
Ray Tracing I:
Switching gears…

Tomas Akenine-Möller
Department of Computer Engineering
Chalmers University of Technology

Modified by Ulf Assarsson

Kursutvärderingar vid Chalmers

For your convenience

• Half-Time
Summary
Slides

…

Typical Exam Questions
l Prev Lecture:

– Describe one intersection test for
l ray/triangle – (e.g. analytically, Jordans Cross theorem or

summing angles)
l Ray/box (slabs)
l View Frustum Culling using spheres

– Culling – VFC, Portal, Detail,
Backface, Occlusion

– What is LODs
– Describe how to build and use BVHs, AABSP-

tree, Polygon aligned BSP-tree.
– Describe the octree/quadtree.

min
xt

max
xt

min
yt

max
yt

What is ray tracing?
l Another rendering algorithm

– Fundamentally different from polygon
rendering (using e.g., OpenGL)

– OpenGL
l renders one triangle at a time
l Z-buffer sees to it that triangles appear ”sorted” from

viewpoint
l Local lighting --- per vertex

– Ray tracing
l Gives correct reflections!
l Renders one pixel at a time
l Sorts per pixel
l Global lighting equation (reflections, shadows)

What is the point of ray tracing?
l Higher quality rendering

– Global lighting equation (shadows, reflections,
refraction)

– Accurate shadows, reflections, refraction
– More accurate lighting equations

l Is the base for more advanced algorithms
– Global illumination, e.g., path tracing, photon

mapping
l It is extremely simple to write a (naive)

ray tracer
l A disadvantage: it is inherently slow!

Tomas Akenine-Mőller © 2002

Some simple, ray traced images…

Tomas Akenine-Mőller © 2002

Again: it is simple to write a ray
tracer! A la Paul Heckbert

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/

Which rendering algorithm will win
at the end of the day?
l Ray tracing or polygon rendering?
l Ray tracing is:

– Slow
– But realistic
– Therefore, focus is on creating faster algorithms, and

possible hardware acceleration (GPU, RPU)
l Polygon rendering (OpenGL) is:

– Fast (simple to build hardware)
– Not that realistic
– Therefore, focus is on creating more realistic images

using graphics hardware
l Answer: right now, it depends on what you

want, but for the future, no one really knows

Side by side comparison
Images courtesy of Eric Haines

To be physically correct, follow
photons from light sources…
l Not what we do for a simple ray tracer

– Though this is almost what we do for more
advanced techniques (photon mapping)

Light sourceImage plane

l Not effective, not many rays will arrive at
the eye

This image was generated in 1991 by simulating
the motion of 29.8 Billion photons in a room.
The room is 2 meters cubed with a 30 cm
aperture in one wall. The opposite and adjacent
walls are mirrors, so this is a 'tunnel of mirrors'.
The depth of field is very shallow. In the
foreground is a prism, resting on the floor. A
beam of light emerges from the left wall, goes
through the prism and makes a spectrum on the
right wall. About 1 in 177 photons made it
through the aperture.

The image took 100 Sun SparcStation1s 1 month
to generate using background processing time.
This represents 10 CPU years of processing time.
If the lights are 25 watt bulbs this represents a
few picoseconds of time.

29.8 Billion photons

Same image but with 382 Billion
Photons

Follow photons backwards from
the eye: treat one pixel at a time
l Rationale: find photons that arrive at each pixel
l How do one find the visible object at a pixel?
l With intersection testing

– Ray, r(t)=o+td, against geometrical objects
– Use object that is closest to camera!
– Valid intersections have t > 0
– t is a signed distance

Image plane

Closest intersection point

Finding closest point of
intersection
l Naively: test all geometrical objects in the

scene against each ray, use closest point
– Very very slow!

l Be smarter:
– Use spatial data structures, e.g.:
– Bounding volume hierarchies
– Octrees
– BSP trees
– Grids (not yet treated)
– Or a combination (hierarchies) of those

l We will return to this topic a little later

trace() and shade():
Recursion

l First call trace() to find first intersection
l trace() then calls shade() to compute

lighting
l shade() then calls trace() for reflection and

refraction directions

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

trace() in detail
Color trace(Ray R)
{

float t;
bool hit;
Object O;
Color col;
Vector P,N; // point & normal at intersection point
hit=findClosestIntersection(R,&t,&O);
if(hit)
{

P=R.origin() + t*R.direction();
N=computeNormal(P,O);
// flip normal if pointing in wrong dir.
if(dot(N,R.direction()) > 0.0) N=-N;
col=shade(t,O,R,P,N);

}
else col=background_color;
return col;

}

In trace(), we need a function
findClosestIntersection()

l Use intersection testing (from a previous
lecture) for rays against objects

l Intersection testing returns signed distance(s),
t, to the object

l Use the t that is smallest, but >0
l Naive: test all objects against each ray

– Better: use spatial data structures (more later)
l Precision problems (exaggerated):

point of intersection: p

eye ray

light
The point, p, can be incorrectly
self-shadowed, due to imprecision
Solution: after p has been computed,
update as: p’=p+en
(n is normal at p, e is small number >0)

n

Example of Surface Acne

Image from Joe Doliner

shade() in detail
Color shade(Ray R, Mtrl &m, Vector P,N)
{

Color col;
Vector refl,refr;
for each light L
{

if(not inShadow(L,P))
col+=DiffuseAndSpecular();

}
col+=AmbientTerm();
if(recursed_too_many_times()) return col;
refl=reflectionVector(R,N);
col+=m.specular_color()*trace(refl);
refr=computeRefractionVector(R,N,m);
col+=m.transmission_color()*trace(refr);
return col;

}

Who calls trace() or shade()?
l Someone need to spawn rays

– One or more per pixel
– A simple routine, raytraceImage(), computes rays,

and calls trace()for each pixel.

l Use camera parameters to compute rays
– Resolution, fov, camera direction & position & up

When does recursion stop?
l Recurse until ray does not hit something?

– Does not work for closed models
l One solution is to allow for max N levels of

recursion
– N=3 is often sufficient (sometimes 10 is sufficient)

l Another is to look at material parameters
– E.g., if specular material color is (0,0,0), then the object

is not reflective, and we don’t need to spawn a reflection
ray

– More systematic: send a weight, w, with recursion
– Initially w=1, and after each bounce,

w*=O.specular_color(); and so on.
– Will give faster rendering, if we terminate recursion when

weight is too small (say <0.05)

Tomas Akenine-Mőller © 2002

When to stop recursion

24

25

26

Reflection vector (recap)
l Reflecting the incoming

ray v around n:
l Note that the incoming

ray is sometimes called
–v depending on the
direction of the vector.

l r can be computed as
v+(2a). I.e.,

r = v− 2(n ⋅v)n

n

vr

v

n ⋅ (−v)

a = (n ⋅ (−v))n

^

Refraction:
Need a transmission direction vector, t
l n, i, t are unit vectors
l h1 & h2 are refraction indices
l Snell’s law says that:

l sin(q2)/sin(q1)= h1/h2 = h, where h is
relative refraction index.

l How can we compute the
refraction vector t ?

l This would be easy in 2D:
– tx=-sin(q2)
– ty=-cos(q2)
– I.e.,

n
-i

t

q1

q2

h1

h2

Kn
ow

n
as

 H
ec

kb
er

t’s
 m

et
ho

d

n
-i

t

q1

q2

h1

h2

2D

x

y

yxt ˆ)cos(ˆ)sin(22 qq --=

Refraction:

l But we are in 3D, not in 2D!
l So, the solution will look like:

v2=n
v1 = normalize(−𝒊 + 𝒊 $ 𝒏 𝒏)
So we could concider us done. But let’s continue simplifying to avoid expensive

trigonometric functions (sin, cos, arcsin). Only use cheap cos 𝜃! = −𝒊 ' 𝒏 .
v1 = normalize(−𝒊 − cos 𝜃! 𝒏) // 𝒊 $ 𝒏 = − cos 𝜃!
v1 = (−𝒊 − cos 𝜃! 𝒏) / sin(q1) // remove normalization to use Snell…
Þ t = sin(q2) (𝒊 + cos 𝜃! 𝒏) / sin(q1) - cos(q2)n // plugin v1 into t
Þ i.e., t = h(𝒊 + cos 𝜃! 𝒏) - cos(q2)n // use Snell: sin(q2)/sin(q1) = h

Now, simplify cos(q2) using cos(q2)2 = 1 - sin(q2)2 and sin(q2) = h sin(q1):
Þ cos(q2)= 1 − sin(q2)2 = 1 − h2 sin(q1)2 = 1 − h" (1−cos(q1)2

Þ t = h(𝒊 + cos 𝜃! 𝒏) - 1 − h" (1−cos(q1)2 n // replacing cos(q2)

Kn
ow

n
as

 H
ec

kb
er

t’s
 m

et
ho

d

n
-i

t

q1

q2

h1
h2

3D

v1

v2

2212 ˆ)cos(ˆ)sin(vvt qq --=

yxt ˆ)cos(ˆ)sin(22 qq --=

29

𝒊 ' 𝒏 𝒏 =
−cos 𝜃! 𝒏

length = sin(q1)

Refraction
l Thus:

t = hi + (hcos(q1) - sqrt[1 – h2(1-(cos(q1))2)])n
This is fast to compute since

cos(q1)=-n.i
which only requires a simple dot product

Bonus

n
-i

t

q1

q2

h1

h2

Kn
ow

n
as

 H
ec

kb
er

t’s
m

et
ho

d

Image with a refractive object

Some refraction indices, h
l Measured with respect to vacuum

– Air: 1.0003
– Water: 1.33
– Glass: around 1.45 – 1.65
– Diamond: 2.42
– Salt: 1.54
– Lead (bly): 2.6

l Note 1: the refraction index varies with
wavelength, but we often only use one index
for all three color channels, RGB

l Note 2: can get Total Internal Reflection (TIR)
– Means no transmission, only reflection
– q2 = arcsin(h sin(q1))
– TIR occurs when |h sin(q1)| > 1, i.e., arcsin() undefined

n

it q1q2

Tomas Akenine-Mőller © 2002

Supersampling
l Evenly distribute ray samples over pixel
l Use box (or tent filter) to find pixel color
l More samples gives better quality

– Costs more time to render

l Example of 4x4 samples against 1
sample:

Be a bit smarter, make it cheaper:
Adaptive supersampling (1)

l Quincunx sampling pattern to start with
– 2 samples per pixel, 1 in center,

1 in upper-left
– Note: adaptive sampling is not feasible in

graphics hardware, but simple in a ray tracer
l Colors of AE, DE are quite similar,

so don’t waste more time on those.
l The colors of B & E are different, so

add more samples there with the same
sampling pattern

l Same thing again, check FG, BG, HG, EG:
only EG needs more sampling

l So, add rays for J, K, and L

Adaptive supersampling
(2)
l C & E were different too
l Add N & M
l Compare EM, HM, CM, NM

l C & M are too different
l So add rays at P, Q, and R

l At this point, we consider the entire
pixel to be sufficiently sampled

l Time to weigh (filter) the colors of
all rays

Tomas Akenine-Mőller © 2002

Adaptive supersampling (3)
l Final sample pattern for pixel:
lHow filter the colors of the

rays?
lThink of the pattern differently:

lAnd use the area of each ray
sample as its weight:

Adaptive Supersampling
Pseudo code:
Color AdaptiveSuperSampling() {

– Make sure all 5 samples exist
l (Shoot new rays along diagonal if necessary)

– Color col = black;
– For each quad i

l If the colors of the 2 samples are fairly similar
– col += (1/4)*(average of the two colors)

l Else
– col +=(1/4)*

adaptiveSuperSampling(quad[i])

– return col;
}

Caveats with adaptive
supersampling (4)
l May miss really small objects anyway
l It’s still supersampling, but smart

supersampling
– Cannot fool Nyquist!
– Only reduce aliasing – does not eliminate it

Antialiasing - example

Patterns
l Texture zoomed out until square < 1 pixel

Moire example

Noise + gaussian blur

(no moire patterns)

Moire patterns

Why

“Moiré effects occur whenever tiny image structures (like the
pattern on a shirt) can not be resolved sufficiently by the
resolution of the image sensor. According to the Nyquist

theorem, each period of an image structure must be covered
with at least two pixels. When this is not the case, Moiré
effects are the consequence. To avoid Moiré Effects the
manufacturers of CCD camera systems use a filter that

diffuses the light hitting the sensor area in such a way that it
corresponds to the resolution of the ccd. “

Ulf Assarsson © 2008

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

Jittered sampling

l Works as before
– Replaces aliasing with noise
– Our visual system likes that better

l This is often a preferred solution
l Can use adaptive strategies as well

Typical Exam Questions
l Describe the basic ray tracing algorithm (see next slide)
l Compute the reflection + refraction vector

– You do not need to use Heckbert’s method

l Describe an adaptive super sampling scheme
– Including recursively computing weights

l What is jittering?

Ulf Assarsson © 2008

Pseudo code:
Color AdaptiveSuperSampling() {

– Make sure all 5 samples exist
l (Shoot new rays along diagonal if necessary)

– Color col = black;
– For each quad i

l If the colors of the 2 samples are fairly similar
– col += (1/4)*(average of the two colors)

l Else
– col +=(1/4)* adaptiveSuperSampling(quad[i])

– return col;
}

Tomas Akenine-Mőller © 2002

Summary of the Ray tracing-
algorithm:

l main()-calls trace() for each pixel
l trace(): should return color of closest hit point along ray.

1. calls findClosestIntersection()
2. If any object intersected ® call shade().

l Shade(): should compute color at hit point
1. For each light source, shoot shadow ray to determine if light source is visible

If not in shadow, compute diffuse + specular contribution.
2. Compute ambient contribution
3. Call trace() recursively for the reflection- and refraction ray.

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

07 + 08. Ray Tracing

Real-Time Ray Tracing
l Low level optimizations

– SSE, GPU
– Precomputation of constants per frame, e.q., ray-AABB

test, primary rays

l Low resolution (320x200 – 640x400)
l Adaptive sub sampling
l Frameless rendering (motion blur)
l Others, like reprojection, reuse shading

computations, simple shadows, single-level
reflections...

DEMO

50Frameless Rendering – updating e.g. only10% of all pixels each frame

Frameless rendering

Reprojection
Store (r,g,b) color and world space (x,y,z) per pixel

• Gaps
• pixel with <1 sample

Ø trace new ray
• pixel with >=1 sample

Ø use closest (smallest z)
• Does not work for spec

mtrl 51

frame n

frame n+1

