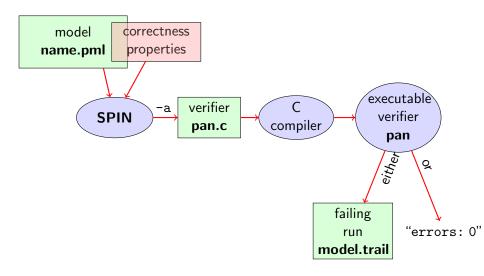
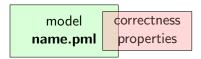
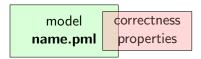
Formal Methods for Software Development Model Checking with Temporal Logic

Wolfgang Ahrendt

18th September 2020

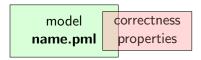






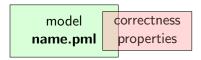
Correctness properties can be stated within, or outside, the model. **stating properties within model** using

assertion statements



stating properties within model using

- assertion statements
- meta labels
 - 🕨 end labels 🖌
 - accept labels
 - progress labels

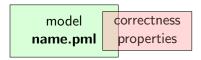


stating properties within model using

- assertion statements
- meta labels
 - 🕨 end labels 🖌
 - accept labels
 - progress labels

stating properties outside model using

- never claims
- temporal logic formulas

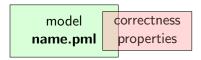


stating properties within model using

- assertion statements
- meta labels
 - 🕨 end labels 🖌
 - accept labels
 - progress labels

stating properties outside model using

- never claims
- temporal logic formulas (today's main topic)



stating properties within model using

- assertion statements
- meta labels
 - 🕨 end labels 🖌
 - accept labels (briefly)
 - progress labels

stating properties outside model using

- never claims (briefly)
- temporal logic formulas (today's main topic)

Preliminaries

1. Accept labels in $\operatorname{PROMELA} \leftrightarrow$ Büchi automata

2. Fairness

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form "acceptxxx:" is called an accept location.

Preliminaries 1: Acceptance Cycles

Definition (Accept Location)

A location marked with an accept label of the form "acceptxxx:" is called an accept location.

Accept locations can be used to specify cyclic behavior

Definition (Acceptance Cycle)

A run which infinitely often passes through an accept location is called an acceptance cycle.

Acceptance cycles are mainly used in never claims (see below), to define (undesired) infinite behavior

Preliminaries 2: Fairness

Does this model terminate in each run?

```
byte n = 0;
bool flag = false;
```

Simulate: start/fair.pml

Preliminaries 2: Fairness

Does this model terminate in each run?

```
byte n = 0;
bool flag = false;
```

```
active proctype P() {
  do :: flag -> break
        :: else -> n = 5 - n
        od
}
active proctype Q() {
  flag = true
}
```

Simulate: start/fair.pml

Termination guaranteed only if scheduling is (weakly) fair!

Preliminaries 2: Fairness

Does this model terminate in each run?

```
byte n = 0;
bool flag = false;
```

```
active proctype P() {
  do :: flag -> break
        :: else -> n = 5 - n
        od
}
active proctype Q() {
   flag = true
}
```

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Simulate: start/fair.pml

FMSD: Model Checking with Temporal Logic

CHALMERS/GU

Model Checking of Temporal Properties

Many correctness properties not expressible by assertions

- All properties that involve state changes
- Temporal logic expressive enough to characterize many (but not all) Linear Time properties

In this course: "temporal logic" synonymous with "linear temporal logic"

Today: model checking of properties formulated in temporal logic

Locality of Assertions

Assertions talk only about the state at their location in the code

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;
```

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;
```

Drawbacks

- No separation of concerns (model vs. correctness property)
- Changing assertions is error prone (easily out of sync)
- Easy to forget assertions: safety property might be violated at unexpected locations

Locality of Assertions

Assertions talk only about the state at their location in the code

Example

Mutual exclusion enforced by adding assertion to each critical section

```
critical++;
assert( critical <= 1 );
critical--;
```

Drawbacks

- No separation of concerns (model vs. correctness property)
- Changing assertions is error prone (easily out of sync)
- Easy to forget assertions: safety property might be violated at unexpected locations
- Many interesting properties not expressible via assertions

Examples of properties where assertions are suboptimal (too local):

Examples of properties where assertions are suboptimal (too local):

Something should hold throughout

"critical <= 1 holds throughout each run"

Examples of properties where assertions are suboptimal (too local):

Something should hold throughout

"critical <= 1 holds throughout each run"

Examples of properties impossible to express as assertions:

Examples of properties where assertions are suboptimal (too local):

Something should hold throughout

"critical <= 1 holds throughout each run"

Examples of properties impossible to express as assertions: Something will hold eventually, infinitely often, ... "The traffic light will turn green infinitely often"

Examples of properties where assertions are suboptimal (too local):

Something should hold throughout

"critical <= 1 holds throughout each run"

Examples of properties impossible to express as assertions: Something will hold eventually, infinitely often, ... "The traffic light will turn green infinitely often"

These are temporal properties \Rightarrow use temporal logic

Numerical variables in expressions

- Expressions such as i <= len-1 contain numerical variables</p>
- Propositional LTL as introduced so far only knows propositions
- Slight generalisation of LTL required

Numerical variables in expressions

- Expressions such as i <= len-1 contain numerical variables</p>
- Propositional LTL as introduced so far only knows propositions
- Slight generalisation of LTL required

In Boolean Temporal Logic, atomic building blocks are Boolean expressions over PROMELA variables

Set For_{BTL} of Boolean Temporal Formulas (simplified)

► all global PROMELA variables and constants of type bool/bit are ∈ For_{BTL}

Set For_{BTL} of Boolean Temporal Formulas (simplified)

- ► all global PROMELA variables and constants of type bool/bit are ∈ For_{BTL}
- ▶ if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<=e2, e1<=e2, e1>=e2 are ∈ For_{BTL}

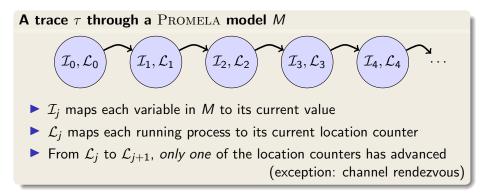
Set For_{BTL} of Boolean Temporal Formulas (simplified)

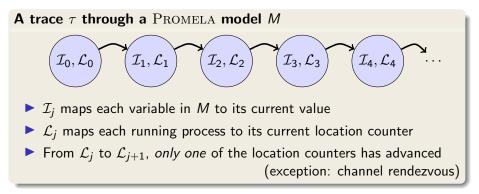
- ► all global PROMELA variables and constants of type bool/bit are ∈ For_{BTL}
- ▶ if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2 are ∈ For_{BTL}
- ▶ if P is a process and l is a label in P, then P@l is ∈ For_{BTL} (P@l reads "P is at l")

Set For_{BTL} of Boolean Temporal Formulas (simplified)

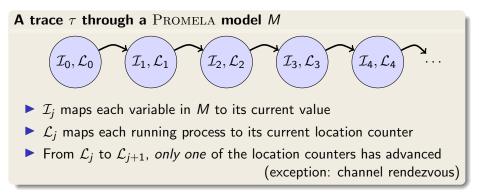
- ► all global PROMELA variables and constants of type bool/bit are ∈ For_{BTL}
- ▶ if e1 and e2 are numerical PROMELA expressions, then all of e1==e2, e1!=e2, e1<=e2, e1<=e2, e1>=e2 are ∈ For_{BTL}
- ▶ if P is a process and 1 is a label in P, then P@l is ∈ For_{BTL} (P@l reads "P is at 1")
- if ϕ and ψ are formulas $\in For_{BTL}$, then all of

are \in *For*_{*BTL*}



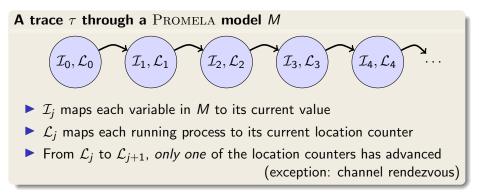


Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$



Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$

 $\mathcal{I}_i, \mathcal{L}_i \models P@1$ iff $\mathcal{L}_i(P)$ is the location labeled with 1



Arithmetic and relational expressions are interpreted in states as expected; e.g. $\mathcal{I}_j, \mathcal{L}_j \models x < y$ iff $\mathcal{I}_j(x) < \mathcal{I}_j(y)$

 $\mathcal{I}_j, \mathcal{L}_j \models P@1$ iff $\mathcal{L}_j(P)$ is the location labeled with 1

Evaluating other formulas \in *For*_{*BTL*} in traces τ : see previous lecture

Safety Properties

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after *finitely* many steps

Safety Properties

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after *finitely* many steps

Example

TL formula [](critical <= 1)

"Throughout a run, the value of critical is at most 1."

Safety Properties

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after *finitely* many steps

Example

TL formula [](critical <= 1)

"Throughout a run, the value of critical is at most 1."

or, equivalently:

"It will never happen that the value of critical is higher than 1."

Safety Properties

Safety Properties

- state that something 'good' is guaranteed throughout each run
- each violating run violates the property after *finitely* many steps

Example

TL formula [](critical <= 1)

"Throughout a run, the value of critical is at most 1."

or, equivalently:

"It will never happen that the value of critical is higher than 1."

Any violating run would have (critical > 1) after *finite* time

Applying Temporal Logic to Critical Section Problem

We want to verify [] (critical<=1) as a correctness property of:

```
active proctype P() {
  do :: /* non-critical activity */
        atomic {
          !inCriticalQ;
          inCriticalP = true
        }
        critical++;
        /* critical activity */
        critical --;
        inCriticalP = false
  od
}
/* similarly for process Q */
```

Model Checking a Safety Property with SPIN

Demo: target/safety1.pml

Model Checking a Safety Property with SPIN

Demo: target/safety1.pml

The 'ltl name { TL-formula }' construct must be part of your lab submission!

Model Checking a Safety Property with SPIN

Demo: target/safety1.pml

The 'ltl name { TL-formula }' construct must be part of your lab submission!

1tl definitions not part of Ben Ari's book (SPIN \leq 6): ignore 5.3.2, etc.

Model Checking a Safety Property using Web Interface

- 1. add definition of TL formula to PROMELA file
 Example ltl atMostOne { [](critical <= 1) }
 General ltl name { TL-formula }
 can define more than one formula</pre>
- 2. load PROMELA file into web interface
- 3. ensure Safety is selected
- 4. enter name of LTL formula in according field
- select Verify

Demo: safety1.pml

Model Checking a Safety Property using ${\rm JSPIN}$

1. add definition of TL formula to PROMELA file **Example** ltl atMostOne { [](critical <= 1) } **General** 1tl name $\{ TL-formula \}$ can define more than one formula 2. load PROMELA file into JSPIN 3. write *name* in 'LTL formula' field ensure Safety is selected select Verify (corresponds to command line ./pan -N name ...) 6. (if necessary) select Stop to terminate too long verification

Demo: safety1.pml

Temporal Model Checking without Ghost Variables

```
We want to verify mutual exclusion without using ghost variables.
bool inCriticalP = false, inCriticalQ = false;
active proctype P() {
  do :: atomic {
           !inCriticalQ;
           inCriticalP = true
        }
    cs: /* critical activity */
         inCriticalP = false
  od
}
/* similar for process Q with same label cs: */
ltl mutualExcl { []!(P@cs && Q@cs) }
```

Demo: start/noGhost.pml

Never Claims: Processes trying to show user wrong

Büchi automaton, as **PROMELA** process, for negated property

- 1. Negated TL formula translated to 'never' process
- Accepting locations in Büchi automaton represented with help of accept labels ("acceptxxx:")
- 3. If one of these reached infinitely often, the orig. property is violated

Never Claims: Processes trying to show user wrong

Büchi automaton, as **PROMELA** process, for negated property

- 1. Negated TL formula translated to 'never' process
- Accepting locations in Büchi automaton represented with help of accept labels ("acceptxxx:")
- 3. If one of these reached infinitely often, the orig. property is violated

Example (Never claim for <>p, simplified for readability)

```
never { /* !<>p */
  accept_xyz: /* passed ∞ often iff !<>p holds */
  do
    :: !p
    od
}
```

Liveness Properties

Liveness Properties

- **>** state that something good (ϕ) eventually happens in each run
- each violating requires infinitely many steps

Liveness Properties

Liveness Properties

- state that something good (ϕ) eventually happens in each run
- each violating requires infinitely many steps

Example

<>csp

(with csp a variable only true in the critical section of P)

"in each run, process P visits its critical section eventually"

Applying Temporal Logic to Starvation Problem

We want to verify <>csp as a correctness property of:

```
active proctype P() {
  do :: /* non-critical activity */
        atomic {
          !inCriticalQ;
          inCriticalP = true
        }
        csp = true;
        /* critical activity */
        csp = false;
        inCriticalP = false
  od
}
/* similarly for process Q */
/* there, using csq
                            */
```

- 1. open PROMELA file liveness1.pml
- 2. write ltl PwillEnterCS { <>csp } in PROMELA file
 (as first ltl formula)
- **3.** ensure that **Acceptance** is selected (for liveness properties) (SPIN will search for *accepting* cycles through the never claim)
- 4. for the moment uncheck Weak Fairness (see discussion below)
- 5. select Verify

Verification Fails

Demo: start/liveness1.pml

Verification fails!

Why?

Demo: start/liveness1.pml

Verification fails!

Why?

The liveness property on one process "had no chance". Not even weak fairness was switched on!

Model Checking Liveness with Weak Fairness using ${\rm JSPIN}$

Always check Weak fairness when verifying liveness

- 1. open PROMELA file
- 2. write ltl PwillEnterCS { <>csp } in PROMELA file
 (as first ltl formula)
- **3.** ensure that Acceptance is selected (for liveness properties) (SPIN will search for *accepting* cycles through the never claim)
- 4. ensure Weak fairness is checked
- 5. select Verify

Model Checking Liveness using Web Interface

1. add definition of TL formula to PROMELA file
Example ltl pWillEnterC { <>csp }
General ltl name { TL-formula }
can define more than one formula

- 2. load PROMELA file into web interface
- 3. ensure Acceptance is selected (for liveness properties)
- 4. enter name of LTL formula in according field
- 5. ensure Weak fairness is checked
- 6. select Verify

Demo: liveness1.pml

Model Checking Liveness using SPIN directly

Command Line Execution

Make sure ltl name { TL-formula } is in file.pml

- > spin -a *file*.pml
- > gcc -o pan pan.c
- > ./pan -a -f [-N name]

-a check acceptance cycles, -f weak fairness

Demo: start/liveness1.pml

Verification fails again!

Why?

Verification fails again!

Why?

Weak fairness is too weak

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Verification fails again!

Why?

Weak fairness is too weak

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Verification fails again!

Why?

Weak fairness is too weak

Definition (Weak Fairness)

A run is called weakly fair iff the following holds: each continuously executable statement is executed eventually.

Note that !inCriticalQ is not continuously executable!

Restriction to weak fairness is principal limitation of SPIN

Here, liveness needs strong fairness, which is not supported by SPIN .

- Specify liveness of fair.pml using labels
- Prove termination

Demo: target/fair.pml

- Specify liveness of fair.pml using labels
- Prove termination
- Here, weak fairness is needed, and sufficient

Demo: target/fair.pml

Check whether a formula is valid in all runs of a transition system.

Check whether a formula is valid in all runs of a transition system. Given:

- ▶ transition system T (e.g., derived from a PROMELA program)
- LTL formula ϕ

Check whether a formula is valid in all runs of a transition system. Given:

- ▶ transition system T (e.g., derived from a PROMELA program)
- LTL formula ϕ

Verification task: is the LTL formula ϕ satisfied in all traces of \mathcal{T} , i.e.,

 $\mathcal{T} \models \phi$?

$$\mathcal{T} \models \phi$$
 ?

1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ

$$\mathcal{T} \models \phi$$
 ?

- **1.** Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^\omega(\mathcal{B}_{
eg \phi}) = \mathcal{L}^\omega(\mathcal{GB}_{
eg \phi})$$

$$\mathcal{T} \models \phi$$
 ?

- **1.** Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^\omega(\mathcal{B}_{
eg \phi}) = \mathcal{L}^\omega(\mathcal{GB}_{
eg \phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

$$\mathcal{T} \models \phi$$
 ?

- **1.** Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^\omega(\mathcal{B}_{
eg \phi}) = \mathcal{L}^\omega(\mathcal{GB}_{
eg \phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

5. If such a π is found, then

 $\mathcal{T} \not\models \phi$

and

 σ_{π} is a counter example.

$$\mathcal{T} \models \phi$$
 ?

- 1. Construct generalised Büchi automaton $\mathcal{GB}_{\neg\phi}$ for negation of ϕ
- 2. Construct an equivalent normal Büchi automaton $\mathcal{B}_{\neg\phi}$, i.e.,

$$\mathcal{L}^\omega(\mathcal{B}_{
eg \phi}) = \mathcal{L}^\omega(\mathcal{GB}_{
eg \phi})$$

- **3.** Construct product $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$
- **4.** Analyse whether $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$ has a

path π looping through an 'accepting node'

5. If such a π is found, then

$$\mathcal{T} \not\models \phi$$

and

 σ_{π} is a counter example.

If no such π is found, then

 $\mathcal{T} \models \phi$

this lecture

3.-5. product of transition system and Büchi automaton (construction and analysis)

this lecture

3.-5. product of transition system and Büchi automaton (construction and analysis)

next lecture

- 1. translating LTL into generalised Büchi automata
- 2. generalised Büchi automata and their normalisation

A model checking graph is a directed graph with initial and accepting nodes.

Definition (Model Checking Graph)

A model checking graph $(N, \rightarrow, N_0, N_a)$ is composed of:

- finite, non-empty set of nodes N
- ▶ an 'arrow' relation $\rightarrow \subseteq N \times N$
- ▶ a non-empty set of initial nodes $N_0 \subseteq N$
- ▶ a set of accepting nodes $N_a \subseteq N$

In the following, we assume without further mention:

1. transition systems without terminal states: $\{s' \in S | s \to s'\} \neq \emptyset$ for all states $s \in S$

In the following, we assume without further mention:

- 1. transition systems without terminal states: $\{s' \in S | s \to s'\} \neq \emptyset$ for all states $s \in S$
- 2. total Büchi automata: $\delta(q, a) \neq \{\}$ for all $q \in Q$ and $a \in \Sigma$

In the following, we assume without further mention:

1. transition systems without terminal states: $\{s' \in S | s \to s'\} \neq \emptyset$ for all states $s \in S$

2. total Büchi automata: $\delta(q, a) \neq \{\}$ for all $q \in Q$ and $a \in \Sigma$

Can always be achieved by adding 'trap states' or 'trap locations', resp.

Product of Transition System and Büchi Automaton

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton) Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T}\otimes\mathcal{B}=(\textcolor{black}{\boldsymbol{\mathsf{S}}}\times \boldsymbol{\mathsf{Q}},\rightarrow',\textit{N}_{0},\textit{N}_{a})$$

where:

$$\blacktriangleright \ \langle s,q\rangle \rightarrow' \langle s',q'\rangle \ \text{ iff } s \rightarrow s' \text{ and } (q,L(s'),q') \in \delta$$

Product of Transition System and Büchi Automaton

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton) Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T} \otimes \mathcal{B} = (\mathbf{S} \times \mathbf{Q}, \rightarrow', N_0, N_a)$$

where:

$$\begin{array}{l} \blacktriangleright \quad \langle s,q\rangle \rightarrow' \langle s',q'\rangle \quad \text{iff } s \rightarrow s' \text{ and } (q,L(s'),q') \in \delta \\ \blacktriangleright \quad N_0 = \{ \langle s_0,q\rangle | s_0 \in S_0 \text{ and } \exists q_0 \in Q_0.(q_0,L(s_0),q) \in \delta \} \end{array}$$

Product of Transition System and Büchi Automaton

We assume a set of atomic propostions AP.

Definition (Product of Transition System and Büchi Automaton) Let $\mathcal{T} = (S, \rightarrow, S_o, L)$ be a transition system over AP and $\mathcal{B} = (Q, \delta, Q_0, F)$ be a Büchi automaton over the alphabet 2^{AP} . Then, $\mathcal{T} \otimes \mathcal{B}$ is the following model checking graph:

$$\mathcal{T} \otimes \mathcal{B} = (\mathbf{S} \times \mathbf{Q}, \rightarrow', N_0, N_a)$$

where:

Τ

Assume $AP = \{red, green\}$

$$\begin{array}{c} \overbrace{s_0 \quad s_1} \\ L(s_0) = \{ red \} \\ L(s_1) = \{ green \} \end{array}$$

Assume $AP = \{red, green\}$

$$\mathcal{T}:$$

$$L(s_0) = \{red\}$$

$$L(s_1) = \{green\}$$

We want to show "infinitely often green": $\phi \equiv \Box \Diamond green$

Assume $AP = \{red, green\}$

We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green Construct BA $\mathcal{B}_{\neg \phi}$ for negation: $\neg \phi \equiv \neg \Box \Diamond$ green

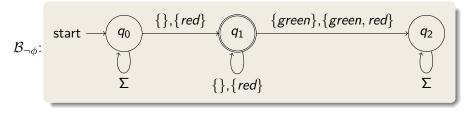
Assume $AP = \{red, green\}$

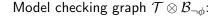
We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green Construct BA $\mathcal{B}_{\neg\phi}$ for negation: $\neg \phi \equiv \neg \Box \Diamond$ green $\equiv \Diamond \Box \neg$ green

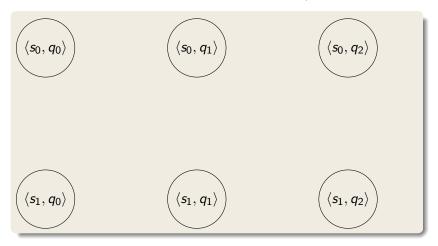
Assume $AP = \{red, green\}$

$$\mathcal{T}: \qquad \overbrace{\substack{s_0 \\ L(s_0) = \{red\} \\ L(s_1) = \{green\}}}^{S_0}$$

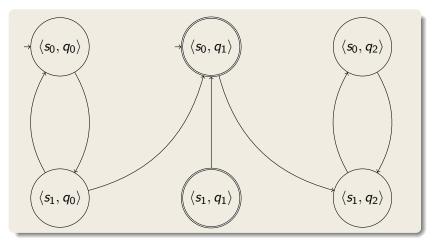
We want to show "infinitely often green": $\phi \equiv \Box \Diamond$ green Construct BA $\mathcal{B}_{\neg \phi}$ for negation: $\neg \phi \equiv \neg \Box \Diamond$ green $\equiv \Diamond \Box \neg$ green



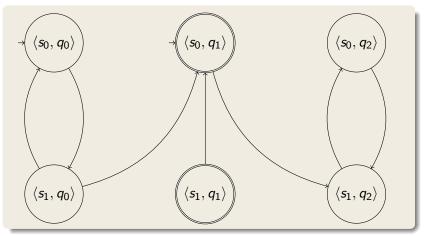




Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:

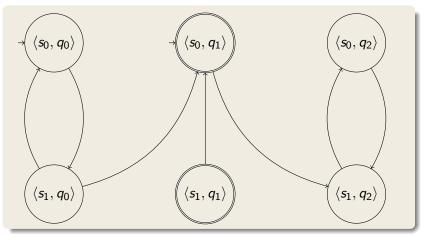


Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:



has no path looping throug an accepting node!

Model checking graph $\mathcal{T} \otimes \mathcal{B}_{\neg \phi}$:



has no path looping throug an accepting node!

 $\mathcal{T} \models \phi$

Ben-Ari Chapter 5 except Sections 5.3.2, 5.3.3, 5.4.2 (1t1 construct replaces #define and -f option of SPIN)