Programming Language Technology

Exam, 11 April 2017 at 8.30-12.30 in SB (Sven Hultins gata 6)

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150, DIT229/230, and TIN321.
Exam supervision: Andreas Abel (+46 31772 1731), visits at 9:30 and 11:30.
Grading scale: $\mathrm{Max}=60 \mathrm{p}, \mathrm{VG}=5=48 \mathrm{p}, 4=36 \mathrm{p}, \mathrm{G}=3=24 \mathrm{p}$.
Allowed aid: an English dictionary.
Exam review: Tuesday 25 April 2017 at 10-11 in room EDIT 8103.
Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following constructs of a C-like imperative language: A program is a list of statements. Types are int and bool. Statement constructs are:

- variable declarations (e.g. int x;), not multiple variables, no initial value
- expression statements (E;)
- while loops
- blocks: (possibly empty) lists of statements enclosed in braces

Expression constructs are:

- identifiers/variables
- integer literals
- pre-increments of identifiers ($++x$)
- greater-or-equal-than comparisons $\left(E>=E^{\prime}\right)$
- assignments of identifiers $(x=E)$

Greater-or-equal is non-associative and binds stronger than assignment. Parentheses around and expression are allowed and have the usual meaning. An example program would be:

```
int x; x = 0; while (10 >= ++x) {}
```

You can use the standard BNFC categories Integer and Ident as well as list short-hands, and terminator, separator, and coercions rules. (10p)

SOLUTION:

```
Program. Prg ::= [Stm] ;
SDecl. Stm ::= Type Ident ";" ;
SExp. Stm ::= Exp ";" ;
SWhile. Stm ::= "while" "(" Exp ")" Stm
SBlock. Stm ::= "{" [Stm] "}" ;
terminator Stm "" ;
TInt. Type ::= "int" ;
TBool. Type ::= "bool" ;
EId. Exp1 ::= Ident ;
EInt. Exp1 ::= Integer ;
EPreIncr. Exp1 ::= "++" Ident ;
EGEq. Exp ::= Exp1 ">=" Exp1 ;
EAss. Exp ::= Ident "=" Exp ;
coercions Exp 1 ;
```

Question 2 (Lexing): A string literal is a character sequence of length ≥ 2 which starts and ends with double quotes ". Taking away both the starting and the ending ", we obtain a string in which " may only appear in the form "". Valid string literals are e.g.: "Hi!" or """Ol". Invalid string literals are e.g.: B" (does not start with double quotes) "A (does not end with double quotes), or """ (the middle part " is not valid since it is a single ").

To simplify matters, we represent character " by a and any other character by b. The valid string literals from above become $a b b b a$ and $a a a b b a$ and the invalid ones $b a, a b$, and $a a a$. Our alphabet thus becomes $\Sigma=\{a, b\}$.

1. Give a regular expression for string literals (using alphabet Σ). Demonstrate that your regular expression accepts the two valid examples and rejects the three invalid ones. (5p)
2. Give a deterministic or non-deterministic automaton for recognizing string literals (using alphabet Σ). Demonstrate that your automaton accepts the two valid examples and rejects the three invalid ones. (5p)

SOLUTION:

1. $r=a(b+a a)^{*} a$. For the proofs of acceptance, we use the compositional semantics of regular expressions. For the proofs of rejectance, we use derivatives. Other demonstrations are possible.
(a) $b+a a$ accepts b, thus, $(b+a a)^{*}$ accepts $b b b$, thus $a(b+a a)^{*} a$ accepts $a b b b a$.
(b) $b+a a$ accepts both b and $a a$, thus, $(b+a a)^{*}$ accepts $a a b b$, thus, $a(b+a a)^{*} a$ accepts $a a a b b a$.
(c) $r / b a=a(b+a a)^{*} a / b a=\emptyset$ which does not contain the empty word.
(d) $r / a b=a(b+a a)^{*} a / a b=(b+a a)^{*} a / b=(b+a a)^{*} a$ which does not contain the empty word.
(e) $r / a a a=a(b+a a)^{*} a / a a a=(b+a a)^{*} a / a a=(b+a a)^{*} a$ which does not contain the empty word.
2. A possible non-deterministic automaton uses three states $S=\{0,1,2\}$ with start state 0 and accepting state 2 and the following transitions.

(This automaton could easily be made deterministic by adding an error state, reachable from 0 and 2 by character b.) To demonstrate acceptance or rejectance, we simply run the automaton on the input. We denote a run by the sequence of states the automaton goes through.
(a) $a b b b a$ is accepted by run 011112 .
(b) $a a a b b a$ is accepted by run 0121112 .
(c) $b a$ is stuck in state 0 .
(d) $a b$ leads to run 011 ending in a non-accepting state.
(e) $a a a$ leads to run 0121 ending in a non-accepting state.

Question 3 (Parsing): Consider the following BNF-Grammar for boolean expressions (written in bnfc). The starting non-terminal is D.

```
Or. D ::= D "|" C ; -- Disjunctions
Conj. D ::= C ;
And. C ::= C "&" A ; -- Conjunctions
Atom. C ::= A ;
TT. A ::= "true" ; -- Atoms
FF. A ::= "false" ;
Var. A ::= "x" ;
Parens. A ::= "(" D ")" ;
```

Step by step, trace the LR-parsing of the expression

```
false | x & true
```

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are S (shift), R (reduce with rule(s)), and Accept.

Stack	. Input	// Action(s)	(rules)	
	. false \| x \& true	// SR: "false" -> A	(FF)	
A	- \\| x \& true	// R: A \rightarrow C \rightarrow D	(Atom, Conj)	
D	. $1 \times$ x true	// SSR: "x" -> A	(Var)	
D \| A	. \& true	// R: A -> C	(Atom)	
D \| C	. \& true	// SSR: "true" -> A	(TT)	
D \| C \& A		// R: C \& A \rightarrow C	(And)	
D \| C		// R: D \| C \rightarrow D	(Or)	
D		// Accept		

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists of Question 1. The typing environment must be made explicit. You can assume a type-checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.
Please pay attention to scoping details; in particular, the program

```
while (0 >= 0) int x; x = 0;
```

should not pass your type checker! (5p)

SOLUTION: We use a judgement $\Gamma \vdash s \Rightarrow \Gamma^{\prime}$ that expresses that statement s is well-formed in context Γ and might introduce new declarations, resulting in context Γ^{\prime}.
A context Γ is a stack of blocks Δ, separated by a dot. Each block Δ is a map from variables x to types t. We write $\Delta, x: t$ for adding the binding $x \mapsto t$ to the map. Duplicate declarations of the same variable in the same block are forbidden; with $x \notin \Delta$ we express that x is not bound in block Δ. We use a judgement $\Gamma \vdash e: t$, which reads "in context Γ, expression e has type t ".

$$
\begin{array}{cc}
\frac{\Gamma . \Delta \vdash \operatorname{SDecl} t x \Rightarrow(\Gamma . \Delta, x: t)}{} x \notin \Delta & \frac{\Gamma \vdash e: t}{\Gamma \vdash \operatorname{SExp} e \Rightarrow \Gamma} \\
\frac{\Gamma \vdash e: \text { bool } \quad \Gamma . \vdash s \Rightarrow \Gamma . \Delta}{\Gamma \vdash \text { SWhile } e s \Rightarrow \Gamma} & \frac{\Gamma . \vdash s s \Rightarrow \Gamma . \Delta}{\Gamma \vdash \text { SBlock } s s \Rightarrow \Gamma}
\end{array}
$$

This judgement is extended to sequences of statements $\Gamma \vdash s s \Rightarrow \Gamma^{\prime}$ by the following rules:

$$
\overline{\Gamma \vdash \text { SNil } \Rightarrow \Gamma} \quad \frac{\Gamma \vdash s \Rightarrow \Gamma^{\prime} \quad \Gamma^{\prime} \vdash s s \Rightarrow \Gamma^{\prime \prime}}{\Gamma \vdash \text { SCons } s s s \Rightarrow \Gamma^{\prime \prime}}
$$

Alternative solution: Lists of statements are denoted by ss and ε is the empty list. The judgement $\Gamma \vdash$ ss reads "in context Γ, the sequence of statements $s s$ is well-formed". Here, concrete syntax is used for the statements:

$$
\begin{aligned}
& \overline{\Gamma \vdash \varepsilon} \quad \frac{\Gamma . \Delta \vdash e: t \quad \Gamma . \Delta, x: t \vdash s s}{\Gamma . \Delta \vdash t x ; s s} x \notin \Delta \quad \frac{\Gamma \vdash e: t \quad \Gamma \vdash s s}{\Gamma \vdash e ; s s} \\
& \frac{\Gamma \vdash e: \text { bool } \Gamma . \vdash s \quad \Gamma \vdash s s}{\Gamma \vdash \operatorname{while}(e) s s s} \quad \frac{\Gamma . \vdash s s}{\Gamma \vdash\{s s\} s s^{\prime}}
\end{aligned}
$$

Possible Haskell solution:

```
chkStm :: Stm -> StateT [Map Ident Type] Maybe ()
chkStm (SExp e) = do
    chkExp e Nothing -- Check e is well-typed
chkStm (SDecl t x) = do
    (delta : gamma) <- get -- Get context
    guard $ Map.notMember x delta -- No duplicate binding!
    put $ Map.insert x t delta : gamma -- Add binding
chkStm (SWhile e s) = do
    chkExp e (Just TBool) -- Check e against bool
    modify (Map.empty :) -- Push new block
    chkStm s
    modify tail -- Pop top block
chkStm (SBlock ss) = do
    modify (Map.empty :) -- Push new block
    mapM_ chkStm ss
    modify tail -- Pop top block
```

2. Write syntax-directed interpretation rules for the expression forms of Question 1. The environment must be made explicit, as well as all possible side effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell. (5p)

SOLUTION:

The judgement $\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle$ reads "in environment γ, evaluation of the expression e results in value v and environment $\gamma^{\prime \prime \prime}$.

$$
\begin{gathered}
\overline{\gamma \vdash \operatorname{EInt} i \Downarrow\langle i ; \gamma\rangle} \quad \overline{\gamma \vdash \operatorname{EVar} x \Downarrow\langle\gamma(x) ; \gamma\rangle} \\
\overline{\gamma \vdash \operatorname{EPreIncr} x \Downarrow\langle\gamma(x)+1 ; \gamma[x:=\gamma(x)+1]\rangle} \\
\frac{\gamma \vdash e_{1} \Downarrow\left\langle i_{1} ; \gamma_{1}\right\rangle \quad \gamma_{1} \vdash e_{2} \Downarrow\left\langle i_{2} ; \gamma_{2}\right\rangle}{\gamma \vdash \operatorname{EGEq} e_{1} e_{2} \Downarrow\left\langle i_{1} \geq i_{2} ; \gamma_{2}\right\rangle} \quad \frac{\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle}{\gamma \vdash \operatorname{EAss} x e \Downarrow\left\langle v ; \gamma^{\prime}[x:=v]\right\rangle}
\end{gathered}
$$

Question 5 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression constructions in Question 1 generating JVM (i.e. Jasmin assembler). It is not necessary to remember exactly the names of the instructions - only what arguments they take and how they work. (6 p)

SOLUTION:

```
compile (EVar x) = do
    a <- lookupVar x
    emit (iload a) -- load value of x onto stack
compile (EInt i) = do
    emit (ldc i) -- put i onto stack
compile (EAss x e) = do
    compile e -- value of e is on stack
    a <- lookupVar x
    istore a -- store value
    iload a -- put value back on stack
compile (EPreIncr x) = do
    a <- lookupVar x
    emit (iload a) -- load value of x onto stack
    emit (ldc 1) -- increment
    emit (iadd)
    emit (istore a) -- store value
    emit (iload a) -- put value back on stack
compile (EGEq e1 e2) = do
    LDone <- newLabel
    emit (ldc 1) -- push "true"
    compile e1
    compile e2
    emit (if_icmpge LDone) -- if greater or equal, then done
    emit (pop) -- remove "true"
    emit (ldc 0) -- push "false"
    emit (LDone:)
```

2. Give the small-step semantics of the JVM instructions you used in the compilation schemes in part 1. Write the semantics in the form

$$
i:(P, V, S) \longrightarrow\left(P^{\prime}, V^{\prime}, S^{\prime}\right)
$$

where (P, V, S) are the program counter, variable store, and stack before execution of instruction i, and $\left(P^{\prime}, V^{\prime}, S^{\prime}\right)$ are the respective values after the execution. For adjusting the program counter, you can assume that each instruction has size 1. (6p)

SOLUTION:

ldc a	$:$	(P, V, S)	\longrightarrow	$(P+1, V$,	$S . a)$
iload x	$:$	(P, V, S)	\longrightarrow	$(P+1, V$,	$S . V(x))$
istore x	$:$	$(P, V, S . a)$	\longrightarrow	$(P+1, V[x=a], S)$	
pop	$:$	$(P, V, S . a)$	\longrightarrow	$(P+1, V$,	$S)$
iadd	$:$	$(P, V, S . a . b)$	\longrightarrow	$(P+1, V$,	$S .(a+b))$
if_icmpge L	$:$	$(P, V, S . a . b)$	\longrightarrow	$(L, V$,	$S)$ if $a \geq b$
if_icmpge L	$:$	$(P, V, S . a . b)$	\longrightarrow	$(P+1, V$,	$S)$ otherwise

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the grammar

$$
e::=n|x| \lambda x \rightarrow e \mid e e
$$

and for simple types $t::=$ int $\mid t \rightarrow t$. Non-terminal x ranges over variable names and n over integer constants 0,1 , etc.
For the following typing judgements $\Gamma \vdash e: t$, decide whether they are valid or not. Your answer should be just "valid" or "not valid".
(a) $\vdash \lambda x \rightarrow \lambda y \rightarrow(f x) y:$ int $\rightarrow($ int \rightarrow int $)$.
(b) $y:($ int \rightarrow int $) \rightarrow$ int $\vdash y(\lambda x \rightarrow 1):$ int.
(c) f : int \rightarrow int $\vdash \lambda x \rightarrow f(f x):$ int \rightarrow int.
(d) $y:$ int \rightarrow int, $f:$ int $\vdash f y:$ int.
(e) $f:($ int \rightarrow int $) \rightarrow($ int \rightarrow int $) \vdash(\lambda x \rightarrow f(x x))(\lambda \rightarrow f(x x)):$ int \rightarrow int.

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point for a wrong answer -1 points. If you choose not to give an answer for a judgement, you get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative sum is rounded up to 0 . (5p)

SOLUTION:

(a) not $\operatorname{valid}(f$ is unbound)
(b) valid
(c) valid
(d) not valid (f does not have a function type)
(e) not valid (self application $x x$ is not typable)
2. Write a call-by-value interpreter for above lambda-calculus either with inference rules, or in pseudo-code or Haskell. (5p)

SOLUTION:

```
type Var = String
data Exp = EInt Integer | EVar Var | EAbs Var Exp | EApp Exp Exp
data Val = VInt Integer | VClos Var Exp Env
type Env = [(Var,Val)]
eval :: Exp -> Env -> Maybe Val
eval e0 rho = case e0 of
    EInt n -> return $ VInt n
    EAbs x e -> return $ VClos x e rho
    EVar x -> lookup x rho
    EApp f e -> do
        VClos x e' rho' <- eval f rho
        v <- eval e rho
        eval e' $ (x,v):rho'
```

