Nils Anders Danielsson

2019-03-02

» Closure properties for context-free languages.
» Some algorithms for context-free languages.
» Some undecidable problems.

Closure
properties

» Every regular language is context-free.
» Exercise: Prove this.

Substitutions

Assume that

» >, and 3, are alphabets and

» e — p(Xd).
The function F' maps symbols to languages.
It can be lifted to words and languages:

F e X — p(35) F e p(X]) — p(X3)

Fe) ={e} F(L) = U, Fw)
F(aw) = F(a)F(w)

{a,b,c}
{abc }"
{ab,ac}
{ac,bc}’
{a} {bc}
{a,b} {c}
{a} {be}
{ab} {e}

ORI CHRCIE- S CORIDEE

Closure under substitutions

>, and X, are alphabets,

L C X7 is context-free,

Fe¥ — o), and

F(a) is context-free for every a € ¥,
then F(L) is context-free.

vV v v VvV

Idea:

» Replace each terminal a in a grammar for L
with the start symbol of a grammar for F'(a).

» If L, and L, are context-free,
then L, U L, is context-free.

» Substitute L, for ¢ in { 1,2 }.

Closure under union

Recall: F(L) is context-free if

>, and X, are alphabets,

L C 37 is context-free,

Fe¥ — o), and

F(a) is context-free for every a € 3.

v

v v Vv

In this case:
» 3, ={1,2}, %, is the union of the sets of
terminals of some grammars for L, and L.
» L={1,2} C X} is context-free.
» (1) =Ly, F(2) = L,.
» F'(1) and F(2) are context-free.
Thus F(L) = L, U L, is context-free.

» If L, and L, are context-free,
then L, L, is context-free.

» Substitute L, for i in { 12 }.

» If L is context-free,
then L* is context-free.

> Substitute L for 1in {1}

» If L is context-free,
then L™ is context-free.

» Substitute L for 1in {1}

Homomorphisms

Assume that

» >, and X, are alphabets and

» heX, — X5
The function A maps symbols to words.
It can be lifted to words and languages:

heXt— 3 h € p(X7) = p(X3)
he) =e hL)={h(w)|weL}
h(aw) = h(a)h(w)

The function h € X7 — X5 is a
string homomorphism.

» If L C 37 is context-free,
then h(L) is context-free.

» Apply the substitution F'(a) = { h(a) } to L.

Prove that L = { 01237456 | n € N } is
not a context-free language over
{0,1,2,3,4,5,6 }.

You may use the fact that { 0"1"2" |n € N } is
not a context-free language over { 0,1,2 }.

Hint: Can you find a string homomorphism h for
which A(L) ={0"1™2" | n € N }7

Closure under intersection

» If L, and L, are context-free,
then L, N L, is not necessarily context-free.

» If L; and L, are context-free,
then L, \ L, is not necessarily context-free.

» If L is a context-free language over 3,
then L = ¥*\ L is not necessarily context-free.

Closure under intersection

» If L is context-free and R is regular,
then L N R is context-free.

» If L is context-free and R is regular,
then L \ R is context-free.

If > is an alphabet, R C >* is regular and
L C X" is context-free, what can we say
about R\ L7?

1. It is always regular.

2. It is not necessarily regular,
but always context-free.

3. It is not necessarily context-free.

Hint: ¥*\ L = L.

Some
algorithms

Testing emptiness

For any context-free language L,
given as a context-free grammar G = (N, %, P, S),
we can decide if L = {):
» A symbol X € N U X is generating
if X =" w for some w € ¥*.

» L = () if and only if S is not generating.

Computing the generating symbols

The set of generating symbols can be computed
(perhaps inefficiently) in the following way:

> Let the function step € p(NUX) — p(NUX)
be defined by

step(I") = { A

A— aeP, }

every symbol in « is in T’

> Initialise I" to X..

» Repeat until step(I') C T
» Set I' to I' U step(I).

» Return I

Testing if the empty string is a member

For any context-free language L,
given as a context-free grammar G = (N, 3, P, S),
we can decide if € € L:

» A nonterminal A € N is nullable if A =* ¢.
» We have € € L if and only if S is nullable.

Computing the nullable nonterminals

The set of nullable nonterminals can be computed
(perhaps inefficiently) in the following way:

> Let the function step € p(N) — p(N)
be defined by

every symbol in a is a
nonterminal in F

A—acP,
step(E)—{A }

> Initialise F to .

> Repeat until step(E) C E:
» Set FE to E U step(F).

» Return F.

The CYK algorithm

For any context-free language L,
given as a context-free grammar G,
and for any nonempty string w € ¥,
we can decide if w € L.

The CYK algorithm

» Convert G to a grammar G’ = (N, X%, P, S)
in Chomsky normal form such that
we L(G") < we L(G).
» Build a CYK table T' for G" and w:
> T, ;s defined for
i,7 € {1,...,|w|} satisfying i < j.
» T, ={AeN|A=>"w..w, },
where w, denotes the i-th symbol in w
(counting from 1).

> Check If S - T17|w|.

The CYK algorithm

The table can be computed in the following way:
> First set

for each i € {1, ..., |wl|}.
» Then set

kef{i,,j—1},
T;,; = A|Be T4, C € Tht1,5s
A—BCeP
for all 4,7 € {1,..., |w|} satisfying

j—i1+1=2.
» Repeat the previous step for j —i+ 1 =3,
4 and so on up to |w].

An example of dynamic programming.

Consider the following CYK table:

{s)
0 {T)
0 {S} 0

(7,2} {U,0} {U,0} {T,Z}
0 1 1 0

Construct a parse tree for the string 0110,
given the information that at least the following
productions exist in the grammar:
S—27ZT,5S—-0U,T— SZ.

The CYK algorithm

» A potential problem:
The size of G’ can be quadratic
in the size of G.
» A variant of the algorithm that does not use
the UNIT transformation can be devised:
» Time complexity: O(|G||w]?).
> Space complexity: O(|G||w|?).
See Lange and LeiB.

Some
undecidable
problems

Some undecidable problems

The following things cannot, in general,
be determined (using, say, a Turing machine):

» If a context-free grammar is ambiguous.

» If a context-free language, given by a
context-free grammar, is inherently ambiguous.

context-free grammars G and G,.

Some undecidable problems

If you want to know more about why certain
problems are undecidable, then you might be
interested in the course Computability.

» Closure properties for context-free languages.
» Some algorithms for context-free languages.
» Some undecidable problems.

» Pushdown automata.
» Turing machines.

	Closure properties
	Some algorithms
	Some undecidable problems
	Conclusion

