Parallelization




What does function pm(L) compute?

pm([X[[1]) -> X;
pm([X[[Y|[11]) -> if X > Y -> X; true -> Y end;
pm(L) -> M = length(L) div 2, {A, Z} = lists:split(M, L),
Me = self(),
spawn(fun () -> Me ! pm(A) end),
spawn(fun () -> Me ! pm(Z) end),
receive B -> B end, receive Y -> Y end, pm([B, YI]).

the sum of elements in L
the maximum of elements in L

the minimum of elements in L

P 0N~

a sorted copy of L

29/48



What does function pm(L) compute?

pm([X[[1]) -> X;
pm([X[[Y|[11]) -> if X > Y -> X; true -> Y end;
pm(L) -> M = length(L) div 2, {A, Z} = lists:split(M, L),
Me = self(),
spawn(fun () -> Me ! pm(A) end),
spawn(fun () -> Me ! pm(Z) end),
receive B -> B end, receive Y -> Y end, pm([B, YI).

the sum of elements in L
the maximum of elements in L

the minimum of elements in L

P 0N~

a sorted copy of L

29/48



How many tasks may execute in parallel when computing the factorial
of n?

class Factorial extends RecursiveTask<Integer> {
int n; // number to compute factorial of
protected Integer compute() {
if (n <= 1) return 1;
Factorial f = new Factorial(n - 1);
f.fork();
return n x f.join();

n! (the factorial of n)
n

it depends on the number of available cores

P 0N~

there is practically no parallelism

30/48



How many tasks may execute in parallel when computing the factorial
of n?

class Factorial extends RecursiveTask<Integer> {
int n; // number to compute factorial of
protected Integer compute() {
if (n <= 1) return 1;
Factorial f = new Factorial(n - 1);
f.fork();
return n x f.join();

n! (the factorial of n)
n

it depends on the number of available cores

P 0N~

there is practically no parallelism

30/48



How many processes may execute in parallel when computing the
factorial of n?

fact(1l) -> 1;
fact(N) ->
Me = self(),

spawn(fun () -> Me ! fact(N-1) end),
receive F -> NxF end.

1. n! (the factorial of n)

2. n

3. it depends on the number of available cores
4. there is practically no parallelism

31/48



How many processes may execute in parallel when computing the
factorial of n?

fact(1l) -> 1;
fact(N) ->
Me = self(),

spawn(fun () -> Me ! fact(N-1) end),
receive F -> NxF end.

1. n! (the factorial of n)

2. n

3. it depends on the number of available cores
4. there is practically no parallelism

31/48



How many tasks may execute in parallel when computing the sum of
integers from 1 to n?

class Sum extends RecursiveTask<Integer> {

int m, n; // sum integers from m to n

protected Integer compute() {

poOp =

if (m > n) return 0;

if (m == n) return m;

int mid = m + (n-m)/2; // mid point
Sum lower = new Sum(m, mid);

Sum upper = new Sum(mid+1l, n);
lower.fork(); upper.fork();

return lower.join() + upper.join();

2" (2 to the power of n)

n? (the square of n)

n

there is practically no parallelism

32/48



How many tasks may execute in parallel when computing the sum of
integers from 1 to n?

class Sum extends RecursiveTask<Integer> {

int m, n; // sum integers from m to n
protected Integer compute() {

poOp =

if (m > n) return 0;

if (m == n) return m;

int mid = m + (n-m)/2; // mid point
Sum lower = new Sum(m, mid);

Sum upper = new Sum(mid+1l, n);
lower.fork(); upper.fork();

return lower.join() + upper.join();

2" (2 to the power of n)
n? (the square of n)
n

there is practically no parallelism

32/48



