
Chalmers | Göteborgs Universitet

Principles of Concurrent Programming
TDA384/DIT391

Tuesday, 19 December 2017

Teacher/examiner: K. V. S. Prasad (prasad@chalmers.se, 0736 30 28 22)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

Points in exam Grade Chalmers Grade GU

28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

Points in exam + labs Grade Chalmers Grade GU

40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days
after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your
solutions may depend on for correctness.

• Write the solutions to different exercises on different pages.

• Try to be precise. For the syntax of the programming notation you
use in your answers, try to use the same syntax and style used in the
questions. But you can also use pseudo-code, as long as the intended
meaning is precise and clear. If need be, explain your notation.

1

Question 1. Consider the following program.

boolean flag := true; integer n := 0

p q

p1: while flag q1: while flag
p2: n := n+1 q2: n := n-1
p3: flag := true q3: if n < 0

q4: flag := false

(Part a). Construct a scenario where the program terminates and
n >= 0. (2p)

(Part b). Construct a fair scenario where the program does not
terminate. (3p)

(Part c). Construct a scenario where the program does not terminate
and q4 is executed infinitely often. (3p)

Question 2. A small building firm can only build one house at a time, and cannot
start on a new one till the present one is completed. The firm has
N specialist workers such as a mason, a carpenter, an electrician, a
plumber, etc. They are told to start on a house by the team manager,
who then waits till each worker reports that they are done on this
house, before starting the team on the next house. The firm never
stops building houses.

On the next page is a code skeleton of a program modelling the be-
haviour of this small firm.

2

class BuildingFirm {

final int NumSpecialists = 2;

// Semaphore definitions to be defined...

class TeamManager extends Thread {

public void run() {

// To be defined...

}

}

class Worker extends Thread {

public void run() {

// To be defined...

}

}

// Starting the workers and team manager

public static void main(String[] args) {

for (int i = 0; i<NumSpecialists; i++) {

new Worker().start();

}

new TeamManager().start();

}

}

Your task is to replace the comments // To be defined... as fol-
lows:

(Part a). Write the definition of the semaphores you will use in your
solution. For each semaphore, indicate its name and the number of
permits with which it is initialised. These semaphores will be global
variables that can be accessed by any thread. (2p)

(Part b). Write the implementation of the method run() of the
class Worker according to the description above. Remember that the
only shared variables among threads are NumSpecialists and the
semaphores you defined in Part a. (5p)

(Part c). Write the implementation of the method run() of the
class TeamManager according to the description above. Remember
that the only shared variables among threads are NumSpecialists

and the semaphores you defined in Part a. (5p)

(Part d). How would your solution change if you only use binary
semaphores? (3p)

3

Question 3. Here is yet another algorithm to solve the critical section problem,
built from atomic “if” statements (p2, q2 and p5, q5). The test of
the condition following ‘if”, and the corresponding “then” or “else”
action, are both carried out in one step, which the other process cannot
interrupt. The / operator is integer division, so 2/2 = 3/2 = 1.

integer S := 0

p q

loop forever loop forever
p1: // non-critical section q1: // non-critical section
p2: if even(S) then S:=2 else S:=3 q2: if even(S/2) then S:=5 else S:=7
p3: await (S 6= 1 ∧ S6=3) q3: await (S 6= 6 ∧ S6=7)
p4: // critical section q4: // critical section
p5: if odd(S/2) then S:=S-2 else skip q5: if odd(S) then S:=S-1 else skip

Commands p1, p4, q1 and q4 (the critical and non-critical sections) do
not access the variable S, and are therefore omitted in the abbreviated
state transition table (a tabular version of a state diagram) below for
the program. Many entries in the table are left blank (—).

Each state is represented by a triple (pk, ql, Sn), where pk and ql say
respectively what p and q will next execute, and Sn is the value of S.
The states are listed in the order in which they appear as the table
is built up starting from (p2, q2, 0), and are named s1 through s10.
(There are 10 states in all). The left hand column lists the states.
The next state if p (respectively q) next executes a step is given in the
middle (respectively last) column. In many states both p or q are free
to execute the next step, and either may do so. But in some states,
such as s5 below, one or other of the processes may be blocked. The
middle and last columns show the next state and give its name for
easy reference.

State = (pi, qi, Svalue) next state if p moves next state if q moves

s1 (p2, q2, 0) (p3, q2, 2)=s2 (p2, q3, 5)=s3
s2 (p3, q2, 2) — —
s3 (p2, q3, 5) — —
s4 — — —
s5 (p3, q3, 7) (p5, q3, 7)=s8 no move
s6 — — —
s7 — — —
s8 — — —
s9 — — —
s10 (p2, q2, 4) (p3, q2, 2)=s2 (p2, q3, 5)=s3

(Part a) Fill in the dashes to complete the state transition table.
Each entry should show a state, and in the middle and last columns,
also give its name. (5p)

4

(Part b) Prove from your state transition table that the program
ensures mutual exclusion. (3p)
(Part c) Prove from your state transition table that the program does
not deadlock (there are await statements, so it is possible for a process
to block). (2p)

Question 4. Refer again to the program in Question 3, reproduced below for con-
venience.

integer S := 0

p q

loop forever loop forever
p1: // non-critical section q1: // non-critical section
p2: if even(S) then S:=2 else S:=3 q2: if even(S/2) then S:=5 else S:=7
p3: await (S 6= 1 ∧ S6=3) q3: await (S 6= 6 ∧ S6=7)
p4: // critical section q4: // critical section
p5: if odd(S/2) then S:=S-2 else skip q5: if odd(S) then S:=S-1 else skip

In this question, you must argue from the program, not from the state
transition table (though you may seek inspiration from it!). You get
full credit for correct reasoning, whether you use formal logic, everyday
language, or a mixture. Formulas and logical laws make your argument
concise and precise, and help you keep track of it. With everyday
language, be careful not to be fuzzy, or to mistake wishful thinking for
proof.

Ben-Ari’s textbook reviews briefly the notation of propositional logic
and explains linear temporal logic. Below, we write pi as a logical
proposition to mean “process p is at pi”.

(Part a). Show that (p3 ∧ q3)→ (S = 3 ∨ S = 7) is invariant. Hint:
Reason about what must have happened for the program to get to
(p3 ∧ q3). (4p)

(Part b) Assume that p3 ∧ q1 → (S = 2) is invariant, and that q is
stuck in a loop in q1. (Remember that while p4 and q4 are assumed
to terminate, p1 and q1 may loop). Assuming fairness, prove that
p3 ∧ q1→ �♦p5. (4p)

5

Question 5. In this question we model the exam grading process using Erlang.
There is an examiner process who keeps track of which exams have
been graded, and N grader processes who do the work of grading.
Each exam is graded by one grader, and one grader can grade multiple
exams. Grading an exam takes a non-trivial, indeterminate amount of
time. Every grader asks the examiner for an ungraded exam, grades
it, and then gives it back. This is repeated until all exams are graded.
The grader processes terminate when there is no work left to be done
(but the examiner process never terminates).

You can assume the following functions. You do not need to concern
yourself with the internal structure of the exam data types.

• grade(Exam): Grade the given exam (the work done by the
graders). Blocks while the exam is being graded. Returns a
graded version of Exam.

• get ungraded exam(Exams): Find and return an exam in the list
Exams which has not yet been graded. Returns false if all exams
have been graded.

• set graded exam(Exams, Exam): Mark that Exam in the list Exams
has been graded. Returns a updated version of Exams.

(Part a). Implement the init graders function, which spawns N
grader processes (each running the grader function, which you will
implement in the next question). Use the following signature:
init graders(N) -> ... (2p)

(Part b).The examiner process runs the following function:

examiner1(Exams) ->

receive

{idle, Pid} ->

case get_ungraded_exam(Exams) of

false -> Pid ! finished ;

Exam ->

Pid ! {grade, Exam},

receive

{ready, ExamGraded} ->

examiner1(set_graded_exam(Exams, ExamGraded))

end

end

end.

Implement the grader function, which communicates with this exam-
iner process and behaves as described above. It is up to you to decide

6

the signature of this function, but it should match your implemen-
tation of init graders above. You can assume that the examiner
process is running and registered to the atom examiner. (8p)

(Part c).The examiner1 function defined above is not efficient. Ex-
plain why. (2p)

(Part d). Here’s an attempt at improving the examiner function:

examiner2(Exams) ->

receive

{idle, Pid} ->

case get_ungraded_exam(Exams) of

false -> Pid ! finished ;

Exam -> Pid ! {grade, Exam}

end,

examiner2(Exams) ;

{ready, ExamGraded} ->

examiner2(set_graded_exam(Exams, ExamGraded))

end.

Explain why it is an improvement over the previous version. Are there
any potential problems with this implementation? (3p)

7

Question 6. In this exercise, you will evaluate different implementations of a count-
ing operation on a list data structure in Java, analyzing whether they
are thread safe, that is executable by multiple concurrent threads with-
out running into race conditions.

Recall the various implementations of linked sets presented during
the course. They are all variants implementing the same interface,
consisting of operations to remove elements, add elements, and test
whether an element is in the set. In this exercise, we extend the
interface with a new operation int size(), which simply returns the
number of nodes stored in the set.

A simple implementation of method size() that works in a sequential
setting is:

1 pub l i c i n t s i z e () {
2 i n t s i z e = −1;
3 Node<T> c u r r ;
4 c u r r = head ; // s e t c u r r t o t h e head node

5 do {
6 c u r r = cu r r . nex t () ; // move c u r r t o n e x t node i n c h a i n

7 s i z e += 1 ; // i n c r e m e n t s i z e by 1

8 } whi le (c u r r != t a i l) ; // u n t i l c u r r r e a c h e s t h e t a i l node

9 return s i z e ;
10 }

(Part a). Why is the local variable size initialized to -1? Why not
to 0? (2p)

(Part b). Explain why the above implementation of size() is not
thread safe. To this end, describe a concrete scenario where race con-
ditions may occur. (2p)

(Part c). CoarseSet uses a variable lock of type Lock to guard access
to the whole data structure. Modify the implementation of size()

shown above so that it uses lock to avoid race conditions. (Recall
the implementation CoarseSet of the thread-safe set data structures
seen during the course and also described in Chapter 9 of Herlihy &
Shavit). (2p)

(Part d).

In order to make size() run in constant time, we now consider a more
efficient implementation that adds an attribute size of type int to
the set, which keeps track of the current number of elements in the
list. Thus, method size() simply returns the value of attribute size

when it is called.

8

1 Write an implementation of size() in CoarseSet that is thread
safe using locks. (1p)

2 Which operations of CoarseSet must update the value of at-
tribute size? (1p)

3 Consider the implementation of method remove in CoarseSet.
Illustrate what race conditions may occur if remove updates the
value of attribute size after releasing lock. (2p)

(Part e).

Consider yet another variant of set implementation where we want to
update attribute size without using any locks.

1 Choose a suitable type for attribute size so that it can be up-
dated thread-safely without using locks. (2p)

2 Based on your choice of type, write a piece of code that increments
size by one in a thread-safe manner without locking. (2p)

9

