Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson

2020-02-06

- Regular expressions.
- Translation from finite automata to regular expressions.

Syntax of regular expressions

The set $RE(\Sigma)$ of regular expressions over the alphabet Σ can be defined inductively in the following way:

$$\label{eq:relation} \begin{split} \overline{\mathsf{empty} \in RE(\Sigma)} & \overline{\mathsf{nil} \in RE(\Sigma)} \\ \\ \frac{a \in \Sigma}{\mathsf{sym}(a) \in RE(\Sigma)} & \frac{e_1, e_2 \in RE(\Sigma)}{\mathsf{seq}(e_1, e_2) \in RE(\Sigma)} \\ \\ \frac{e_1, e_2 \in RE(\Sigma)}{\mathsf{alt}(e_1, e_2) \in RE(\Sigma)} & \frac{e \in RE(\Sigma)}{\mathsf{star}(e) \in RE(\Sigma)} \end{split}$$

Typically we use the following concrete syntax:

$$\label{eq:relation} \begin{split} \overline{\emptyset \in RE(\Sigma)} & \overline{\varepsilon \in RE(\Sigma)} \\ \\ \frac{a \in \Sigma}{a \in RE(\Sigma)} & \frac{e_1, e_2 \in RE(\Sigma)}{e_1 e_2 \in RE(\Sigma)} \\ \\ \frac{e_1, e_2 \in RE(\Sigma)}{e_1 + e_2 \in RE(\Sigma)} & \frac{e \in RE(\Sigma)}{e^* \in RE(\Sigma)} \end{split}$$

(Sometimes $e_1 | e_2$ instead of $e_1 + e_2$.)

- What if, say, $\varepsilon \in \Sigma$?
- Does ε stand for sym (ε) or nil?
- One option: Require that $\emptyset, \varepsilon, +, * \notin \Sigma$.

- What does 01 + 2 mean, (01) + 2 or 0(1+2)?
- ► Sequencing "binds tighter" than alternation, so it means (01) + 2.
- ► Parentheses can be used to get the other meaning: 0(1+2).
- ► The Kleene star operator binds tighter than sequencing, so 01* means 0(1*), not (01)*.

- What does 0 + 1 + 2 mean, 0 + (1 + 2) or (0 + 1) + 2?
- The latter two expressions denote the same language, so the choice is not very important.
- ► One option (taken by the book): Make the operator left associative, i.e. choose (0 + 1) + 2.
- Similarly 012 means (01)2.

An abbreviation:

- ▶ e^+ means ee^* .
- This operator binds as tightly as the Kleene star operator.

Which of the following statements are correct?

1. 01 + 23 means (01) + (23). 2. $01 + 23^*$ means $((01) + (23))^*$. 3. $0 + 1^*2 + 3^*$ means $((0 + 1)^*)((2 + 3)^*)$. 4. $0 + 1^*2 + 3^*$ means $(0 + ((1^*)2)) + (3^*)$. 5. 012^*34 means $((((01)(2^*))3)4)$.

Semantics

Semantics

$$\begin{array}{ll} L \in RE(\Sigma) \rightarrow \wp(\Sigma^*) \\ L(\emptyset) &= \emptyset \\ L(\varepsilon) &= \{ \, \varepsilon \, \} \\ L(a) &= \{ \, a \, \} \\ L(e_1e_2) &= L(e_1)L(e_2) \\ L(e_1+e_2) &= L(e_1) \cup L(e_2) \\ L(e^*) &= (L(e))^* \end{array}$$

Which of the following statements are correct?

1.
$$abcabc \in L(abc^*)$$
.
2. $xyyxxy \in L(x(y+x)^*y)$
3. $\varepsilon \in L(\emptyset^*)$.
4. $110 \in L((\emptyset 1 + 10)^*)$.
5. $\varepsilon \in L((\varepsilon + 10)^+)$.
6. $11100 \in L((1(0 + \varepsilon))^*)$.

Regular expression algebra

Regular expression equivalences

- We write $e_1 = e_2$ if $L(e_1) = L(e_2)$.
- Recall that two languages are equal if they contain the same strings.

Which of the following propositions are valid? The alphabet is $\{0, 1\}$.

- 1. $e + \emptyset = e$.
- 2. $e\emptyset = e$.
- 3. $\varepsilon e = e$.
- $\begin{array}{ll} \text{4. } e_1e_2=e_2e_1.\\ \text{5. } e_1+e_2=e_2+e_1.\\ \text{6. } e+e=e.\\ \text{7. } e_1(e_2+e_3)=e_1e_2+e_1e_3.\\ \text{8. } e_1+e_2e_3=(e_1+e_2)(e_1+e_3). \end{array}$

Regular expression algebra

Regular expressions form a semiring:

$$\begin{split} e + \emptyset &= \emptyset + e = e \\ e_1 + e_2 &= e_2 + e_1 \\ e_1 + (e_2 + e_3) &= (e_1 + e_2) + e_3 \end{split}$$

$$\begin{split} e\varepsilon &= \varepsilon e = e \\ e_1(e_2e_3) &= (e_1e_2)e_3 \end{split}$$

$$\begin{split} e \emptyset &= \emptyset e = \emptyset \\ e_1(e_2 + e_3) &= e_1 e_2 + e_1 e_3 \\ (e_1 + e_2) e_3 &= e_1 e_3 + e_2 e_3 \end{split}$$

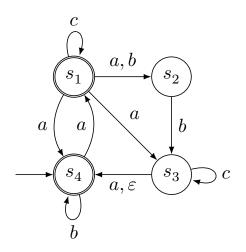
Regular expression algebra

The semiring is idempotent:

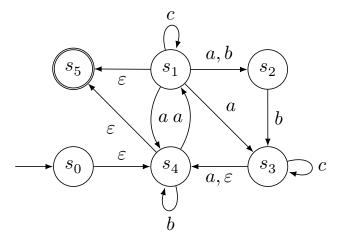
$$e + e = e$$

Translating FAs to regular expressions, I

Consider the following ε -NFA over { a, b, c }:

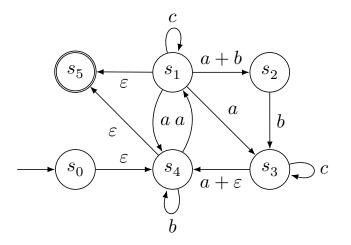


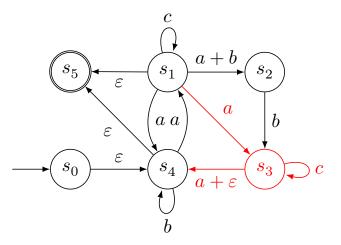
Switch to an equivalent ε -NFA:

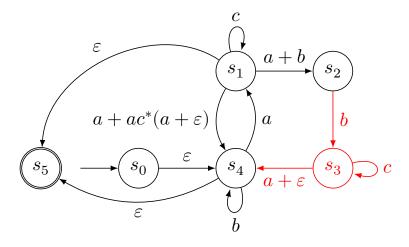


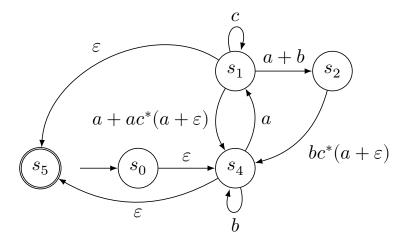
(I found this trick in slides due to Klaus Sutner.)

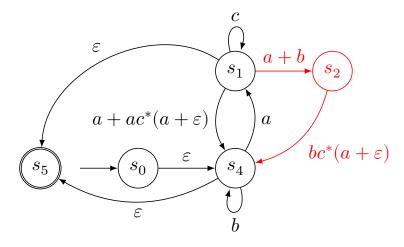
Turn edge labels into regular expressions:

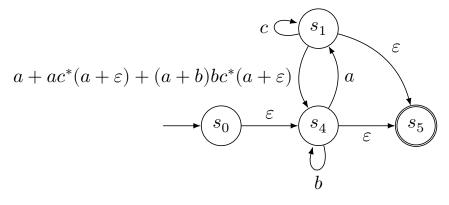




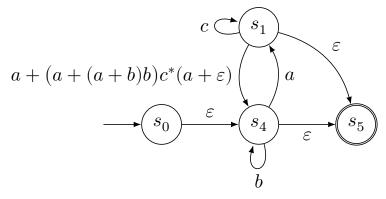




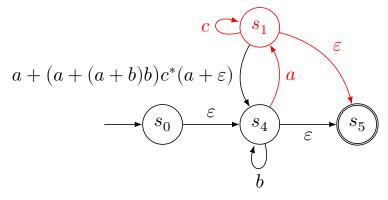


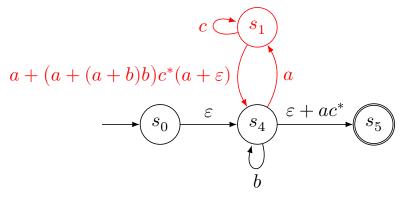


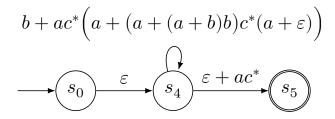
Eliminate non-accepting states distinct from the start state:

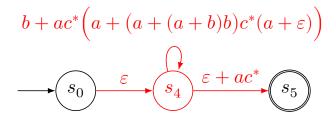


It is fine to simplify expressions.





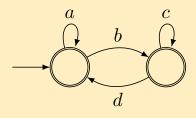




Eliminate non-accepting states distinct from the start state:

Done.

Turn the following ε -NFA over $\{a, b, c, d\}$ into a regular expression.

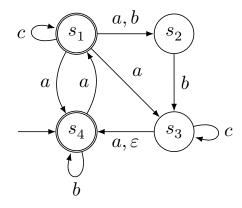


Translating FAs to regular expressions, II

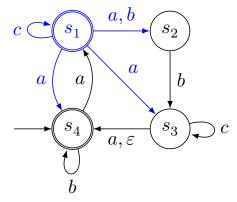
One form of Arden's lemma:

- Let $A, B \subseteq \Sigma^*$ for some alphabet Σ .
- Consider the equation X = AX ∪ B, where X is restricted to be a subset of Σ*.
- The equation has the solution $X = A^*B$.
- This solution is the least one (for every other solution Y we have A*B ⊆ Y).
- If $\varepsilon \notin A$, then this solution is unique.

Consider the following ε -NFA again:

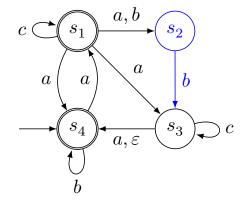


We can turn this ε -NFA into a set of equations.



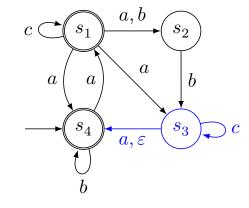
 $e_1=\varepsilon+ce_1+(a+b)e_2+ae_3+ae_4$

We can turn this ε -NFA into a set of equations.



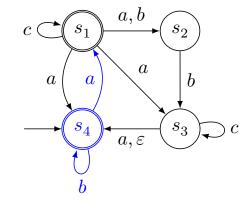
$$e_2 = be_3$$

We can turn this ε -NFA into a set of equations.



 $e_3=ce_3+(a+\varepsilon)e_4$

We can turn this ε -NFA into a set of equations.



 $e_4 = \varepsilon + b e_4 + a e_1$

$$\begin{split} e_1 &= \varepsilon + c e_1 + (a+b) e_2 + a e_3 + a e_4 \\ e_2 &= b e_3 \\ e_3 &= c e_3 + (a+\varepsilon) e_4 \\ e_4 &= \varepsilon + b e_4 + a e_1 \end{split}$$

$$\begin{split} e_1 &= c e_1 + \left(\varepsilon + (a+b) e_2 + a e_3 + a e_4 \right) \\ e_2 &= b e_3 \\ e_3 &= c e_3 + (a+\varepsilon) e_4 \\ e_4 &= b e_4 + (\varepsilon + a e_1) \end{split}$$

Eliminate e_2 .

$$\begin{split} e_1 &= ce_1 + \left(\varepsilon + (a+b)be_3 + ae_3 + ae_4\right)\\ e_3 &= ce_3 + (a+\varepsilon)e_4\\ e_4 &= be_4 + (\varepsilon + ae_1) \end{split}$$

$$\begin{split} e_1 &= ce_1 + \Big(\varepsilon + \big(a + (a+b)b\big)e_3 + ae_4\Big)\\ e_3 &= ce_3 + (a+\varepsilon)e_4\\ e_4 &= be_4 + (\varepsilon + ae_1) \end{split}$$

Eliminate e_3 .

$$\begin{split} e_1 &= ce_1 + \Big(\varepsilon + \big(a + (a+b)b\big)e_3 + ae_4\Big)\\ e_3 &= c^*(a+\varepsilon)e_4\\ e_4 &= be_4 + (\varepsilon + ae_1) \end{split}$$

Eliminate e_3 .

$$\begin{split} e_1 &= ce_1 + \Big(\varepsilon + \big(a + (a+b)b\big)c^*(a+\varepsilon)e_4 + ae_4\Big) \\ e_4 &= be_4 + (\varepsilon + ae_1) \end{split}$$

$$\begin{split} e_1 &= ce_1 + \bigg(\varepsilon + \Big(a + \big(a + (a + b)b\big)c^*(a + \varepsilon)\Big)e_4\bigg)\\ e_4 &= be_4 + (\varepsilon + ae_1) \end{split}$$

Eliminate e_1 .

$$\begin{split} e_1 &= c^* \bigg(\varepsilon + \Big(a + (a + (a + b)b \big) c^*(a + \varepsilon) \Big) e_4 \bigg) \\ e_4 &= b e_4 + (\varepsilon + a e_1) \end{split}$$

Eliminate e_1 .

$$\begin{split} e_4 &= b e_4 + \varepsilon + \\ & a c^* \bigg(\varepsilon + \Big(a + (a + (a + b) b) c^* (a + \varepsilon) \Big) e_4 \bigg) \end{split}$$

Solve the final equation.

$$e_4 = \left(b + ac^* \Big(a + (a + (a + b)b)c^*(a + \varepsilon) \Big) \right) e_4 + (\varepsilon + ac^*)$$

Solve the final equation.

$$\begin{array}{l} e_4 = \\ \left(b + ac^* \Big(a + \big(a + (a + b)b \big) c^* (a + \varepsilon) \Big) \Big)^* (\varepsilon + ac^*) \end{array} \right) \end{array}$$

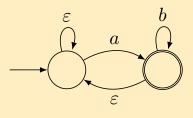
- Why the least solution?
- Consider the following ε -NFA:



- The corresponding equation: $e = \varepsilon e$.
- This equation has infinitely many solutions.
- The least solution gives the right answer:

$$e=\varepsilon^*\emptyset=\emptyset$$

Turn the following ε -NFA over $\{a, b\}$ into a regular expression.



- Syntax of regular expressions.
- Semantics of regular expressions.
- Regular expression algebra.
- Two methods for translating finite automata to regular expressions.

- ► Only one lecture.
- ► Nachi will give the lecture.

- Translation from regular expressions to finite automata.
- More about regular expression algebra.
- The pumping lemma for regular languages.
- ► Some closure properties for regular languages.