
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson

2020-03-05

Today

▶ Pushdown automata.
▶ Turing machines.

Pushdown
automata

Pushdown automata

▶ The class of regular languages can be defined
using regular expressions or different kinds of
automata.

▶ Is there a class of automata that defines the
context-free languages?

Pushdown automata

A pushdown automaton (PDA) can be given as a
7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹):
▶ A finite set of states (𝑄).
▶ An alphabet (Σ with 𝜀 ∉ Σ).
▶ A stack alphabet (Γ).
▶ A transition function

(𝛿 ∈ 𝑄 × ({ 𝜀 } ∪ Σ1) × Γ → ℘(𝑄 × Γ∗)).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A start symbol (𝑍0 ∈ Γ).
▶ A set of accepting states (𝐹 ⊆ 𝑄).

Pushdown automata

An instantaneous description (ID) for a given PDA
is a triple (𝑞, 𝑤, 𝛾):
▶ The current state (𝑞 ∈ 𝑄).
▶ The remainder of the input string (𝑤 ∈ Σ∗).
▶ The current stack (𝛾 ∈ Γ∗).

Pushdown automata

The following relation between IDs defines what
kinds of transitions are possible:

𝑢 ∈ { 𝜀 } ∪ Σ1 (𝑞, 𝛼) ∈ 𝛿(𝑝, 𝑢, 𝑍)
(𝑝, 𝑢𝑣, 𝑍𝛾) ⊢ (𝑞, 𝑣, 𝛼𝛾)

The reflexive transitive closure of ⊢ can be defined
inductively:

𝐼 ⊢∗ 𝐼
𝐼 ⊢ 𝐽 𝐽 ⊢∗ 𝐾

𝐼 ⊢∗ 𝐾

Consider the PDA
𝑃 = ({𝑞}, {0, 1}, {𝐴, 𝐵}, 𝛿, 𝑞, 𝐵, {𝑞}), where 𝛿 is
defined in the following way:

𝛿(𝑞, 𝜀, 𝐴) = {(𝑞, 𝜀)} 𝛿(𝑞, 𝜀, 𝐵) = {(𝑞, 𝐵𝐴)}
𝛿(𝑞, 0, 𝐴) = ∅ 𝛿(𝑞, 0, 𝐵) = {(𝑞, 𝜀)}
𝛿(𝑞, 1, 𝐴) = ∅ 𝛿(𝑞, 1, 𝐵) = {(𝑞, 𝐴𝐵)}

Which of the following propositions are true
for 𝑃 ?

1. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 𝜀, 𝜀)
2. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 𝜀, 𝐴𝐴𝐴)
3. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 1, 𝜀)
4. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 1, 𝐴𝐴𝐴)

Pushdown automata

The language of a PDA:

𝐿((𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹)) =
{ 𝑤 ∈ Σ∗ | 𝑞 ∈ 𝐹 , 𝛾 ∈ Γ∗, (𝑞0, 𝑤, 𝑍0) ⊢∗ (𝑞, 𝜀, 𝛾) }

Consider the PDA
𝑃 = ({𝑞}, {0, 1}, {𝐴, 𝐵}, 𝛿, 𝑞, 𝐵, {𝑞}) again, where
𝛿 is still defined in the following way:

𝛿(𝑞, 𝜀, 𝐴) = {(𝑞, 𝜀)} 𝛿(𝑞, 𝜀, 𝐵) = {(𝑞, 𝐵𝐴)}
𝛿(𝑞, 0, 𝐴) = ∅ 𝛿(𝑞, 0, 𝐵) = {(𝑞, 𝜀)}
𝛿(𝑞, 1, 𝐴) = ∅ 𝛿(𝑞, 1, 𝐵) = {(𝑞, 𝐴𝐵)}

Which of the following strings are members
of 𝐿(𝑃)?

1. 00
2. 01

3. 10
4. 11

Pushdown automata

Another way to define the language of a PDA:

𝑁((𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹)) =
{ 𝑤 ∈ Σ∗ | 𝑞 ∈ 𝑄, (𝑞0, 𝑤, 𝑍0) ⊢∗ (𝑞, 𝜀, 𝜀) }

The following property holds for every
language 𝐿 over Σ:

(∃a PDA 𝑃 . 𝐿(𝑃) = 𝐿) ⇔ (∃a PDA 𝑃 . 𝑁(𝑃) = 𝐿)

Grammars and automata

For any alphabet Σ (with 𝜀 ∉ Σ) and language
𝐿 ⊆ Σ∗ one can prove that the following two
statements are equivalent:
▶ There is a context-free grammar 𝐺, with Σ as

its set of terminals, satisfying 𝐿(𝐺) = 𝐿.
▶ There is a pushdown automaton 𝑃 with

alphabet Σ satisfying 𝐿(𝑃) = 𝐿.

Grammars and automata

Given a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can construct the PDA
𝑄 = ({ 𝑞 } , Σ, 𝑁 ∪ Σ, 𝛿, 𝑞, 𝑆, { 𝑞 }), where 𝛿 is
defined in the following way:

𝛿(𝑞, 𝜀, 𝐴) = { (𝑞, 𝛼) | 𝐴 → 𝛼 ∈ 𝑃 }
𝛿(𝑞, 𝑎, 𝑎) = { (𝑞, 𝜀) }
𝛿(𝑞, ,) = ∅

Which of the following statements is true for
𝐺 = ({ 𝑆 } , { 0, 1 } , (𝑆 → 0𝑆 | 1), 𝑆)?

1. 𝐿(𝐺) = 𝐿(𝑄).
2. 𝐿(𝐺) = 𝑁(𝑄).

Turing
machines

Turing machines

▶ Simple computers.
▶ An idealised model of what it means to

“compute”.

Intuitive idea

▶ A tape that extends arbitrarily far
in both directions.

▶ The tape is divided into squares.
▶ The squares can be blank or contain symbols,

chosen from a finite alphabet.
▶ A read/write head, positioned over one square.
▶ The head can move from one square

to an adjacent one.
▶ Rules that explain what the head does.

Rules

▶ A finite set of states.
▶ When the head reads a symbol

(blank squares correspond to a special symbol):
▶ Check if the current state contains a

matching rule, with:
▶ A symbol to write.
▶ A direction to move in.
▶ A state to switch to.

▶ If not, halt.

The Church-Turing thesis

▶ Turing motivated his design partly by reference
to what a human computer does.

▶ The Church-Turing thesis:
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ “Effectively calculable function” is not a
well-defined concept, so this is not a theorem.

Syntax

A Turing machine (TM) can be given as a 7-tuple
(𝑄, Σ, Γ, 𝛿, 𝑞0, ␣, 𝐹):
▶ A finite set of states (𝑄).
▶ An input alphabet (Σ).
▶ A tape alphabet (Γ with Σ ⊆ Γ).
▶ A (partial) transition function

(𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A blank symbol (␣ ∈ Γ ∖ Σ).
▶ A set of accepting states (𝐹 ⊆ 𝑄).

Instantaneous descriptions

An instantaneous description (ID) for a given TM is
a 4-tuple (𝛼, 𝑞, 𝑋, 𝛽), often written 𝛼𝑞𝑋𝛽:
▶ The current state (𝑞 ∈ 𝑄).
▶ The non-blank portion of the tape

(𝑋 ∈ Γ, 𝛼, 𝛽 ∈ Γ∗).

..⋯. ␣. ␣. 𝛼1. ⋯. 𝛼𝑚. 𝑋. 𝛽1. ⋯. 𝛽𝑛. ␣. ␣. ⋯.

Head

.

Not blank

.

Not blank

Transition relation

The following relation between IDs defines what
kinds of transitions are possible:

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , R)
(𝛼, 𝑝, 𝑋, 𝑍𝛽) ⊢ (𝑙(𝛼𝑌), 𝑞, 𝑍, 𝛽)

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , R)
(𝛼, 𝑝, 𝑋, 𝜀) ⊢ (𝑙(𝛼𝑌), 𝑞, ␣, 𝜀)

The function 𝑙 removes leading blanks.

Transition relation

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , L)
(𝛼𝑍, 𝑝, 𝑋, 𝛽) ⊢ (𝛼, 𝑞, 𝑍, 𝑟(𝑌 𝛽))

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , L)
(𝜀, 𝑝, 𝑋, 𝛽) ⊢ (𝜀, 𝑞, ␣, 𝑟(𝑌 𝛽))

The function 𝑟 removes trailing blanks.

Transition relation

The reflexive transitive closure of ⊢ can be defined
inductively:

𝐼 ⊢∗ 𝐼
𝐼 ⊢ 𝐽 𝐽 ⊢∗ 𝐾

𝐼 ⊢∗ 𝐾

Consider the TM
𝑀 = ({ 𝑝, 𝑞 } , { 0, 1 } , { 0, 1, ␣ } , 𝛿, 𝑝, ␣, ∅), where
𝛿 is defined in the following way:

𝛿(𝑝, ␣) = (𝑞, ␣, L)
𝛿(𝑝, 0) = (𝑝, 1, R) 𝛿(𝑞, 0) = (𝑞, 0, L)
𝛿(𝑝, 1) = (𝑝, 0, R) 𝛿(𝑞, 1) = (𝑞, 1, L)

Which of the following statements are true
for 𝑀?

1. 𝑝01 ⊢∗ 10𝑝␣
2. 𝑝01 ⊢∗ 𝑞␣10
3. 𝑝01 ⊢∗ 𝑞␣␣10

4. 𝑝111 ⊢∗ 00𝑝1
5. 𝑝111 ⊢∗ 00𝑞1
6. 𝑝111 ⊢∗ 0𝑞00

Language

The language of a TM:

𝐿((𝑄, Σ, Γ, 𝛿, 𝑞0, ␣, 𝐹)) =
{ 𝑤 ∈ Σ∗ ∣ 𝑞 ∈ 𝐹 , 𝑋 ∈ Γ, 𝛼, 𝛽 ∈ Γ∗,

𝑞0𝑤 ⊢∗ 𝛼𝑞𝑋𝛽 }

(Here 𝑞0𝜀 means 𝑞0␣.)

Halting

▶ Turing machines can fail to halt (𝐼0 ⊢ 𝐼1 ⊢ …).
▶ A language is called recursively enumerable if it

is the language of some Turing machine.
▶ A language is called recursive if it is the

language of some Turing machine
that always halts.

▶ There are languages that are
recursively enumerable but not recursive.

▶ An example: The language of
(strings representing) Turing machines that
halt when given the empty string as input.

A hierarchy

A hierarchy of languages over the alphabet Σ
(if |Σ| ≥ 2):

Finite ⊊
Regular ⊊
Context-free ⊊
Recursive ⊊
Recursively enumerable ⊊
℘(Σ∗)

Some undecidable problems

The following things cannot, in general,
be determined (using, say, a Turing machine
that always halts):
▶ If a Turing machine halts for a given input.
▶ If two Turing machines accept

the same language.
▶ …

Consider the TM
𝑀 = ({ 𝑝, 𝑞, 𝑟 } , { 1 } , { 1, ␣ } , 𝛿, 𝑝, ␣, { 𝑟 }),
where 𝛿 is defined in the following way:

𝛿(𝑝, ␣) = (𝑟, ␣, R)
𝛿(𝑝, 1) = (𝑞, ␣, R)
𝛿(𝑞, 1) = (𝑝, ␣, R)

Which of the following strings are members
of 𝐿(𝑀)? Does 𝑀 always halt?

1. 𝜀
2. 1
3. 11

4. 111
5. 1111
6. It always halts

Today

▶ Pushdown automata.
▶ Turing machines.

Next lecture

▶ A summary of the course.

	Pushdown automata
	Turing machines
	Conclusion

