
Programming Language Technology

Exam, 8 March 2012 at 14–18 in V

Course codes: Chalmers DAT150, GU DIT230. As re-exam, also TIN321 and
DIT229.
Teacher: Aarne Ranta (tel. 1082)
Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Aids: an English dictionary.
Exam review: Tuesday 3 April at 10:00-12:00 in office 6106, EDIT Building.

Instructions

This exam has two groups of questions, one easy and advanced. Points are
distributed in such a way that doing the easy questions is enough to pass the
exam (mark 3 or G). From another perspective, the easy questions can be an-
swered by anyone who has managed to do the labs without any further reading.
The advanced questions may also require material from the lecture notes and
exercises. You can get points for the advanced questions without doing the
easier ones.

The bonus points from exercises are added to the total score by the teachers.

Questions requiring answers in code can be answered in any of: C, C++, Haskell,
Java, or precise pseudocode. Text in the answers can be in any of: Danish,
Dutch, English, Estonian, Finnish, French, German, Icelandic, Italian, Norwe-
gian, Romanian, Spanish, and Swedish.

For any of the six questions, an answer of roughly one page should be enough.

1



Group 1: easy questions

1. Write a BNF grammar that covers the following kinds of constructs in C++:
• statements:

– if statements with else
– blocks: lists of statements (possibly empty) in curly brackets { }
– expression statements (exp ;)

• expressions:
– variables
– integer literals
– function calls (with zero or more arguments)

An example statement is shown in question 2. You can use the standard BNFC
categories Double, Integer, and Ident as well as list categories and terminator
and separator rules. (10p)

2. Show the parse tree and the abstract syntax tree of the statement

if (debug()) prints(3,x) ; else {}

in the grammar that you wrote in question 1. (10p)

3. Write syntax-directed type checking rules for if statements with else, for
expression statements, and for function calls. (5p)

Write syntax-directed interpretation rules for if statements with else, for
expression statements, and for function calls. The environment must be made
explicit, as well as all possible side effects. (5p)

Group 2: advanced questions

4. Trace the LR-parsing of the statement given in Question 2, showing how the
stack and the input evolves and which actions are performed. Be careful with
lists, so that the actions match your grammar in Question 1. (10p)

5. Write compilation schemes for each of the grammar constructions in Question
1 generating JVM (i.e. Jasmin assembler). It is not necessary to remember
exactly the names of the instructions - only what arguments they take and how
they work. (6p)

Show the JVM (Jasmin) code generated for the statement given in Question
2 by your compilation schemes. (4p)

6. A Church numeral n is a function that applies an arbitrary function to an
arbitrary argument n times. Define, in pure lambda calculus,

• the Church numerals 0,1,2,3
• the addition of Church numerals (PLUS)
• the multiplication of Church numerals (MULT)
• the exponentiation of Church numerals (EXP), where EXP m n multiplies

m with itself n times.
The EXP function is not in the lecture notes, but you can figure it out by
following the same pattern as PLUS and MULT. (10p)

2


