

emit (invokestatic f)

compile (EAdd e1 OMinus e2):

compile e1

compile e2

emit (isub)

compile (ECmp e1 OLt e2):

true, done <- newLabel

compile e1

compile e2

emit (if_icmplt true)

emit (ldc 0)

emit (goto done)

emit (true:)

emit (ldc 1)

emit (done:)

compile (EMul e1 OAnd e2):

false, done <- newLabel

compile e1

emit (dup)

emit (ifeq done) -- short-circuit if e1 is false

emit (pop)

compile e2

emit (done:)

D. API

• emit (text): Write text and newline to standard output.
• addVar x: Set address of x to nextAddress in context. Increase nextAddress by

one. Return address of x.
• releaseVar x: Set nextAddress to value of x in context. Drop x from this map.
• lookupVar x: Return the address of x in map context.
• newLabel: Extract the next element from stream labels.

15

