
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson,
partly based on slides by Ana Bove

2020-01-27

Today

▶ Structural induction.
▶ Some concepts from automata theory.
▶ Inductively defined subsets

(if we have enough time).

The last quiz from the previous lecture
Discuss how you would prove
∀𝑛 ∈ ℕ.even(𝑛) = nots(𝑛, true).

nots ∈ ℕ × Bool → Bool
nots(zero, 𝑏) = 𝑏
nots(suc(𝑛),𝑏) = nots(𝑛, not(𝑏))
odd, even ∈ ℕ → Bool
odd(zero) = false
odd(suc(𝑛)) = even(𝑛)
even(zero) = true
even(suc(𝑛)) = odd(𝑛)

The last quiz from the previous lecture

One possibility is to use mathematical induction to
prove ∀𝑛 ∈ ℕ.𝑃 (𝑛), with

𝑃(𝑛) ≔ even(𝑛) = nots(𝑛, true) ∧
odd(𝑛) = nots(𝑛, false).

Structural
induction

Structural induction

▶ For a given inductively defined set we have a
corresponding induction principle.

▶ Example:

zero ∈ ℕ
𝑛 ∈ ℕ

suc(𝑛) ∈ ℕ

In order to prove ∀𝑛 ∈ ℕ. 𝑃 (𝑛):
▶ Prove 𝑃(zero).
▶ For all 𝑛 ∈ ℕ, prove that 𝑃(𝑛) implies

𝑃(suc(𝑛)).

Structural induction

▶ For a given inductively defined set we have a
corresponding induction principle.

▶ Example:

true ∈ Bool false ∈ Bool

In order to prove ∀𝑏 ∈ 𝐵𝑜𝑜𝑙. 𝑃 (𝑏):
▶ Prove 𝑃(true).
▶ Prove 𝑃(false).

Structural induction

▶ For a given inductively defined set we have a
corresponding induction principle.

▶ Example:

nil ∈ List(𝐴)
𝑥 ∈ 𝐴 xs ∈ List(𝐴)
cons(𝑥, 𝑥𝑠) ∈ List(𝐴)

In order to prove ∀xs ∈ List(𝐴). 𝑃 (𝑥𝑠):
▶ Prove 𝑃(nil).
▶ For all 𝑥 ∈ 𝐴 and xs ∈ List(𝐴), prove

that 𝑃(xs) implies 𝑃(cons(𝑥, 𝑥𝑠)).

Pattern
▶ An inductively defined set:

… 𝑥 ∈ 𝐴 … 𝑑 ∈ 𝐷(𝐴)
c(𝑥, …, 𝑑) ∈ 𝐷(𝐴) …

Note that 𝑥 is a non-recursive argument, and
that 𝑑 is recursive.

▶ In order to prove ∀𝑑 ∈ 𝐷(𝐴). 𝑃 (𝑑):
▶ ⋮
▶ For all 𝑥 ∈ 𝐴, …, 𝑑 ∈ 𝐷(𝐴), prove that …

and 𝑃(𝑑) imply 𝑃(c(𝑥, …, 𝑑)).
▶ ⋮

One inductive hypothesis for each recursive
argument.

What is the induction principle for

𝑛 ∈ ℕ
leaf(𝑛) ∈ Tree

𝑙, 𝑟 ∈ Tree
node(𝑙, 𝑟) ∈ Tree

?

1. (∀𝑛 ∈ ℕ. 𝑃 (leaf(𝑛))) ∧
(∀𝑙, 𝑟 ∈ Tree. 𝑃 (𝑙) ∧ 𝑃 (𝑟) ⇒ 𝑃(node(𝑙, 𝑟))).

2. (∀𝑛 ∈ ℕ. 𝑃 (leaf(𝑛))) ∧
(∀𝑙, 𝑟 ∈ Tree. 𝑃 (𝑙)∧𝑃 (𝑟) ⇒ 𝑃(node(𝑙, 𝑟))) ⇒
(∀𝑡 ∈ Tree. 𝑃 (𝑡)).

3. (∀𝑛 ∈ ℕ. 𝑃 (leaf(𝑛))) ∧
(∀𝑡 ∈ Tree. 𝑃 (𝑡) ⇒ 𝑃(node(𝑡, 𝑡))) ⇒
(∀𝑡 ∈ Tree. 𝑃 (𝑡)).

Some functions

Recall from last lecture:

length ∈ List(𝐴) → ℕ
length(nil) = zero
length(cons(𝑥, xs)) = suc(length(xs))

append ∈ List(𝐴) × List(𝐴) → List(𝐴)
append(nil, ys) = ys
append(cons(𝑥, xs), ys) = cons(𝑥, append(xs, ys))

Lemma
∀xs, ys ∈ 𝐿𝑖𝑠𝑡(𝐴).
length(append(xs, ys)) = length(xs) + length(ys).

Proof.
Let us prove the property

𝑃(xs) ≔ ∀ys ∈ 𝐿𝑖𝑠𝑡(𝐴).
length(append(xs, ys)) =
length(xs) + length(ys)

by induction on the structure of the list.

Lemma
∀xs, ys ∈ 𝐿𝑖𝑠𝑡(𝐴).
length(append(xs, ys)) = length(xs) + length(ys).

Proof.
Case nil:

length(append(nil, ys)) =
length(ys) =
0 + length(ys) =
length(nil) + length(ys)

Lemma
∀xs, ys ∈ 𝐿𝑖𝑠𝑡(𝐴).
length(append(xs, ys)) = length(xs) + length(ys).

Proof.
Case cons(𝑥, xs):

length(append(cons(𝑥, xs), ys)) =
length(cons(𝑥, append(xs, ys))) =
1 + length(append(xs, ys)) = {By the IH, 𝑃(xs).}
1 + (length(xs) + length(ys)) =
(1 + length(xs)) + length(ys) =
length(cons(𝑥, xs)) + length(ys)

Prove ∀xs ∈ List(𝐴).append(xs, nil) = xs
and ∀xs ∈ List(𝐴).append(nil, xs) = xs.
Which proof is “easiest”?

1. The first.
2. The second.

Induction/recursion

▶ Inductively defined sets:
inference rules with constructors.

▶ Recursion (primitive recursion):
recursive calls only for recursive arguments
(𝑓(c(𝑥, 𝑑)) = …𝑓(𝑑)…).

▶ Structural induction:
inductive hypotheses for recursive arguments
(𝑃(𝑑) ⇒ 𝑃(c(𝑥, 𝑑))).

Some concepts
from automata

theory

Alphabets and strings

▶ An alphabet is a finite, nonempty set.
▶ { 𝑎, 𝑏, 𝑐, …, 𝑧 }.
▶ { 0, 1, …, 9 }.

▶ A string (or word) over the alphabet Σ is a
member of List(Σ).

Notation

▶ Σ∗ instead of List(Σ).
▶ 𝜀 instead of nil or [].
▶ 𝑎𝑤 instead of cons(𝑎, 𝑤).
▶ 𝑎 instead of cons(𝑎, nil) or [𝑎].
▶ 𝑎𝑏𝑐 instead of [𝑎, 𝑏, 𝑐].
▶ 𝑢𝑣 instead of append(𝑢, 𝑣).
▶ |𝑤| instead of length(𝑤).
▶ Σ+: Nonempty strings, { 𝑤 ∈ Σ∗ | 𝑤 ≠ 𝜀 }.

Exponentiation

▶ Σ𝑛: Strings of length 𝑛, { 𝑤 ∈ Σ∗ | |𝑤| = 𝑛 }.
▶ Alternative definition of Σ𝑛 ⊆ Σ∗:

Σ0 = { 𝜀 }
Σ𝑛+1 = { 𝑎𝑤 | 𝑎 ∈ Σ, 𝑤 ∈ Σ𝑛 }

▶ Similarly, −𝑛 ∈ Σ∗ → Σ∗:

𝑤0 = 𝜀
𝑤𝑛+1 = 𝑤𝑤𝑛

Which of the following propositions are
valid? The alphabet is { 𝑎, 𝑏, 𝑐 }.

1. |𝑢𝑣| = |𝑢| + |𝑣|.
2. |𝑢𝑣| = |𝑢||𝑣|.
3. |𝑤𝑛| = 𝑛.
4. 𝑢𝑣 = 𝑣𝑢.
5. 𝜀𝑣 = 𝑣𝜀.

Languages

A language over an alphabet Σ is a set 𝐿 ⊆ Σ∗.
▶ Typical programming languages.
▶ Typical natural languages?

(Are they well-defined?)
▶ Other examples, for instance the even natural

numbers expressed in binary notation, which is
a language over { 0, 1 }.

Operations

▶ Concatenation: 𝐿𝑀 = { 𝑢𝑣 | 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑀 }.
▶ Exponentiation:

𝐿0 = { 𝜀 }
𝐿𝑛+1 = 𝐿𝐿𝑛

▶ The Kleene star 𝐿∗ = ⋃𝑛∈ℕ 𝐿𝑛.
▶ These definitions are consistent with previous

ones for alphabets:
▶ Σ𝑛 = { 𝑤 ∈ Σ∗ | |𝑤| = 1 }𝑛.
▶ Σ∗ = { 𝑤 ∈ Σ∗ | |𝑤| = 1 }∗.

Which of the following propositions are
valid? The alphabet is { 0, 1, 2 }.

1. ∀𝑤 ∈ 𝐿𝑛. |𝑤| = 𝑛.
2. 𝐿𝑀 = 𝑀𝐿.
3. 𝐿(𝑀 ∪ 𝑁) = 𝐿𝑀 ∪ 𝐿𝑁 .
4. 𝐿𝑀 ∩ 𝐿𝑁 ⊆ 𝐿(𝑀 ∩ 𝑁).
5. 𝐿∗𝐿∗ ⊆ 𝐿∗.

Inductively
defined
subsets

Inductively defined subsets

▶ One can define subsets of (say) Σ∗ inductively.
▶ For instance, for 𝐿 ⊆ Σ∗ we can define

𝐿∗ ⊆ Σ∗ inductively:

𝜀 ∈ 𝐿∗
𝑢 ∈ 𝐿 𝑣 ∈ 𝐿∗

𝑢𝑣 ∈ 𝐿∗

▶ Note that there are no constructors.

Inductively defined subsets

▶ What about recursion?

𝑓 ∈ 𝐿∗ → Bool
𝑓(𝜀) = false
𝑓(𝑢𝑣) = not(𝑓(𝑣))

▶ If 𝜀 ∈ 𝐿, do we have

𝑓(𝜀) = 𝑓(𝜀𝜀) = not(𝑓(𝜀))?

Inductively defined subsets

▶ Induction works
(assuming “proof irrelevance”).

▶ 𝑃(𝜀) ∧ (∀𝑢 ∈ 𝐿, 𝑣 ∈ 𝐿∗. 𝑃 (𝑣) ⇒ 𝑃 (𝑢𝑣)) ⇒
∀𝑤 ∈ 𝐿∗. 𝑃 (𝑤).

Today

▶ Structural induction.
▶ Some concepts from automata theory.
▶ Inductively defined subsets.

Next lecture

▶ Deterministic finite automata.

▶ Deadline for the next quiz: 2020-01-28, 8:00.
▶ Deadline for the first assignment:

2020-02-02, 23:59.

	Structural induction
	Some concepts from automata theory
	Inductively defined subsets
	Conclusion

