Finite automata and formal languages (DIT322, TMV028)

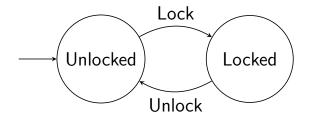
Nils Anders Danielsson, partly based on slides by Ana Bove

2020-01-20-21

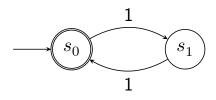
- Used in text editors:
 - M-x replace-regexp RET
 add(\([^,]*\), \([^)]*\)) RET
 \1 + \2 RET
- Used to describe the lexical syntax of programming languages.
- Can only describe a limited class of "languages".

- Used to implement regular expression matching.
- Used to specify or model systems.
 - One kind of finite automaton is used in the specification of TCP.
- Equivalent to regular expressions.

Finite automata



Accepts strings of ones of even length:

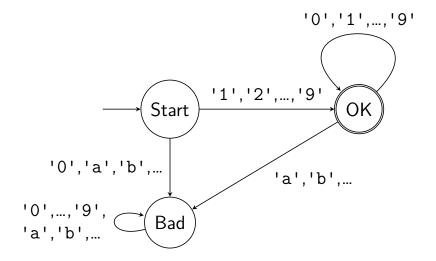


- The states are a kind of memory.
- Finite number of states \Rightarrow finite memory.

- ► A regular expression for strings of ones of even length: (11)*.
- ► A regular expression for some keywords: while | for | if | else.
- ► A regular expression for positive natural number literals (of a certain form): [1-9][0-9]*.

Finite automata

Accepts positive natural number literals:



- We will see how to convert regular expressions to and from finite automata.
- In fact, we will discuss several kinds of finite automata, and conversions between the different kinds.

- More general than regular expressions.
- Used to describe the syntax of programming languages.
- Used by parser generators. (Often restricted.)

$$Expr ::= Number | Expr Op Expr | '(' Expr ')' Op ::= '+' | '-' | '*' | '/'$$

Turing machines

► A model of what it means to "compute":

- Unbounded memory: an infinite tape of cells.
- A read/write head that can move along the tape.
- A kind of finite state machine with rules for what the head should do.
- Equivalent to a number of other models of computation.

- Used to make it more likely that arguments are correct.
- Used to make arguments more convincing.

Induction

- Regular induction for \mathbb{N} .
- Complete (strong, course of values) induction for N.

- An example: The natural numbers (ℕ = { 0, 1, 2, ... }).
- Structural induction for inductively defined sets.

General information

See the course web pages.

Repetition (?) of some classical logic

 A proposition is, roughly speaking, some statement that is true or false.

► 2 = 3.

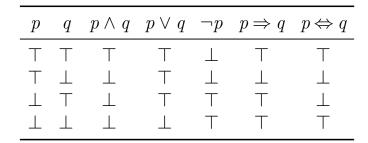
The program while true do {x := 4} terminates.

$$\blacktriangleright P = NP.$$

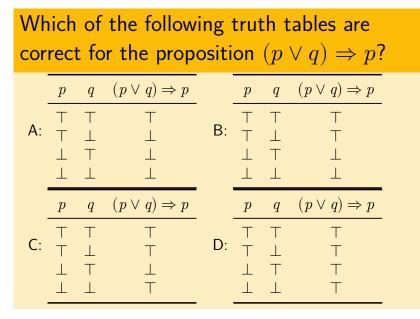
- If P = NP, then 2 = 3.
- It may not always be known what the truth value (⊤ or ⊥) of a proposition is.

- ► And: ∧.
- ► Or: ∨.
- ► Not: ¬.
- Implies: \Rightarrow .
- If and only if (iff): \Leftrightarrow .

Truth tables for these connectives:



Note that $p \Rightarrow q$ is true if p is false.



Respond at https://pingo.coactum.de/536622.

- A proposition is *valid*, or a *tautology*, if it is satisfied for all assignments of truth values to its variables.
- Examples:

$$p \Rightarrow p. p \lor \neg p.$$

- ► Two propositions p and q are logically equivalent if they have the same truth tables, i.e. if p ⇔ q is valid.
- Examples:

$$\begin{array}{l} \blacktriangleright \neg \neg p \iff p. \\ \blacktriangleright (p \Leftrightarrow q) \iff (p \Rightarrow q) \land (q \Rightarrow p). \\ \blacktriangleright p \land q \iff q \land p. \\ \blacktriangleright p \land (q \lor r) \iff (p \land q) \lor (p \land r). \\ \blacktriangleright p \land (p \lor q) \iff p. \end{array}$$

Which of the following propositions are valid?

1.
$$(p \Rightarrow q) \Leftrightarrow \neg p \lor q$$
.
2. $(p \Rightarrow q) \Leftrightarrow p \lor \neg q$.
3. $\neg (p \land q) \Leftrightarrow \neg p \land \neg q$.
4. $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$.
5. $((p \Rightarrow p) \Rightarrow q) \Rightarrow p$.
6. $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$.

A predicate is, roughly speaking, a function to propositions.

•
$$P(n) = "n$$
 is a prime number".

▶
$$Q(a,b) = "(a+b)^2 = a^2 + 2ab + b^2$$
".

Quantifiers:

For all: ∀.
∀x. x = x.
∀a, b ∈ ℝ. (a + b)² = a² + 2ab + b².
There exists: ∃.
∃n ∈ ℕ. n = 2n.

Which of the following propositions, involving predicate variables, are valid?

- 1. $(\neg \forall n \in \mathbb{N}. P(n)) \Leftrightarrow (\forall n \in \mathbb{N}. \neg P(n)).$
- $2. \ (\neg \forall n \in \mathbb{N}. \ P(n)) \Leftrightarrow (\exists n \in \mathbb{N}. \ \neg P(n)).$
- $\begin{array}{lll} \textbf{3.} & (\forall m \in \mathbb{N}. \; \exists n \in \mathbb{N}. \; P(m,n)) \Leftrightarrow \\ & (\exists n \in \mathbb{N}. \; \forall m \in \mathbb{N}. \; P(m,n)). \end{array}$

Repetition (?) of some set theory

- A set is, roughly speaking, a collection of elements.
- Some notation for defining sets:

▶ { 0, 1, 2, 4, 8 }.
▶ {
$$n \in \mathbb{N} \mid n > 2$$
 }.
▶ { $2^n \mid n \in \mathbb{N}$ }.

Members, subsets

• Membership: \in .

•
$$4 \in \{ 2^n \mid n \in \mathbb{N} \}.$$

• $2 \notin \{ n \in \mathbb{N} \mid n > 2 \}.$

- Two sets are equal if they have the same elements: $(A = B) \Leftrightarrow (\forall x. \ x \in A \Leftrightarrow x \in B).$
- Subset relation:

$$\begin{array}{l} (A \subseteq B) \Leftrightarrow (\forall x. \ x \in A \Rightarrow x \in B). \\ \bullet \ \left\{ \begin{array}{l} 2^n \mid n \in \mathbb{N} \end{array} \right\} \subseteq \mathbb{N}. \\ \bullet \ \left\{ \begin{array}{l} 0, 1, 2, 4, 8 \end{array} \right\} \nsubseteq \left\{ \begin{array}{l} n \in \mathbb{N} \mid n > 2 \end{array} \right\} \end{array}$$

.

- Unrestricted naive set theory can be inconsistent.
- Russell's paradox:
 - Define S = { X | X ∉ X }, where X ranges over all sets.
 - We have $S \in S \Leftrightarrow S \notin S$!?
 - One can fix this problem by imposing rules that ensure that S is not a set.

Set operations

- ► The empty set: Ø.
- Union: $A \cup B = \{ x \mid x \in A \lor x \in B \}.$
- Intersection: $A \cap B = \{ x \mid x \in A \land x \in B \}.$
- Cartesian product: $A \times B = \{ (x, y) \mid x \in A \land y \in B \}.$

Set difference:

- $A\smallsetminus B=A-B=\{\,x\in A\mid x\notin B\,\}.$
- Complement: A = U \ A
 (if U is fixed in advance and A ⊆ U).
 Power set: ℘(S) = 2^S = { A | A ⊆ S }.

Which of the following propositions are valid? Variables range over sets. U is non-empty.

1.
$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$
.
2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
3. $\emptyset = \{\emptyset\}$.
4. $A \in \wp(A)$.
5. $A \cup (B \cap C) = (A \cup B) \cap C$.
6. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

- A binary relation R on A is a subset of A² = A × A: R ⊆ A².
- Notation: xRy means the same as $(x, y) \in R$.
- ► Can be generalised from A × A to A × B × C × ···.

Properties of binary relations

- Reflexive: $\forall x \in A. xRx.$
- ▶ Symmetric: $\forall x, y \in A. xRy \Rightarrow yRx.$
- ▶ Transitive: $\forall x, y, z \in A$. $xRy \land yRz \Rightarrow xRz$.
- Antisymmetric:

 $\forall x, y \in A. \ xRy \land yRx \Rightarrow x = y.$

A *partial order* is reflexive, antisymmetric and transitive.

- ▶ \leq for \mathbb{N} .
- Not <.

Which of the following sets are partial orders on $\{0, 1\}$?

{ (0,0) }.
 { (0,0), (1,1) }.
 { (0,0), (0,1), (1,1) }.
 { (0,0), (0,1), (1,0) }.

An *equivalence relation* is reflexive, symmetric and transitive.

Which of the following sets are equivalence relations on $\{0, 1\}$?

}.

A partition of the set A is a set $P\subseteq\wp(A)$ satisfying the following properties:

- Every element is non-empty: $\forall B \in P. \ B \neq \emptyset$.
- The elements cover A: $\bigcup_{B \in P} B = A$.
- The elements are mutually disjoint: $\forall B, C \in P. \ B \neq C \Rightarrow B \cap C = \emptyset.$

- ► The equivalence classes of an equivalence relation R on A: [x]_R = { y ∈ A | xRy }.
- Note that $\forall x, y \in A$. $[x]_R = [y]_R \Leftrightarrow xRy$.
- ► The equivalence classes { [x]_R | x ∈ A } partition A.
- The quotient set $A/R = \{ [x]_R \mid x \in A \}.$

Some examples:

$$\begin{array}{l} \bullet \hspace{0.2cm} \mathbb{Z} = \mathbb{N}^{2}/\sim_{\mathbb{Z}}, \\ \text{where} \\ (m_{1},n_{1})\sim_{\mathbb{Z}}(m_{2},n_{2}) \Leftrightarrow m_{1}+n_{2}=m_{2}+n_{1}. \\ \bullet \hspace{0.2cm} \mathbb{Q} = \left\{ \hspace{0.2cm} (m,n) \mid m \in \mathbb{Z}, n \in \mathbb{N} \smallsetminus \left\{ \hspace{0.2cm} 0 \hspace{0.2cm} \right\} \right\}/\sim_{\mathbb{Q}}, \\ \text{where} \\ (m_{1},n_{1})\sim_{\mathbb{Q}}(m_{2},n_{2}) \Leftrightarrow m_{1}n_{2}=m_{2}n_{1}. \end{array}$$

Which of the following propositions are true?

1.
$$[(2,5)]_{\sim_{\mathbb{Z}}} = [(0,3)]_{\sim_{\mathbb{Z}}}.$$

2. $[(2,5)]_{\sim_{\mathbb{Z}}} = [(3,0)]_{\sim_{\mathbb{Z}}}.$
3. $[(2,5)]_{\sim_{\mathbb{Q}}} = [(4,10)]_{\sim_{\mathbb{Q}}}.$
4. $[(2,5)]_{\sim_{\mathbb{Q}}} = [(10,4)]_{\sim_{\mathbb{Q}}}.$

- For $R \subseteq A \times B$:
 - Total (left-total): $\forall x \in A. \exists y \in B. xRy.$
 - Functional/deterministic:
 ∀x ∈ A. ∀y, z ∈ B. xRy ∧ xRz ⇒ y = z.

Functions

- The set of *functions* from the set A to the set B is denoted by $A \rightarrow B$.
- It is sometimes defined as the set of total and functional relations f ⊆ A × B.
- Notation: f(x) = y means $(x, y) \in f$.
- If the requirement of totality is dropped, then we get the set of *partial* functions, A → B.
- The *domain* is A, and the *codomain* B.
- The image is $\{ y \in B \mid x \in A, f(x) = y \}.$

Which of the following relations on $\{a, b\}$ are functions?

- ► The *identity function* id on a set A is defined by id(x) = x.
- For functions $f \in B \to C$ and $g \in A \to B$ the composition $f \circ g \in A \to C$ is defined by $(f \circ g)(x) = f(g(x)).$

The function $f \in A \rightarrow B$ is *injective* if $\forall x, y \in A$. $f(x) = f(y) \Rightarrow x = y$.

- Every input is mapped to a unique output.
- Means that A is "no larger than" B.
- Holds if f has a left inverse $g \in B \to A$: $g \circ f = id$.

The function $f \in A \rightarrow B$ is *surjective* if $\forall y \in B$. $\exists x \in A$. f(x) = y.

- The function "targets" every element in the codomain.
- Means that A is "no smaller than" B.
- Holds if f has a right inverse $g \in B \to A$: $f \circ g = id$.

- The function $f \in A \rightarrow B$ is *bijective* if it is both injective and surjective.
 - Means that A and B have the same "size".
 - Holds if and only if f has a left and right inverse $g \in B \rightarrow A$.

Which of the following functions are injective? Surjective?

- If there are n pigeonholes, and m > n pigeons in these pigeonholes, then at least one pigeonhole must contain more than one pigeon.
- If $f \in \{k \in \mathbb{N} \mid k < m\} \rightarrow \{k \in \mathbb{N} \mid k < n\}$ for $m, n \in \mathbb{N}$, and m > n, then f is not injective.

- Proofs.
- Induction for the natural numbers.
- Inductively defined sets.
- Recursive functions.

Deadline for the first quiz: 2020-01-23, 10:00.