Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson, partly based on slides by Ana Bove

Today

- ► Inductively defined subsets.
- ▶ Deterministic finite automata.

Inductively defined

subsets

Inductively defined subsets

- ▶ One can define subsets of (say) Σ^* inductively.
- ▶ For instance, for $L \subseteq \Sigma^*$ we can define $L^* \subseteq \Sigma^*$ inductively:

$$\frac{u \in L \quad v \in L^*}{\varepsilon \in L^*}$$

Note that there are no constructors.

Inductively defined subsets

▶ What about recursion?

$$\begin{array}{l} f \in L^* \to Bool \\ f(\varepsilon) &= \mathsf{false} \\ f(uv) = not(f(v)) \end{array}$$

• If $\varepsilon \in L$, do we have

$$f(\varepsilon) = f(\varepsilon \varepsilon) = not(f(\varepsilon))$$
?

Inductively defined subsets

- Induction works (assuming "proof irrelevance").
- $P(\varepsilon) \wedge (\forall u \in L, v \in L^*. \ P(v) \Rightarrow P(uv)) \Rightarrow \forall w \in L^*. \ P(w).$

 $L\subseteq \Set{a,b}^*$ is defined inductively in the following way: $u,v\in L$

$$\overline{a \in L} \qquad \overline{ubv \in L}$$

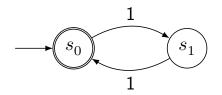
Which of the following propositions are valid?

- 1. $\varepsilon \in L$.
- 2. $aba \in L$.
- 3. $bab \in L$.
- 4. $aabaa \in L$.
- 5. $ababa \in L$.

DFAs

DFAs

Recall from the first lecture:



- ▶ A DFA specifies a language.
- ▶ In this case the language $\{11\}^* = \{\varepsilon, 11, 1111, \dots\}.$
- ▶ DFAs are for instance used to implement regular expression matching.

DFAs

A DFA can be given by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

- ▶ A finite set of states (Q).
- An alphabet (Σ) .
- ▶ A transition function $(\delta \in Q \times \Sigma \to Q)$.
- ▶ A start state $(q_0 \in Q)$.
- ▶ A set of accepting states $(F \subseteq Q)$.

Which of the following 5-tuples can be seen as DFAs?

- 1. $(\mathbb{N}, \{0,1\}, \delta, 0, \{13\})$,
- where $\delta(n,m) = n + m$.
- where $\delta(\underline{},\underline{})=q_0$. 4. $(\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}),$

where $\delta(q, \cdot) = q$.

where $\delta(\underline{\ },\underline{\ })=0.$

5. $(\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}),$

2. $(\{0,1\},\emptyset,\delta,0,\{1\})$, where $\delta(n,_)=n$. 3. $\{\{q_0,q_1\},\{0,1\},\delta,q_0,\{1\}\},$

Semantics

The language of a DFA

The language L(A) of a DFA $A=(Q,\Sigma,\delta,q_0,F)$ is defined in the following way:

► A transition function for strings is defined by recursion:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to Q \\ \hat{\delta}(q, \, \varepsilon) &= q \\ \hat{\delta}(q, \, aw) &= \hat{\delta}(\delta(q, a), w) \end{split}$$

 $\blacktriangleright \ \ \text{The language is} \ \left\{ \ w \in \Sigma^* \ \middle| \ \widehat{\delta}(q_0,w) \in F \ \right\}.$

Which strings are members of the language of $(\{s_0, s_1, s_2, s_3\}, \{a, b\}, \delta, s_0, \{s_0\})$? Here δ is defined in the following way:

Here
$$\delta$$
 is defined in the following way:
$$\delta(s_0,a)=s_1\qquad \delta(s_0,b)=s_2$$

$$\delta(s_1,a)=s_0\qquad \delta(s_2,b)=s_0$$

 $\delta(_,_) = s_3$

3. *aba*.

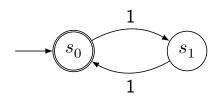
1.
$$\varepsilon$$
. 4. $aabbaa$.

(In all other cases.)

6. bbaaaa.

I ransition diagrams

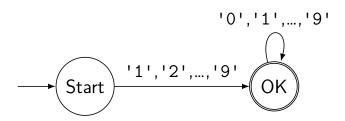
Transition diagrams



- One node per state.
- ▶ An arrow "from nowhere" to the start state.
- ▶ Double circles for accepting states.
- For every transition $\delta(s_1, a) = s_2$, an arrow marked with a from s_1 to s_2 .
 - Multiple arrows can be combined.

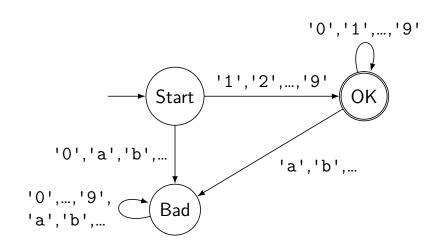
A variant

Diagrams with "missing transitions":



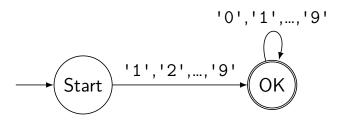
A variant

Every missing transition goes to a new state (that is not accepting):



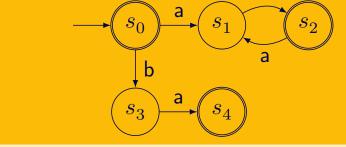
A variant

Note that diagrams with missing transitions do not define the alphabet unambiguously:



The alphabet must be a (finite) superset of $\{ '0', '1', ..., '9' \}$, but which one?

Which strings are members of the language of the DFA defined by the following transition diagram? The alphabet is $\{a, b\}$.



- 1. ε . 4. ba.
- 2. aa. 5. abab.
- ad.
 ab.
 baba.

Transition tables

Transition tables

	0	1
$\rightarrow *s_0$	s_2	s_1
s_1	s_2	s_0
s_2	s_2	s_2

- ▶ States: Left column.
- ► Alphabet: Upper row.
- ► Start state: Arrow.
- ► Accepting states: Stars.
- ▶ Transition function: Table.

Which strings are members of the language of the DFA defined by the following transition table?

	0	
$\rightarrow s_0$	s_2	s_1
$*s_1$	s_2	s_0
$*s_2$	s_2	s_2

- 1. ε . 4. 11.
- 2. 0. 5. 111. **6**. 1010.

Constructions

Given a DFA $A=(Q,\Sigma,\delta,q_0,F)$ we can construct a DFA \overline{A} that satisfies the following property:

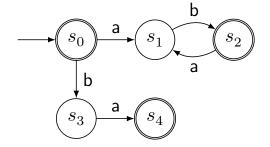
$$L(\overline{A}) = \overline{L(A)} \coloneqq \Sigma^* \smallsetminus L(A).$$

Construction:

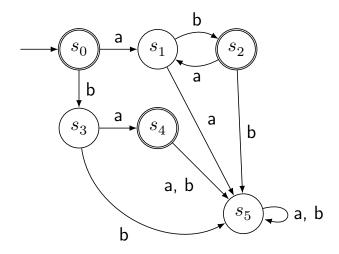
$$(Q, \Sigma, \delta, q_0, Q \setminus F)$$
.

We accept if the original automaton doesn't.

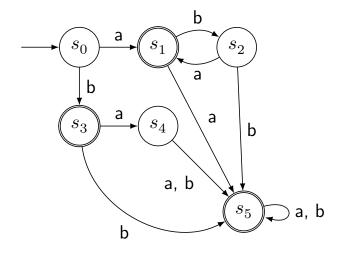
A =



A =



 $\overline{A} =$



Product

Given two DFAs $A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ and $A_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ with the same alphabet we can construct a DFA $A_1\otimes A_2$ that satisfies the following property:

$$L(A_1 \otimes A_2) = L(A_1) \cap L(A_2).$$

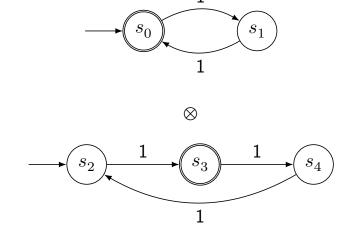
Construction:

$$(Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 \times F_2), \text{ where } \\ \delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a)).$$

We basically run the two automatons in parallel and accept if both accept.

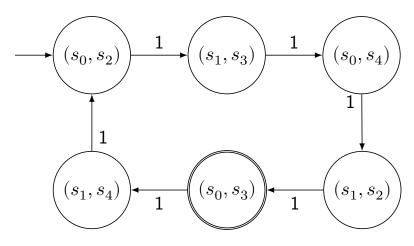
Product

 $\{\ 2n\mid n\in\mathbb{N}\ \}\cap\{\ 1+3n\mid n\in\mathbb{N}\ \}$ (in unary notation, with ε standing for 0):



Product

 $\{ 4 + 6n \mid n \in \mathbb{N} \}$:



We can also construct a DFA $A_1 \oplus A_2$ that satisfies the following property: $L(A_1 \oplus A_2) = L(A_1) \cup L(A_2).$

The construction is basically that of
$$A_1 \otimes A_2$$
, but with a different set of accepting states. Which one?

1. $F_1 \cup F_2$. 4. $F_1 \times Q_2 \cup Q_1 \times F_2$.

5. $F_1 \times Q_2 \cap Q_1 \times F_2$. 2. $F_1 \cap F_2$.

3. $Q_1 \times Q_2$.

Accessible states

- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- ▶ The set $Acc(q) \subseteq Q$ of states that are accessible from $q \in Q$ can be defined in the following way:

$$Acc(q) = \left\{ \left. \hat{\delta}(q, w) \mid w \in \Sigma^* \right. \right\}$$

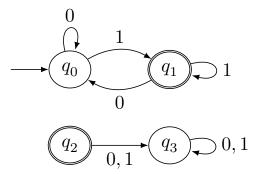
► A possibly smaller DFA:

$$\begin{split} A' &= (Acc(q_0), \Sigma, \delta', q_0, F \cap Acc(q_0)) \\ \delta'(q, a) &= \delta(q, a) \end{split}$$

• We have L(A') = L(A).

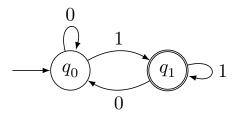
Accessible states

Note that some states cannot be reached from the start state:



Accessible states

The following DFA defines the same language:



Regular languages

Regular languages

- ▶ A language $M \subseteq \Sigma^*$ is *regular* if there is some DFA A with alphabet Σ such that L(A) = M.
- ▶ Note that if M and N are regular, then $M \cap N$, $M \cup N$ and \overline{M} are also regular.

Today

- Inductively defined subsets.
- ▶ Deterministic finite automata:
 - ► 5-tuples.
 - Semantics.
 - ► Transition diagrams.
 - ► Transition tables.
 - Constructions.
 - ► Regular languages.

Demo

During the exercise session today Mohammad will give a demo of JFLAP.

Consultation time

- ► Today, right after the exercise session, in EL42.
- ▶ You decide what you want to work on.

Next lecture

- ▶ Nondeterministic finite automata (NFAs).
- The subset construction (turns NFAs into DFAs).
- ► Deadline for the next quiz: 2020-01-30, 10:00.
- ▶ Deadline for the first assignment: 2020-02-02, 23:59.