Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson

2020-02-17

Today

- ► Various algorithms.
- ► Equivalence of states.

Some old algorithms

Some algorithms we have already seen

- ▶ $(\varepsilon$ -)NFA to DFA. (Can be slow.)
- ▶ DFA to $(\varepsilon$ -)NFA. (Fast.)
- ► FA to RE. (Can be slow.)
- ▶ RE to ε -NFA. (Fast.)

Empty?

Is the language empty?

- ► For an FA: If there is no path from the start state to an accepting state.
- ► For a regular expression:

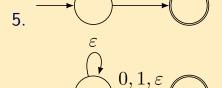
```
\begin{array}{ll} empty \in RE(\Sigma) \rightarrow Bool \\ empty(\emptyset) &= \mathsf{true} \\ empty(\varepsilon) &= \mathsf{false} \\ empty(a) &= \mathsf{false} \\ empty(e_1e_2) &= empty(e_1) \vee empty(e_2) \\ empty(e_1+e_2) &= empty(e_1) \wedge empty(e_2) \\ empty(e^*) &= \mathsf{false} \end{array}
```

Which of the following regular expressions/ ε -NFAs over $\{0,1\}$ represent the empty language?

1.
$$\emptyset + \varepsilon$$

2. $\emptyset + \emptyset^*$

4. $(\emptyset 01 + 10(\emptyset + \varepsilon \emptyset))^+$



Member?

Is the string a member of the language?

- ► For a DFA: Move from state to state, check if the last state is accepting.
- ▶ For an NFA or ε -NFA:
 - Keep track of a set of states.
 - Or convert to a DFA.
 (This could be much less efficient.)
- ▶ For a regular expression: Convert to an ε -NFA.

For a DFA $(Q, \Sigma, \delta, q_0, F)$:

lacktriangledown Two states $p,r\in Q$ are equivalent $(p\sim r)$ if

$$\forall w \in \Sigma^*. \ \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(r, w) \in F.$$

► Two states that are not equivalent are distinguishable.

Which of the following properties does the \sim relation always satisfy?

- 1. It is reflexive.
 - 2. It is symmetric.
- 3. It is antisymmetric.
- 4. It is transitive.

To find out which states are equivalent:

- Create a matrix where rows and columns are labelled by states.
- Mark every accepting state as distinguishable from every non-accepting state.
- Repeat until no further changes are possible:
 - Mark two states $p,q\in Q$ as distinguishable if there is some $a\in \Sigma$ for which $\delta(p,a)$ and $\delta(q,a)$ have already been marked as distinguishable.
- States that have not been marked as distinguishable are equivalent.

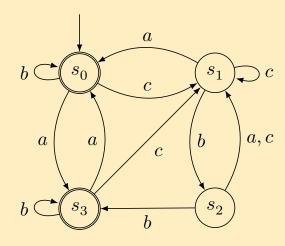
Note:

- ▶ The \sim relation is reflexive, so one can skip the diagonal.
- ▶ The \sim relation is symmetric, so one can skip, say, the elements below the diagonal.

(Assuming that row and column labels are ordered in the same way.)

- ▶ The \sim relation is an equivalence relation.
- ► The equivalence classes partition the set of states.

How many equivalence classes does the \sim relation for the following DFA have?



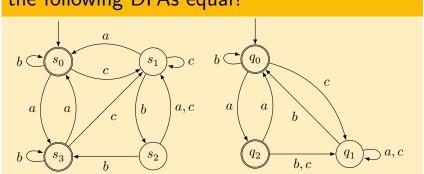
Equality of languages

Equality of languages

To find out if two languages, represented by the DFAs $(Q_1,\Sigma,\delta_1,q_{01},F_1)$ and $(Q_2,\Sigma,\delta_2,q_{02},F_2)$ with $Q_1\cap Q_2=\emptyset$, are equal:

- $\label{eq:create the DFA} \ (Q_1 \cup Q_2, \Sigma, \delta, q_{01}, F_1 \cup F_2), \\ \text{where } \delta(q) = \delta_i(q) \ \text{for} \ q \in Q_i.$
- ▶ The languages are equal iff $q_{01} \sim q_{02}$.

Are the languages over $\{a,b,c\}$ denoted by the following DFAs equal?



Equality of languages

Note:

One can skip entries for which the row label and column label belong to the same DFA.

Given a DFA $A=(Q,\Sigma,\delta,q_0,F)$ one can construct a minimal (in terms of the number of states) DFA that represents the same language.

1. Remove non-accessible states:

$$\begin{split} A' &= (A\,cc(q_0), \Sigma, \delta', q_0, F \cap A\,cc(q_0)) \\ \delta'(q, a) &= \delta(q, a) \end{split}$$

2. Replace the set of states with equivalence classes of equivalent states:

$$\begin{split} A'' &= (Acc(q_0)/{\sim}, \Sigma, \delta'', [q_0], F'') \\ \delta''([q], a) &= [\delta(q, a)] \\ F'' &= \{ \ [q] \mid q \in F \cap Acc(q_0) \ \} \end{split}$$

Exercise: Check that A'' is a well-formed DFA. Prove that it accepts the same language as A.

Why is the constructed DFA minimal?

- ▶ Take any DFA $B=(Q_B,\Sigma,\delta_B,q_B,F_B)$ that represents the same language.
- ► Combine A" and B like in the language equality checking algorithm (renaming states if necessary).
- We have $[q_0] \sim q_B$.
- ▶ Hence every accessible state $\widehat{\delta''}([q_0],w) = \left[\widehat{\delta}(q_0,w)\right] \text{ of } A''$ (and thus every state of A'') is equivalent to a state of $B, \ \widehat{\delta_B}(q_B,w).$

Consider the following function:

$$\begin{split} &f \in Acc(q_0)/{\sim} \to Q_B/{\sim} \\ &f\Big(\left[\widehat{\delta}(q_0, w) \right] \Big) = \left[\widehat{\delta_B}(q_B, w) \right] \end{split}$$

This is a proper definition, because if $\hat{\delta}(q_0,u)\sim\hat{\delta}(q_0,v)$ then $\widehat{\delta_B}(q_B,u)\sim\widehat{\delta_B}(q_B,v)$.

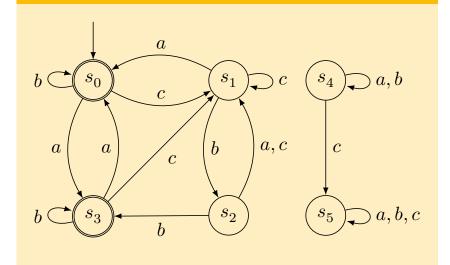
 \blacktriangleright The function f is injective:

$$\begin{split} &f\left(\left[\widehat{\delta}(q_0,u)\right]\right) = f\left(\left[\widehat{\delta}(q_0,v)\right]\right) \Leftrightarrow \\ &\left[\widehat{\delta_B}(q_B,u)\right] = \left[\widehat{\delta_B}(q_B,v)\right] \Leftrightarrow \\ &\widehat{\delta_B}(q_B,u) \sim \widehat{\delta_B}(q_B,v) \Leftrightarrow \\ &\widehat{\delta}(q_0,u) \sim \widehat{\delta}(q_0,v) \Leftrightarrow \\ &\left[\widehat{\delta}(q_0,u)\right] = \left[\widehat{\delta}(q_0,v)\right] \end{split}$$

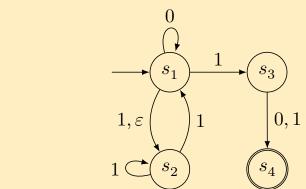
- ▶ Thus Q_B/\sim is at least as large as $Acc(q_0)/\sim$...
- ...and Q_B is at least as large as Q_B/\sim .

In fact, the minimised DFA is equal (up to renaming of states) to every other minimal DFA for the same language.

Minimise the following DFA.



Consider the following ε -NFA over $\{0,1\}$. How many states does a minimal ε -NFA for the same language have? (Count only the number of states, not the number of edges.)



Today

- ▶ Is the language empty?
- ▶ Is the string a member of the language?
- Equivalence of states.
- Are the languages equal?
- Minimisation of DFAs.

Next lecture

► Context-free grammars.