
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson

2020-02-17

Today

▶ Various algorithms.
▶ Equivalence of states.

Some old
algorithms

Some algorithms we have already seen

▶ (𝜀-)NFA to DFA. (Can be slow.)
▶ DFA to (𝜀-)NFA. (Fast.)
▶ FA to RE. (Can be slow.)
▶ RE to 𝜀-NFA. (Fast.)

Empty?

Is the language empty?

▶ For an FA: If there is no path from
the start state to an accepting state.

▶ For a regular expression:

empty ∈ RE(Σ) → Bool
empty(∅) = true
empty(𝜀) = false
empty(𝑎) = false
empty(𝑒1𝑒2) = empty(𝑒1) ∨ empty(𝑒2)
empty(𝑒1 + 𝑒2) = empty(𝑒1) ∧ empty(𝑒2)
empty(𝑒∗) = false

Which of the following regular
expressions/𝜀-NFAs over { 0, 1 } represent
the empty language?

1. ∅ + 𝜀
2. ∅ + ∅∗

3. ∅+

4. (∅01 + 10(∅ + 𝜀∅))+

5.
.....

𝜀

. 0, 1

6.
.....

𝜀

. 0, 1, 𝜀

Member?

Is the string a member of the language?

▶ For a DFA: Move from state to state,
check if the last state is accepting.

▶ For an NFA or 𝜀-NFA:
▶ Keep track of a set of states.
▶ Or convert to a DFA.

(This could be much less efficient.)
▶ For a regular expression: Convert to an 𝜀-NFA.

Equivalence
of states

Equivalence of states

For a DFA (𝑄, Σ, 𝛿, 𝑞0, 𝐹):
▶ Two states 𝑝, 𝑟 ∈ 𝑄 are equivalent (𝑝 ∼ 𝑟) if

∀𝑤 ∈ Σ∗. ̂𝛿(𝑝, 𝑤) ∈ 𝐹 ⇔ ̂𝛿(𝑟, 𝑤) ∈ 𝐹 .

▶ Two states that are not equivalent are
distinguishable.

Which of the following properties does the ∼
relation always satisfy?

1. It is reflexive.
2. It is symmetric.
3. It is antisymmetric.
4. It is transitive.

Equivalence of states
To find out which states are equivalent:
▶ Create a matrix where rows and columns are

labelled by states.
▶ Mark every accepting state as distinguishable

from every non-accepting state.
▶ Repeat until no further changes are possible:

▶ Mark two states 𝑝, 𝑞 ∈ 𝑄 as
distinguishable if there is some 𝑎 ∈ Σ for
which 𝛿(𝑝, 𝑎) and 𝛿(𝑞, 𝑎) have already
been marked as distinguishable.

▶ States that have not been marked as
distinguishable are equivalent.

Equivalence of states

Note:
▶ The ∼ relation is reflexive, so one can skip

the diagonal.
▶ The ∼ relation is symmetric, so one can skip,

say, the elements below the diagonal.
(Assuming that row and column labels are ordered
in the same way.)

Equivalence of states

▶ The ∼ relation is an equivalence relation.
▶ The equivalence classes partition

the set of states.

How many equivalence classes does the ∼
relation for the following DFA have?

..

𝑠0

.

𝑠3

.

𝑠1

.

𝑠2

..

𝑏

.

𝑐

.

𝑎

.

𝑏

.

𝑎, 𝑐

.
𝑎

.

𝑏

.

𝑐

.

𝑏

.

𝑎

.

𝑐

Equality of
languages

Equality of languages

To find out if two languages, represented by the
DFAs (𝑄1, Σ, 𝛿1, 𝑞01, 𝐹1) and (𝑄2, Σ, 𝛿2, 𝑞02, 𝐹2)
with 𝑄1 ∩ 𝑄2 = ∅, are equal:
▶ Create the DFA (𝑄1 ∪ 𝑄2, Σ, 𝛿, 𝑞01, 𝐹1 ∪ 𝐹2),

where 𝛿(𝑞) = 𝛿𝑖(𝑞) for 𝑞 ∈ 𝑄𝑖.
▶ The languages are equal iff 𝑞01 ∼ 𝑞02.

Are the languages over { 𝑎, 𝑏, 𝑐 } denoted by
the following DFAs equal?

..

𝑠0

.

𝑠3

.

𝑠1

.

𝑠2

..

𝑏

.

𝑐

.

𝑎

.

𝑏

.

𝑎, 𝑐

.
𝑎

.

𝑏

.

𝑐

.

𝑏

.

𝑎

.

𝑐

..

𝑞0

.

𝑞2

.

𝑞1

..

𝑏

.

𝑐

.

𝑎

.

𝑏

.

𝑎, 𝑐

.

𝑎

.

𝑏, 𝑐

Equality of languages

Note:
▶ One can skip entries for which the row label

and column label belong to the same DFA.

Minimisation

Minimisation

Given a DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) one can construct
a minimal (in terms of the number of states) DFA
that represents the same language.

Minimisation
1. Remove non-accessible states:

𝐴′ = (Acc(𝑞0), Σ, 𝛿′, 𝑞0, 𝐹 ∩ Acc(𝑞0))
𝛿′(𝑞, 𝑎) = 𝛿(𝑞, 𝑎)

2. Replace the set of states with equivalence
classes of equivalent states:

𝐴″ = (Acc(𝑞0)/∼, Σ, 𝛿″, [𝑞0], 𝐹 ″)
𝛿″([𝑞], 𝑎) = [𝛿(𝑞, 𝑎)]
𝐹 ″ = { [𝑞] | 𝑞 ∈ 𝐹 ∩ Acc(𝑞0) }

Exercise: Check that 𝐴″ is a well-formed DFA.
Prove that it accepts the same language as 𝐴.

Minimisation
Why is the constructed DFA minimal?
▶ Take any DFA 𝐵 = (𝑄𝐵, Σ, 𝛿𝐵, 𝑞𝐵, 𝐹𝐵) that

represents the same language.
▶ Combine 𝐴″ and 𝐵 like in the

language equality checking algorithm
(renaming states if necessary).

▶ We have [𝑞0] ∼ 𝑞𝐵.
▶ Hence every accessible state

𝛿″([𝑞0], 𝑤) = [̂𝛿(𝑞0, 𝑤)] of 𝐴″

(and thus every state of 𝐴″)
is equivalent to a state of 𝐵, 𝛿𝐵(𝑞𝐵, 𝑤).

Minimisation

Consider the following function:

𝑓 ∈ Acc(𝑞0)/∼ → 𝑄𝐵/∼
𝑓([̂𝛿(𝑞0, 𝑤)]) = [𝛿𝐵(𝑞𝐵, 𝑤)]

This is a proper definition, because
if ̂𝛿(𝑞0, 𝑢) ∼ ̂𝛿(𝑞0, 𝑣) then 𝛿𝐵(𝑞𝐵, 𝑢) ∼ 𝛿𝐵(𝑞𝐵, 𝑣).

Minimisation

▶ The function 𝑓 is injective:

𝑓([̂𝛿(𝑞0, 𝑢)]) = 𝑓([̂𝛿(𝑞0, 𝑣)]) ⇔
[𝛿𝐵(𝑞𝐵, 𝑢)] = [𝛿𝐵(𝑞𝐵, 𝑣)] ⇔
𝛿𝐵(𝑞𝐵, 𝑢) ∼ 𝛿𝐵(𝑞𝐵, 𝑣) ⇔

̂𝛿(𝑞0, 𝑢) ∼ ̂𝛿(𝑞0, 𝑣) ⇔
[̂𝛿(𝑞0, 𝑢)] = [̂𝛿(𝑞0, 𝑣)]

▶ Thus 𝑄𝐵/∼ is at least as large as Acc(𝑞0)/∼…
▶ …and 𝑄𝐵 is at least as large as 𝑄𝐵/∼.

Minimisation

In fact, the minimised DFA is equal
(up to renaming of states)
to every other minimal DFA for the same language.

Minimise the following DFA.
..

𝑠0

.

𝑠3

.

𝑠1

.

𝑠2

.

𝑠4

.

𝑠5

..

𝑏

.

𝑐

.

𝑎

.

𝑏

.

𝑎, 𝑐

.
𝑎

.

𝑏

.

𝑐

.

𝑏

.

𝑎

.

𝑐

.

𝑎, 𝑏

.

𝑐

.

𝑎, 𝑏, 𝑐

Consider the following 𝜀-NFA over { 0, 1 }.
How many states does a minimal 𝜀-NFA for
the same language have? (Count only the
number of states, not the number of edges.)

.. 𝑠1.

𝑠2

. 𝑠3.

𝑠4

..

0

. 1.

1, 𝜀

.

1

.

1

.

0, 1

Today

▶ Is the language empty?
▶ Is the string a member of the language?
▶ Equivalence of states.
▶ Are the languages equal?
▶ Minimisation of DFAs.

Next lecture

▶ Context-free grammars.

	Some old algorithms
	Empty?
	Member?
	Equivalence of states
	Equality of languages
	Minimisation
	Conclusion

