Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson, partly based on slides by Ana Bove

2020-01-27

- Structural induction.
- ► Some concepts from automata theory.
- Inductively defined subsets (if we have enough time).

The last quiz from the previous lecture

Discuss how you would prove $\forall n \in \mathbb{N}.even(n) = nots(n, true).$

 $nots \in \mathbb{N} \times Bool \to Bool$ nots(zero, b) = bnots(suc(n),b) = nots(n, not(b))odd, $even \in \mathbb{N} \to Bool$ odd(zero) = falseodd(suc(n)) = even(n)even(zero) = trueeven(suc(n)) = odd(n)

One possibility is to use mathematical induction to prove $\forall n \in \mathbb{N}. P(n),$ with

$$\begin{split} P(n) &\coloneqq even(n) = \mathit{nots}(n,\mathsf{true}) \land \\ \mathit{odd}(n) = \mathit{nots}(n,\mathsf{false}). \end{split}$$

Structural induction

- For a given inductively defined set we have a corresponding induction principle.
- Example:

$$\frac{n\in\mathbb{N}}{{\sf zero}\in\mathbb{N}}\qquad \qquad \frac{n\in\mathbb{N}}{{\sf suc}(n)\in\mathbb{N}}$$

In order to prove $\forall n \in \mathbb{N}$. P(n):

- Prove P(zero).
- ▶ For all $n \in \mathbb{N}$, prove that P(n) implies $P(\operatorname{suc}(n))$.

 For a given inductively defined set we have a corresponding induction principle.

• Example:

$$\overline{\mathsf{true} \in Bool} \qquad \overline{\mathsf{false} \in Bool}$$

In order to prove $\forall b \in Bool. \ P(b)$:

- Prove P(true).
- Prove $P(\mathsf{false})$.

- For a given inductively defined set we have a corresponding induction principle.
- Example:

$$\frac{x \in A \quad xs \in List(A)}{\mathsf{nil} \in List(A)} \qquad \frac{x \in A \quad xs \in List(A)}{\mathsf{cons}(x, xs) \in List(A)}$$

In order to prove $\forall xs \in List(A)$. P(xs):

- Prove P(nil).
- For all $x \in A$ and $xs \in List(A)$, prove that P(xs) implies P(cons(x, xs)).

Pattern

. . .

▶ :

▶ :

An inductively defined set:

$$\frac{x \in A \quad \dots \quad d \in D(A)}{\mathsf{c}(x,...,d) \in D(A)}$$

. . .

Note that x is a non-recursive argument, and that d is recursive.

- In order to prove $\forall d \in D(A)$. P(d):
 - ▶ For all $x \in A$, ..., $d \in D(A)$, prove that ... and P(d) imply P(c(x,...,d)).

One inductive hypothesis for each *recursive* argument.

What is the induction principle for

$$\frac{n \in \mathbb{N}}{\mathsf{leaf}(n) \in Tree} \qquad \frac{l, r \in Tree}{\mathsf{node}(l, r) \in Tree}?$$

1. $(\forall n \in \mathbb{N}. P(\mathsf{leaf}(n))) \land$ $(\forall l, r \in Tree. P(l) \land P(r) \Rightarrow P(\mathsf{node}(l, r))).$ 2. $(\forall n \in \mathbb{N}. P(\mathsf{leaf}(n))) \land$ $(\forall l, r \in Tree. P(l) \land P(r) \Rightarrow P(\mathsf{node}(l, r))) \Rightarrow$ $(\forall t \in Tree. P(t)).$

3.
$$(\forall n \in \mathbb{N}. P(\mathsf{leaf}(n))) \land$$

 $(\forall t \in Tree. P(t) \Rightarrow P(\mathsf{node}(t, t))) \Rightarrow$
 $(\forall t \in Tree. P(t)).$

Recall from last lecture:

 $\begin{array}{ll} length \in List(A) \rightarrow \mathbb{N} \\ length(\mathsf{nil}) &= \mathsf{zero} \\ length(\mathsf{cons}(x, xs)) = \mathsf{suc}(length(xs)) \end{array}$

 $\begin{array}{ll} append \in List(A) \times List(A) \rightarrow List(A) \\ append(\mathsf{nil}, & ys) = ys \\ append(\mathsf{cons}(x,xs), \, ys) = \mathsf{cons}(x,append(xs,ys)) \end{array}$

Lemma

 $\begin{aligned} \forall xs, ys \in List(A). \\ length(append(xs, ys)) = length(xs) + length(ys). \end{aligned}$

Proof.

Let us prove the property

$$P(xs) := \forall ys \in List(A).$$

$$length(append(xs, ys)) =$$

$$length(xs) + length(ys)$$

by induction on the structure of the list.

Lemma

 $\begin{aligned} \forall xs, ys \in List(A). \\ length(append(xs, ys)) = length(xs) + length(ys). \end{aligned}$

Proof.

Case nil:

length(append(nil, ys)) =length(ys) =0 + length(ys) =length(nil) + length(ys)

Lemma

$\begin{aligned} \forall xs, ys \in List(A). \\ length(append(xs, ys)) = length(xs) + length(ys). \end{aligned}$

Proof.

Case cons(x, xs):

$$\begin{split} &length(append(\mathsf{cons}(x,xs),ys)) = \\ &length(\mathsf{cons}(x,append(xs,ys))) = \\ &1 + length(append(xs,ys)) = \{\mathsf{By the IH}, P(xs).\} \\ &1 + (length(xs) + length(ys)) = \\ &(1 + length(xs)) + length(ys) = \\ &length(\mathsf{cons}(x,xs)) + length(ys) \end{split}$$

Prove $\forall xs \in List(A).append(xs, nil) = xs$ and $\forall xs \in List(A).append(nil, xs) = xs$. Which proof is "easiest"?

The first.
 The second.

- Inductively defined sets: inference rules with constructors.
- Recursion (primitive recursion): recursive calls only for recursive arguments (f(c(x,d)) = ...f(d)...).
- Structural induction: inductive hypotheses for recursive arguments (P(d) ⇒ P(c(x, d))).

Some concepts from automata theory

- An *alphabet* is a finite, nonempty set.
- A string (or word) over the alphabet Σ is a member of List(Σ).

Notation

- Σ^* instead of $List(\Sigma)$.
- ε instead of nil or [].
- aw instead of cons(a, w).
- a instead of cons(a, nil) or [a].
- abc instead of [a, b, c].
- uv instead of append(u, v).
- |w| instead of length(w).
- Σ^+ : Nonempty strings, $\{ w \in \Sigma^* \mid w \neq \varepsilon \}$.

Exponentiation

- Σ^n : Strings of length n, $\{ w \in \Sigma^* \mid |w| = n \}$.
- Alternative definition of $\Sigma^n \subseteq \Sigma^*$:

$$\begin{split} \Sigma^0 &= \{ \, \varepsilon \, \} \\ \Sigma^{n+1} &= \{ \, aw \mid a \in \Sigma, w \in \Sigma^n \, \} \end{split}$$

• Similarly, $-^n \in \Sigma^* \to \Sigma^*$:

$$w^0 = \varepsilon$$
$$w^{n+1} = ww^n$$

Which of the following propositions are valid? The alphabet is $\{a, b, c\}$.

- 1. |uv| = |u| + |v|.
- 2. |uv| = |u||v|.
- 3. $|w^n| = n$.
- 4. uv = vu.
- 5. $\varepsilon v = v\varepsilon$.

A language over an alphabet Σ is a set $L \subseteq \Sigma^*$.

- Typical programming languages.
- Typical natural languages? (Are they well-defined?)
- Other examples, for instance the even natural numbers expressed in binary notation, which is a language over { 0, 1 }.

Operations

- Concatenation: $LM = \{ uv \mid u \in L, v \in M \}.$
- Exponentiation:

$$L^{0} = \{ \varepsilon \}$$
$$L^{n+1} = LL^{n}$$

- ▶ The Kleene star $L^* = \bigcup_{n \in \mathbb{N}} L^n$.
- These definitions are consistent with previous ones for alphabets:

•
$$\Sigma^n = \{ w \in \Sigma^* \mid |w| = 1 \}^n$$
.
• $\Sigma^* = \{ w \in \Sigma^* \mid |w| = 1 \}^*$.

Which of the following propositions are valid? The alphabet is $\{0, 1, 2\}$.

1.
$$\forall w \in L^n$$
. $|w| = n$.

$$2. LM = ML.$$

- 3. $L(M \cup N) = LM \cup LN$.
- 4. $LM \cap LN \subseteq L(M \cap N)$.

5. $L^*L^* \subseteq L^*$.

Inductively defined subsets

Inductively defined subsets

- One can define subsets of (say) Σ^* inductively.
- For instance, for $L \subseteq \Sigma^*$ we can define $L^* \subseteq \Sigma^*$ inductively:

$$\frac{1}{\varepsilon \in L^*} \qquad \frac{u \in L \quad v \in L^*}{uv \in L^*}$$

Note that there are no constructors.

Inductively defined subsets

What about recursion?

$$\begin{split} &f\in L^*\to Bool\\ &f(\varepsilon)=\mathsf{false}\\ &f(uv)=\mathit{not}(f(v)) \end{split}$$

• If $\varepsilon \in L$, do we have

$$f(\varepsilon) = f(\varepsilon \varepsilon) = \operatorname{not}(f(\varepsilon))?$$

Inductively defined subsets

Induction works (assuming "proof irrelevance").
P(ε) ∧ (∀u ∈ L, v ∈ L*. P(v) ⇒ P(uv)) ⇒ ∀w ∈ L*. P(w).

- Structural induction.
- Some concepts from automata theory.
- Inductively defined subsets.

- Deterministic finite automata.
- ▶ Deadline for the next quiz: 2020-01-28, 8:00.
- Deadline for the first assignment: 2020-02-02, 23:59.