
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson

2019-03-02

Today

▶ Closure properties for context-free languages.
▶ Some algorithms for context-free languages.
▶ Some undecidable problems.

Closure
properties

Context-free languages

▶ Every regular language is context-free.
▶ Exercise: Prove this.

Substitutions

Assume that
▶ Σ1 and Σ2 are alphabets and
▶ 𝐹 ∈ Σ1 → ℘(Σ∗

2).
The function 𝐹 maps symbols to languages.
It can be lifted to words and languages:

𝐹 ∈ Σ∗
1 → ℘(Σ∗

2)
𝐹(𝜀) = { 𝜀 }
𝐹(𝑎𝑤) = 𝐹(𝑎)𝐹(𝑤)

𝐹 ∈ ℘(Σ∗
1) → ℘(Σ∗

2)
𝐹(𝐿) = ⋃𝑤∈𝐿 𝐹(𝑤)

What is 𝐹({ 01 }∗) when
𝐹(0) = { 𝑎 } and 𝐹(1) = { 𝑏, 𝑐 }?

1. { 𝑎, 𝑏, 𝑐 }∗

2. { 𝑎𝑏𝑐 }∗

3. { 𝑎𝑏, 𝑎𝑐 }∗

4. { 𝑎𝑐, 𝑏𝑐 }∗

5. { 𝑎 }∗ { 𝑏, 𝑐 }∗

6. { 𝑎, 𝑏 }∗ { 𝑐 }∗

7. { 𝑎 }∗ { 𝑏𝑐 }∗

8. { 𝑎𝑏 }∗ { 𝑐 }∗

Closure under substitutions

If
▶ Σ1 and Σ2 are alphabets,
▶ 𝐿 ⊆ Σ∗

1 is context-free,
▶ 𝐹 ∈ Σ1 → ℘(Σ∗

2), and
▶ 𝐹(𝑎) is context-free for every 𝑎 ∈ Σ1,

then 𝐹(𝐿) is context-free.

Closure under substitutions

Idea:
▶ Replace each terminal 𝑎 in a grammar for 𝐿

with the start symbol of a grammar for 𝐹(𝑎).

Closure under union

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∪ 𝐿2 is context-free.

▶ Substitute 𝐿𝑖 for 𝑖 in { 1, 2 }.

Closure under union
Recall: 𝐹(𝐿) is context-free if
▶ Σ1 and Σ2 are alphabets,
▶ 𝐿 ⊆ Σ∗

1 is context-free,
▶ 𝐹 ∈ Σ1 → ℘(Σ∗

2), and
▶ 𝐹(𝑎) is context-free for every 𝑎 ∈ Σ1.

In this case:
▶ Σ1 = { 1, 2 }, Σ2 is the union of the sets of

terminals of some grammars for 𝐿1 and 𝐿2.
▶ 𝐿 = { 1, 2 } ⊆ Σ∗

1 is context-free.
▶ 𝐹(1) = 𝐿1, 𝐹(2) = 𝐿2.
▶ 𝐹(1) and 𝐹(2) are context-free.

Thus 𝐹(𝐿) = 𝐿1 ∪ 𝐿2 is context-free.

Closure under concatenation

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1𝐿2 is context-free.

▶ Substitute 𝐿𝑖 for 𝑖 in { 12 }.

Closure under Kleene star

▶ If 𝐿 is context-free,
then 𝐿∗ is context-free.

▶ Substitute 𝐿 for 1 in { 1 }∗.

Closure under Kleene plus

▶ If 𝐿 is context-free,
then 𝐿+ is context-free.

▶ Substitute 𝐿 for 1 in { 1 }+.

Homomorphisms

Assume that
▶ Σ1 and Σ2 are alphabets and
▶ ℎ ∈ Σ1 → Σ∗

2.
The function ℎ maps symbols to words.
It can be lifted to words and languages:

ℎ ∈ Σ∗
1 → Σ∗

2
ℎ(𝜀) = 𝜀
ℎ(𝑎𝑤) = ℎ(𝑎)ℎ(𝑤)

ℎ ∈ ℘(Σ∗
1) → ℘(Σ∗

2)
ℎ(𝐿) = { ℎ(𝑤) | 𝑤 ∈ 𝐿 }

The function ℎ ∈ Σ∗
1 → Σ∗

2 is a
string homomorphism.

Closure under homomorphism

▶ If 𝐿 ⊆ Σ∗
1 is context-free,

then ℎ(𝐿) is context-free.
▶ Apply the substitution 𝐹(𝑎) = { ℎ(𝑎) } to 𝐿.

Prove that 𝐿 = { 01𝑛23𝑛45𝑛6 | 𝑛 ∈ ℕ } is
not a context-free language over
{ 0, 1, 2, 3, 4, 5, 6 }.
You may use the fact that { 0𝑛1𝑛2𝑛 | 𝑛 ∈ ℕ } is
not a context-free language over { 0, 1, 2 }.

Hint: Can you find a string homomorphism ℎ for
which ℎ(𝐿) = { 0𝑛1𝑛2𝑛 | 𝑛 ∈ ℕ }?

Closure under intersection

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∩ 𝐿2 is not necessarily context-free.

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∖ 𝐿2 is not necessarily context-free.

▶ If 𝐿 is a context-free language over Σ,
then 𝐿 = Σ∗ ∖ 𝐿 is not necessarily context-free.

Closure under intersection

▶ If 𝐿 is context-free and 𝑅 is regular,
then 𝐿 ∩ 𝑅 is context-free.

▶ If 𝐿 is context-free and 𝑅 is regular,
then 𝐿 ∖ 𝑅 is context-free.

If Σ is an alphabet, 𝑅 ⊆ Σ∗ is regular and
𝐿 ⊆ Σ∗ is context-free, what can we say
about 𝑅 ∖ 𝐿?

1. It is always regular.
2. It is not necessarily regular,

but always context-free.
3. It is not necessarily context-free.

Hint: Σ∗ ∖ 𝐿 = 𝐿.

Some
algorithms

Testing emptiness

For any context-free language 𝐿,
given as a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can decide if 𝐿 = ∅:
▶ A symbol 𝑋 ∈ 𝑁 ∪ Σ is generating

if 𝑋 ⇒∗ 𝑤 for some 𝑤 ∈ Σ∗.
▶ 𝐿 = ∅ if and only if 𝑆 is not generating.

Computing the generating symbols

The set of generating symbols can be computed
(perhaps inefficiently) in the following way:
▶ Let the function step ∈ ℘(𝑁 ∪ Σ) → ℘(𝑁 ∪ Σ)

be defined by

step(Γ) = { 𝐴 ∣ 𝐴 → 𝛼 ∈ 𝑃 ,
every symbol in 𝛼 is in Γ } .

▶ Initialise Γ to Σ.
▶ Repeat until step(Γ) ⊆ Γ:

▶ Set Γ to Γ ∪ step(Γ).
▶ Return Γ.

Compute the generating symbols of the
grammar ({ 𝑆, 𝐴, 𝐵 } , { 0, 1 } , 𝑃 , 𝑆),
where 𝑃 is defined in the following way:

𝑆 → 0𝐴 ∣ 𝐵
𝐴 → 1𝑆 ∣ 𝜀
𝐵 → 𝐴𝐵

1. 𝑆.
2. 𝐴.
3. 𝐵.

4. 0.
5. 1.

Testing if the empty string is a member

For any context-free language 𝐿,
given as a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can decide if 𝜀 ∈ 𝐿:
▶ A nonterminal 𝐴 ∈ 𝑁 is nullable if 𝐴 ⇒∗ 𝜀.
▶ We have 𝜀 ∈ 𝐿 if and only if 𝑆 is nullable.

Computing the nullable nonterminals
The set of nullable nonterminals can be computed
(perhaps inefficiently) in the following way:
▶ Let the function step ∈ ℘(𝑁) → ℘(𝑁)

be defined by

step(𝐸) = { 𝐴 ∣
𝐴 → 𝛼 ∈ 𝑃 ,
every symbol in 𝛼 is a
nonterminal in 𝐸

} .

▶ Initialise 𝐸 to ∅.
▶ Repeat until step(𝐸) ⊆ 𝐸:

▶ Set 𝐸 to 𝐸 ∪ step(𝐸).
▶ Return 𝐸.

The CYK algorithm

For any context-free language 𝐿,
given as a context-free grammar 𝐺,
and for any nonempty string 𝑤 ∈ Σ∗,
we can decide if 𝑤 ∈ 𝐿.

The CYK algorithm

▶ Convert 𝐺 to a grammar 𝐺′ = (𝑁, Σ, 𝑃 , 𝑆)
in Chomsky normal form such that
𝑤 ∈ 𝐿(𝐺′) ⇔ 𝑤 ∈ 𝐿(𝐺).

▶ Build a CYK table 𝑇 for 𝐺′ and 𝑤:
▶ 𝑇𝑖,𝑗 is defined for

𝑖, 𝑗 ∈ {1, …, |𝑤|} satisfying 𝑖 ≤ 𝑗.
▶ 𝑇𝑖,𝑗 = { 𝐴 ∈ 𝑁 ∣ 𝐴 ⇒∗ 𝑤𝑖…𝑤𝑗 },

where 𝑤𝑖 denotes the 𝑖-th symbol in 𝑤
(counting from 1).

▶ Check if 𝑆 ∈ 𝑇1,|𝑤|.

The CYK algorithm
The table can be computed in the following way:
▶ First set

𝑇𝑖,𝑖 = { 𝐴 | 𝐴 → 𝑤𝑖 ∈ 𝑃 }
for each 𝑖 ∈ {1, …, |𝑤|}.

▶ Then set

𝑇𝑖,𝑗 = { 𝐴 ∣
𝑘 ∈ { 𝑖, …, 𝑗 − 1 } ,
𝐵 ∈ 𝑇𝑖,𝑘, 𝐶 ∈ 𝑇𝑘+1,𝑗,
𝐴 → 𝐵𝐶 ∈ 𝑃

}

for all 𝑖, 𝑗 ∈ {1, …, |𝑤|} satisfying
𝑗 − 𝑖 + 1 = 2.

▶ Repeat the previous step for 𝑗 − 𝑖 + 1 = 3,
4 and so on up to |𝑤|.

The CYK algorithm

An example of dynamic programming.

Consider the following CYK table:

{ 𝑆 }
∅ { 𝑇 }
∅ { 𝑆 } ∅

{ 𝑇 , 𝑍 } { 𝑈, 𝑂 } { 𝑈, 𝑂 } { 𝑇 , 𝑍 }
0 1 1 0

Construct a parse tree for the string 0110,
given the information that at least the following
productions exist in the grammar:
𝑆 → 𝑍𝑇 , 𝑆 → 𝑂𝑈 , 𝑇 → 𝑆𝑍.

The CYK algorithm

▶ A potential problem:
The size of 𝐺′ can be quadratic
in the size of 𝐺.

▶ A variant of the algorithm that does not use
the Unit transformation can be devised:
▶ Time complexity: 𝑂(|𝐺||𝑤|3).
▶ Space complexity: 𝑂(|𝐺||𝑤|2).

See Lange and Leiß.

Some
undecidable

problems

Some undecidable problems

The following things cannot, in general,
be determined (using, say, a Turing machine):
▶ If a context-free grammar is ambiguous.
▶ If a context-free language, given by a

context-free grammar, is inherently ambiguous.
▶ If 𝐿(𝐺1) = 𝐿(𝐺2) for two

context-free grammars 𝐺1 and 𝐺2.
▶ …

Some undecidable problems

If you want to know more about why certain
problems are undecidable, then you might be
interested in the course Computability.

Today

▶ Closure properties for context-free languages.
▶ Some algorithms for context-free languages.
▶ Some undecidable problems.

Next lecture

▶ Pushdown automata.
▶ Turing machines.

	Closure properties
	Some algorithms
	Some undecidable problems
	Conclusion

