
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson,
partly based on slides by Ana Bove

2020-01-28

Today

▶ Inductively defined subsets.
▶ Deterministic finite automata.

Inductively
defined
subsets

Inductively defined subsets

▶ One can define subsets of (say) Σ∗ inductively.
▶ For instance, for 𝐿 ⊆ Σ∗ we can define

𝐿∗ ⊆ Σ∗ inductively:

𝜀 ∈ 𝐿∗
𝑢 ∈ 𝐿 𝑣 ∈ 𝐿∗

𝑢𝑣 ∈ 𝐿∗

▶ Note that there are no constructors.

Inductively defined subsets

▶ What about recursion?

𝑓 ∈ 𝐿∗ → Bool
𝑓(𝜀) = false
𝑓(𝑢𝑣) = not(𝑓(𝑣))

▶ If 𝜀 ∈ 𝐿, do we have

𝑓(𝜀) = 𝑓(𝜀𝜀) = not(𝑓(𝜀))?

Inductively defined subsets

▶ Induction works
(assuming “proof irrelevance”).

▶ 𝑃(𝜀) ∧ (∀𝑢 ∈ 𝐿, 𝑣 ∈ 𝐿∗. 𝑃 (𝑣) ⇒ 𝑃 (𝑢𝑣)) ⇒
∀𝑤 ∈ 𝐿∗. 𝑃 (𝑤).

𝐿 ⊆ { 𝑎, 𝑏 }∗ is defined inductively in the
following way:

𝑎 ∈ 𝐿
𝑢, 𝑣 ∈ 𝐿
𝑢𝑏𝑣 ∈ 𝐿

Which of the following propositions are valid?
1. 𝜀 ∈ 𝐿.
2. 𝑎𝑏𝑎 ∈ 𝐿.
3. 𝑏𝑎𝑏 ∈ 𝐿.
4. 𝑎𝑎𝑏𝑎𝑎 ∈ 𝐿.
5. 𝑎𝑏𝑎𝑏𝑎 ∈ 𝐿.

DFAs

DFAs
Recall from the first lecture:

.. 𝑠0. 𝑠1..
1

.

1

▶ A DFA specifies a language.
▶ In this case the language

{ 11 }∗ = { 𝜀, 11, 1111, … }.
▶ DFAs are for instance used to implement

regular expression matching.

DFAs

A DFA can be given by a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹):
▶ A finite set of states (𝑄).
▶ An alphabet (Σ).
▶ A transition function (𝛿 ∈ 𝑄 × Σ → 𝑄).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A set of accepting states (𝐹 ⊆ 𝑄).

Which of the following 5-tuples can be seen
as DFAs?

1. (ℕ, { 0, 1 } , 𝛿, 0, { 13 }),
where 𝛿(𝑛, 𝑚) = 𝑛 + 𝑚.

2. ({ 0, 1 } , ∅, 𝛿, 0, { 1 }), where 𝛿(𝑛, _) = 𝑛.
3. ({ 𝑞0, 𝑞1 } , { 0, 1 } , 𝛿, 𝑞0, { 1 }),

where 𝛿(_, _) = 𝑞0.
4. ({ 𝑞0, 𝑞1 } , { 0, 1 } , 𝛿, 𝑞0, { 𝑞0 }),

where 𝛿(𝑞, _) = 𝑞.
5. ({ 𝑞0, 𝑞1 } , { 0, 1 } , 𝛿, 𝑞0, { 𝑞0 }),

where 𝛿(_, _) = 0.

Semantics

The language of a DFA

The language 𝐿(𝐴) of a DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)
is defined in the following way:
▶ A transition function for strings is defined

by recursion:

̂𝛿 ∈ 𝑄 × Σ∗ → 𝑄
̂𝛿(𝑞, 𝜀) = 𝑞
̂𝛿(𝑞, 𝑎𝑤) = ̂𝛿(𝛿(𝑞, 𝑎), 𝑤)

▶ The language is { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∈ 𝐹 }.

Which strings are members of the language
of ({ 𝑠0, 𝑠1, 𝑠2, 𝑠3 } , { 𝑎, 𝑏 } , 𝛿, 𝑠0, { 𝑠0 })?
Here 𝛿 is defined in the following way:

𝛿(𝑠0, 𝑎) = 𝑠1 𝛿(𝑠0, 𝑏) = 𝑠2
𝛿(𝑠1, 𝑎) = 𝑠0 𝛿(𝑠2, 𝑏) = 𝑠0
𝛿(_, _) = 𝑠3 (In all other cases.)

1. 𝜀.
2. 𝑎𝑎𝑏.
3. 𝑎𝑏𝑎.

4. 𝑎𝑎𝑏𝑏𝑎𝑎.
5. 𝑎𝑏𝑏𝑎𝑎𝑏.
6. 𝑏𝑏𝑎𝑎𝑎𝑎.

Transition
diagrams

Transition diagrams

.. 𝑠0. 𝑠1..
1

.

1

▶ One node per state.
▶ An arrow “from nowhere” to the start state.
▶ Double circles for accepting states.
▶ For every transition 𝛿(𝑠1, 𝑎) = 𝑠2,

an arrow marked with 𝑎 from 𝑠1 to 𝑠2.
▶ Multiple arrows can be combined.

A variant

Diagrams with “missing transitions”:

.. Start. OK.. '1','2',…,'9'.

'0','1',…,'9'

A variant
Every missing transition goes to a new state
(that is not accepting):

.. Start. OK.

Bad

.. '1','2',…,'9'.

'0','1',…,'9'

.

'0','a','b',…

.

'a','b',…

.

'0',…,'9',
'a','b',…

A variant

Note that diagrams with missing transitions do not
define the alphabet unambiguously:

.. Start. OK.. '1','2',…,'9'.

'0','1',…,'9'

The alphabet must be a (finite) superset of
{ '0', '1', …, '9' }, but which one?

Which strings are members of the language
of the DFA defined by the following transition
diagram? The alphabet is { 𝑎, 𝑏 }.

.. 𝑠0. 𝑠1. 𝑠2.

𝑠3

.

𝑠4

.. a.

b

.
b

.
a

.

a

1. 𝜀.
2. 𝑎𝑎.
3. 𝑎𝑏.

4. 𝑏𝑎.
5. 𝑎𝑏𝑎𝑏.
6. 𝑏𝑎𝑏𝑎.

Transition
tables

Transition tables

0 1
→ ∗𝑠0 𝑠2 𝑠1

𝑠1 𝑠2 𝑠0
𝑠2 𝑠2 𝑠2

▶ States: Left column.
▶ Alphabet: Upper row.
▶ Start state: Arrow.
▶ Accepting states: Stars.
▶ Transition function: Table.

Which strings are members of the language
of the DFA defined by the following
transition table?

0 1
→ 𝑠0 𝑠2 𝑠1

∗𝑠1 𝑠2 𝑠0
∗𝑠2 𝑠2 𝑠2

1. 𝜀.
2. 0.
3. 1.

4. 11.
5. 111.
6. 1010.

Constructions

Complement

Given a DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) we can construct
a DFA 𝐴 that satisfies the following property:

𝐿(𝐴) = 𝐿(𝐴) ≔ Σ∗ ∖ 𝐿(𝐴).

Construction:

(𝑄, Σ, 𝛿, 𝑞0, 𝑄 ∖ 𝐹).

We accept if the original automaton doesn’t.

Complement

𝐴 =

.. 𝑠0. 𝑠1. 𝑠2.

𝑠3

.

𝑠4

.. a.

b

.
b

.
a

.

a

Complement
𝐴 =

.. 𝑠0. 𝑠1. 𝑠2.

𝑠3

.

𝑠4

.

𝑠5

.. a.

b

.
b

.

a

.
a

.

b

.

a

.

b

.

a, b

.

a, b

Complement
𝐴 =

.. 𝑠0. 𝑠1. 𝑠2.

𝑠3

.

𝑠4

.

𝑠5

.. a.

b

.
b

.

a

.
a

.

b

.

a

.

b

.

a, b

.

a, b

Product
Given two DFAs 𝐴1 = (𝑄1, Σ, 𝛿1, 𝑞01, 𝐹1) and
𝐴2 = (𝑄2, Σ, 𝛿2, 𝑞02, 𝐹2) with the same alphabet
we can construct a DFA 𝐴1 ⊗ 𝐴2 that satisfies the
following property:

𝐿(𝐴1 ⊗ 𝐴2) = 𝐿(𝐴1) ∩ 𝐿(𝐴2).

Construction:

(𝑄1 × 𝑄2, Σ, 𝛿, (𝑞01, 𝑞02), 𝐹1 × 𝐹2), where
𝛿((𝑠1, 𝑠2), 𝑎) = (𝛿1(𝑠1, 𝑎), 𝛿2(𝑠2, 𝑎)).

We basically run the two automatons in parallel and
accept if both accept.

Product
{ 2𝑛 | 𝑛 ∈ ℕ } ∩ { 1 + 3𝑛 | 𝑛 ∈ ℕ }
(in unary notation, with 𝜀 standing for 0):

.. 𝑠0. 𝑠1..
1

.

1

⊗

.. 𝑠2. 𝑠3. 𝑠4.. 1. 1.

1

Product

{ 4 + 6𝑛 | 𝑛 ∈ ℕ }:

.. (𝑠0, 𝑠2). (𝑠1, 𝑠3). (𝑠0, 𝑠4).

(𝑠1, 𝑠4)

.

(𝑠0, 𝑠3)

.

(𝑠1, 𝑠2)

.. 1.

1

.

1

.

1

. 1.

1

We can also construct a DFA 𝐴1 ⊕ 𝐴2 that
satisfies the following property:

𝐿(𝐴1 ⊕ 𝐴2) = 𝐿(𝐴1) ∪ 𝐿(𝐴2).

The construction is basically that of
𝐴1 ⊗ 𝐴2, but with a different set of
accepting states. Which one?

1. 𝐹1 ∪ 𝐹2.
2. 𝐹1 ∩ 𝐹2.
3. 𝑄1 × 𝑄2.

4. 𝐹1 × 𝑄2 ∪ 𝑄1 × 𝐹2.
5. 𝐹1 × 𝑄2 ∩ 𝑄1 × 𝐹2.

Accessible states
▶ Let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be a DFA.
▶ The set Acc(𝑞) ⊆ 𝑄 of states that are

accessible from 𝑞 ∈ 𝑄 can be defined in the
following way:

Acc(𝑞) = { ̂𝛿(𝑞, 𝑤) ∣ 𝑤 ∈ Σ∗ }

▶ A possibly smaller DFA:

𝐴′ = (Acc(𝑞0), Σ, 𝛿′, 𝑞0, 𝐹 ∩ Acc(𝑞0))
𝛿′(𝑞, 𝑎) = 𝛿(𝑞, 𝑎)

▶ We have 𝐿(𝐴′) = 𝐿(𝐴).

Accessible states

Note that some states cannot be reached from the
start state:

.. 𝑞0. 𝑞1.

𝑞2

.

𝑞3

..

0

.
1

.

0

. 1.

0, 1

.

0, 1

Accessible states

The following DFA defines the same language:

.. 𝑞0. 𝑞1..

0

.
1

.

0

. 1

Regular
languages

Regular languages

▶ A language 𝑀 ⊆ Σ∗ is regular if there is some
DFA 𝐴 with alphabet Σ such that 𝐿(𝐴) = 𝑀 .

▶ Note that if 𝑀 and 𝑁 are regular, then
𝑀 ∩ 𝑁 , 𝑀 ∪ 𝑁 and 𝑀 are also regular.

Today

▶ Inductively defined subsets.
▶ Deterministic finite automata:

▶ 5-tuples.
▶ Semantics.
▶ Transition diagrams.
▶ Transition tables.
▶ Constructions.
▶ Regular languages.

Demo

During the exercise session today Mohammad will
give a demo of JFLAP.

Consultation time

▶ Today, right after the exercise session, in EL42.
▶ You decide what you want to work on.

Next lecture

▶ Nondeterministic finite automata (NFAs).
▶ The subset construction

(turns NFAs into DFAs).

▶ Deadline for the next quiz:
2020-01-30, 10:00.

▶ Deadline for the first assignment:
2020-02-02, 23:59.

	Inductively defined subsets
	Semantics
	Transition diagrams
	Transition tables
	Constructions
	Regular languages
	Conclusion

