
Formal Methods for Software Development
Reasoning about Programs with Loops and Method Calls

Wolfgang Ahrendt

20 October 2020

FMSD: Reasoning about Loops & Methods /GU 201020 1 / 48

Master Theses in Formal Methods

I Presentation of Master thesis topics by Formal Methods group

I Thursday, 22nd Oct 10:30-11:30

I online meeting (via Zoom)

I link will be announced also via our course Canvas

FMSD: Reasoning about Loops & Methods /GU 201020 2 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:

I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect
I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

Γ =⇒ 〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones

I simple assignment to update
I update captures accumulated effect
I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

Γ =⇒ 〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update

I update captures accumulated effect
I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

Γ =⇒ 〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect

I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

Γ =⇒ {t := j‖j := j + 1‖i := j}〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ
FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect (abbr. w. U)

I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

Γ =⇒ {U}〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect
I control flow branching induces proof splitting

I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

‘branch1’ Γ, {U}(j > 10) =⇒ {U}〈{ok=true;}...〉φ
‘branch2’ Γ, {U}¬(j > 10) =⇒ {U}〈...〉φ

Γ =⇒ {U}〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect
I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

‘branch1’ Γ, j + 1 > 10 =⇒ {U}〈{ok=true;}...〉φ
‘branch2’ Γ,¬(j + 1 > 10) =⇒ {U}〈...〉φ

Γ =⇒ {U}〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Program Logic Calculus – Repetition

Calculus realises symbolic interpreter:
I decomposition of complex statements into simpler ones
I simple assignment to update
I update captures accumulated effect
I control flow branching induces proof splitting
I application of update computes weakest precondition

Γ′ =⇒ {U ′}φ . . .

.

‘branch1’ Γ, j + 1 > 10 =⇒ {U}〈{ok=true;}...〉φ
‘branch2’ Γ,¬(j + 1 > 10) =⇒ {U}〈...〉φ

Γ =⇒ {U}〈if(j>10){ok=true;}...〉φ
. . .

Γ =⇒ {t := j}〈j=j+1;i=t;if(j>10){ok=true;}...〉φ
Γ =⇒ 〈t=j;j=j+1;i=t;if(j>10){ok=true;}...〉φ

Γ =⇒ 〈i=j++;if(j>10){ok=true;}...〉φ

FMSD: Reasoning about Loops & Methods /GU 201020 3 / 48

Method Call: Example

\javaSource "src/";

\programVariables{

Person p;

int j;

}

\problem {

(\forall int i;

(!p=null ->

({j := i}\<{p.setAge(j);}\>(p.age = i))))

}

FMSD: Reasoning about Loops & Methods /GU 201020 4 / 48

Method Calls

Method Call with actual parameters arg0, . . . , argn

〈o.m(arg0, . . . , argn); ω〉φ

assume m declared as void m(τ0 p0, . . . , τn pn)

Actions of rule methodCall

1. Declare new local variables p#i, initialize them with actual
parameter: τi p#i =argi ;

2. Look-up implementing class C of m;
split proof if implementation cannot be uniquely determined.

3. Replace method call with implementation invocation
o.m(p#0, . . . , p#n)@C

FMSD: Reasoning about Loops & Methods /GU 201020 5 / 48

Method Calls

Method Call with actual parameters arg0, . . . , argn

〈o.m(arg0, . . . , argn); ω〉φ

assume m declared as void m(τ0 p0, . . . , τn pn)

Actions of rule methodCall

1. Declare new local variables p#i, initialize them with actual
parameter: τi p#i =argi ;

2. Look-up implementing class C of m;
split proof if implementation cannot be uniquely determined.

3. Replace method call with implementation invocation
o.m(p#0, . . . , p#n)@C

FMSD: Reasoning about Loops & Methods /GU 201020 5 / 48

Method Calls

Method Call with actual parameters arg0, . . . , argn

〈o.m(arg0, . . . , argn); ω〉φ

assume m declared as void m(τ0 p0, . . . , τn pn)

Actions of rule methodCall

1. Declare new local variables p#i, initialize them with actual
parameter: τi p#i =argi ;

2. Look-up implementing class C of m;
split proof if implementation cannot be uniquely determined.

3. Replace method call with implementation invocation
o.m(p#0, . . . , p#n)@C

FMSD: Reasoning about Loops & Methods /GU 201020 5 / 48

Method Calls

Method Call with actual parameters arg0, . . . , argn

〈o.m(arg0, . . . , argn); ω〉φ

assume m declared as void m(τ0 p0, . . . , τn pn)

Actions of rule methodCall

1. Declare new local variables p#i, initialize them with actual
parameter: τi p#i =argi ;

2. Look-up implementing class C of m;
split proof if implementation cannot be uniquely determined.

3. Replace method call with implementation invocation
o.m(p#0, . . . , p#n)@C

FMSD: Reasoning about Loops & Methods /GU 201020 5 / 48

Method Calls Cont’d

After executing the initialisers: τi p#i =argi ; apply:

Method Body Expand

Rule methodBodyExpand (simplified)

Γ =⇒ 〈method-frame(source=m(τ0,...,τn)@C, this=o):{body}ω〉φ,∆
Γ =⇒ 〈o.m(p#0,...,p#n)@C; ω〉φ,∆

1. Replaces method invocation by method frame with method body

2. Renames pi in body to p#i

Method frames:
Required in proof to represent call stack

Demo
methods/instanceMethodInlineSimple.key

methods/inlineDynamicDispatch.key

FMSD: Reasoning about Loops & Methods /GU 201020 6 / 48

Method Calls Cont’d

After executing the initialisers: τi p#i =argi ; apply:

Method Body Expand

Rule methodBodyExpand (simplified)

Γ =⇒ 〈method-frame(source=m(τ0,...,τn)@C, this=o):{body}ω〉φ,∆
Γ =⇒ 〈o.m(p#0,...,p#n)@C; ω〉φ,∆

1. Replaces method invocation by method frame with method body

2. Renames pi in body to p#i

Method frames:
Required in proof to represent call stack

Demo
methods/instanceMethodInlineSimple.key

methods/inlineDynamicDispatch.key

FMSD: Reasoning about Loops & Methods /GU 201020 6 / 48

Method Calls Cont’d

After executing the initialisers: τi p#i =argi ; apply:

Method Body Expand

Rule methodBodyExpand (simplified)

Γ =⇒ 〈method-frame(source=m(τ0,...,τn)@C, this=o):{body}ω〉φ,∆
Γ =⇒ 〈o.m(p#0,...,p#n)@C; ω〉φ,∆

1. Replaces method invocation by method frame with method body

2. Renames pi in body to p#i

Method frames:
Required in proof to represent call stack

Demo
methods/instanceMethodInlineSimple.key

methods/inlineDynamicDispatch.key
FMSD: Reasoning about Loops & Methods /GU 201020 6 / 48

Localisation of Fields and Method Implementations

JAVA has complex rules for localisation of fields and method
implementations

I Overloading

I Late binding (dynamic dispatch)

I Scoping (class vs. instance)

I Visibility (private, protected, public)

Proof split into cases if implementation not statically determined

FMSD: Reasoning about Loops & Methods /GU 201020 7 / 48

Object initialization (as background only)

JAVA has complex rules for object initialization

I Chain of constructor calls until Object

I Implicit calls to super()

I Visibility issues

I Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),. . .
which are then symbolically executed

FMSD: Reasoning about Loops & Methods /GU 201020 8 / 48

Limitations of Method Inlining: methodBodyExpand

I Source code might be unavailable
I API method implementation vendor-specific
I Source code often unavailable for commercial APIs

I Method may be invoked multiple times
I Avoid multiple symbolic execution of identical code

I Cannot handle unbounded recursion

I Not modular:
Changing a method requires re-verification of all callers

Use method contract instead of method implementation:

1. Show that requires clause is satisfied before method call

2. Remove method call, and:
I assume ensures clause
I forget prestate values of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 9 / 48

Limitations of Method Inlining: methodBodyExpand

I Source code might be unavailable
I API method implementation vendor-specific
I Source code often unavailable for commercial APIs

I Method may be invoked multiple times
I Avoid multiple symbolic execution of identical code

I Cannot handle unbounded recursion

I Not modular:
Changing a method requires re-verification of all callers

Use method contract instead of method implementation:

1. Show that requires clause is satisfied before method call

2. Remove method call, and:
I assume ensures clause
I forget prestate values of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 9 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)
Γ =⇒ U

Vmod

(F(normalPost) → 〈π ω〉φ),∆ (normal)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames
I F(·): translation from JML to Java DL
I Vmod: anonymising update,

forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 10 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)
Γ =⇒ U

Vmod

(F(normalPost) → 〈π ω〉φ),∆ (normal)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames

I F(·): translation from JML to Java DL
I Vmod: anonymising update,

forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 10 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)

Γ =⇒ U

Vmod

(F(normalPost) → 〈π ω〉φ),∆ (normal)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames
I F(·): translation from JML to Java DL

I Vmod: anonymising update,
forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 10 / 48

JML Method Contracts Revisited

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

T m(T1 a1, ..., Tn an) { ... }

Implicit Preconditions and Postconditions

I The object referenced by this is not null: this!=null

(precondition only; this cannot be changed by method)

I The heap is wellformed: wellFormed(heap) (precondition only)

I Invariant for this: \invariant_for(this)

FMSD: Reasoning about Loops & Methods /GU 201020 11 / 48

JML Method Contracts Revisited

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

T m(T1 a1, ..., Tn an) { ... }

Implicit Preconditions and Postconditions

I The object referenced by this is not null: this!=null

(precondition only; this cannot be changed by method)

I The heap is wellformed: wellFormed(heap) (precondition only)

I Invariant for this: \invariant_for(this)

FMSD: Reasoning about Loops & Methods /GU 201020 11 / 48

JML Method Contracts Revisited

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

T m(T1 a1, ..., Tn an) { ... }

Implicit Preconditions and Postconditions

I The object referenced by this is not null: this!=null

(precondition only; this cannot be changed by method)

I The heap is wellformed: wellFormed(heap) (precondition only)

I Invariant for this: \invariant_for(this)

FMSD: Reasoning about Loops & Methods /GU 201020 11 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)

Γ =⇒ U

Vmod

(F(normalPost) → 〈π ω〉φ),∆ (normal)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames
I F(·): translation from JML to Java DL

I Vmod: anonymising update,
forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 12 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)
Γ =⇒ U

Vmod

(F(normalPost) → 〈π ω〉φ),∆ (normal)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames
I F(·): translation from JML to Java DL

I Vmod: anonymising update,
forgetting prevalues of modifiable locations

FMSD: Reasoning about Loops & Methods /GU 201020 12 / 48

Method Contract Rule: Normal Behavior Case
Simplified version

// implementation contract of m():

/*@ public normal_behavior

@ requires normalPre;

@ ensures normalPost;

@ assignable mod;

@*/

Γ =⇒ UF(normalPre),∆ (precondition)
Γ =⇒ UVmod(F(normalPost) → 〈π ω〉φ),∆ (normal)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π: opening of try blocks and method frames
I F(·): translation from JML to Java DL
I Vmod: anonymising update,

forgetting prevalues of modifiable locations
FMSD: Reasoning about Loops & Methods /GU 201020 12 / 48

Keeping the Context

I Want to keep part of prestate U that is unmodified by called method

I assignable clause of contract tells what can possibly be modified

@ assignable mod;

I How to erase all values of assignable locations in state U ?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 13 / 48

Keeping the Context

I Want to keep part of prestate U that is unmodified by called method

I assignable clause of contract tells what can possibly be modified

@ assignable mod;

I How to erase all values of assignable locations in state U ?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 13 / 48

Keeping the Context

I Want to keep part of prestate U that is unmodified by called method

I assignable clause of contract tells what can possibly be modified

@ assignable mod;

I How to erase all values of assignable locations in state U ?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 13 / 48

Keeping the Context

I Want to keep part of prestate U that is unmodified by called method

I assignable clause of contract tells what can possibly be modified

@ assignable mod;

I How to erase all values of assignable locations in state U ?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 13 / 48

Anonymising Heap Locations

Define anonymising function anon: Heap× LocSet× Heap→ Heap

The resulting heap anon(...) coincides with the first heap on all locations
except for those specified in the location set. Those locations attain the
value specified by the second heap.

Definition:

select(anon(h1, locs, h2), o, f) =

{
select(h2, o, f) if (o, f) ∈ locs
select(h1, o, f) otherwise

Usage:
Vmod = {heap := anon(heap, locsmod , han)}

where han a new (not yet used) constant of type Heap

Effect: After Vmod , modfied locations have unknown values

FMSD: Reasoning about Loops & Methods /GU 201020 14 / 48

Anonymising Heap Locations

Define anonymising function anon: Heap× LocSet× Heap→ Heap

The resulting heap anon(...) coincides with the first heap on all locations
except for those specified in the location set. Those locations attain the
value specified by the second heap.

Definition:

select(anon(h1, locs, h2), o, f) =

{
select(h2, o, f) if (o, f) ∈ locs
select(h1, o, f) otherwise

Usage:
Vmod = {heap := anon(heap, locsmod , han)}

where han a new (not yet used) constant of type Heap

Effect: After Vmod , modfied locations have unknown values

FMSD: Reasoning about Loops & Methods /GU 201020 14 / 48

Anonymising Heap Locations

Define anonymising function anon: Heap× LocSet× Heap→ Heap

The resulting heap anon(...) coincides with the first heap on all locations
except for those specified in the location set. Those locations attain the
value specified by the second heap.

Definition:

select(anon(h1, locs, h2), o, f) =

{
select(h2, o, f) if (o, f) ∈ locs
select(h1, o, f) otherwise

Usage:
Vmod = {heap := anon(heap, locsmod , han)}

where han a new (not yet used) constant of type Heap

Effect: After Vmod , modfied locations have unknown values

FMSD: Reasoning about Loops & Methods /GU 201020 14 / 48

Anonymising Heap Locations

Define anonymising function anon: Heap× LocSet× Heap→ Heap

The resulting heap anon(...) coincides with the first heap on all locations
except for those specified in the location set. Those locations attain the
value specified by the second heap.

Definition:

select(anon(h1, locs, h2), o, f) =

{
select(h2, o, f) if (o, f) ∈ locs
select(h1, o, f) otherwise

Usage:
Vmod = {heap := anon(heap, locsmod , han)}

where han a new (not yet used) constant of type Heap

Effect: After Vmod , modfied locations have unknown values

FMSD: Reasoning about Loops & Methods /GU 201020 14 / 48

Anonymising Heap Locations: Example

@ assignable o.a, this.*;

To erase all knowledge about the values of the locations of the assignable
expression:

I Anonymise the current heap on the designated locations:

anon(heap, {(o, a)} ∪ allFields(this), han)

I Make that anonymised current heap the new current heap.

Vmod = {heap := anon(heap, {(o, a)} ∪ allFields(this), han)}

FMSD: Reasoning about Loops & Methods /GU 201020 15 / 48

Anonymising Heap Locations: Example

@ assignable o.a, this.*;

To erase all knowledge about the values of the locations of the assignable
expression:

I Anonymise the current heap on the designated locations:

anon(heap, {(o, a)} ∪ allFields(this), han)

I Make that anonymised current heap the new current heap.

Vmod = {heap := anon(heap, {(o, a)} ∪ allFields(this), han)}

FMSD: Reasoning about Loops & Methods /GU 201020 15 / 48

Method Contract Rule: Exceptional Behavior Case
Simplified version

/*@ public exceptional_behavior

@ requires excPre;

@ signals (Exception exc) excPost;

@ assignable excMod;

@*/

Γ =⇒ UF(excPre),∆ (precondition)
Γ =⇒ UVexcMod((F(excPost) ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I VexcMod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 16 / 48

Method Contract Rule: Exceptional Behavior Case
Simplified version

/*@ public exceptional_behavior

@ requires excPre;

@ signals (Exception exc) excPost;

@ assignable excMod;

@*/

Γ =⇒ UF(excPre),∆ (precondition)
Γ =⇒ UVexcMod((F(excPost) ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I VexcMod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 16 / 48

Method Contract Rule: Exceptional Behavior Case
Simplified version

/*@ public exceptional_behavior

@ requires excPre;

@ signals (Exception exc) excPost;

@ assignable excMod;

@*/

Γ =⇒ UF(excPre),∆ (precondition)

Γ =⇒ UVexcMod((F(excPost) ∧ exc 6= null)
→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I VexcMod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 16 / 48

Method Contract Rule: Exceptional Behavior Case
Simplified version

/*@ public exceptional_behavior

@ requires excPre;

@ signals (Exception exc) excPost;

@ assignable excMod;

@*/

Γ =⇒ UF(excPre),∆ (precondition)
Γ =⇒ UVexcMod((F(excPost) ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I π are openings of try blocks and method frames

I F(·): translation from JML to Java DL

I VexcMod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 16 / 48

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)
Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 17 / 48

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)
Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 17 / 48

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)

Γ =⇒ UVmodnormal
(φpost n → 〈π ω〉φ),∆ (normal)

Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)
→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 17 / 48

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)

Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)
→ 〈π throw exc; ω〉φ),∆ (exceptional)

Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 17 / 48

Method Contract Rule – Combined
(background only, no need to remember)

KeY uses actually one rule for both kinds of cases.

Therefore translation of postcondition φpost as follows (simplified):

φpost n ≡ F(\old(normalPre)) ∧ F(normalPost)
φpost e ≡ F(\old(excPre)) ∧ F(excPost)

Γ =⇒ U(F(normalPre) ∨ F(excPre)),∆ (precondition)
Γ =⇒ UVmodnormal

(φpost n → 〈π ω〉φ),∆ (normal)
Γ =⇒ UVmodexc ((φpost e ∧ exc 6= null)

→ 〈π throw exc; ω〉φ),∆ (exceptional)
Γ =⇒ U〈π result = m(a1, . . . , an); ω〉φ,∆

I F(·): translation to Java DL

I Vmod : anonymising update

FMSD: Reasoning about Loops & Methods /GU 201020 17 / 48

Method Contract Rule: Example

class Person {

private /*@ spec_public @*/ int age;

/*@ public normal_behavior

@ requires age < 29;

@ ensures age == \old(age) + 1;

@ assignable age;

@ also

@ public exceptional_behavior

@ requires age >= 29;

@ signals_only ForeverYoungException;

@ assignable \nothing;

@//allows object creation (not \strictly_nothing)

@*/

public void birthday() {

if (age >= 29) throw new ForeverYoungException();

age++;

} }
FMSD: Reasoning about Loops & Methods /GU 201020 18 / 48

Method Contract Rule: Example Cont’d

Demo

methods/useContractForBirthday.key

I Prove without contracts
I Method treatment: Expand

I Prove with contracts (until method contract application)
I Method treatment: Contract

I Prove used contracts
I Method treatment: Expand
I Select contracts for birthday() in src/Person.java
I Prove both specification cases

FMSD: Reasoning about Loops & Methods /GU 201020 19 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations?

Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×

I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations?

Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×

I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations?

Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Verification of Loops

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ U [π if(b){p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .

I 0 iterations? Unwind 1×
I 10 iterations? Unwind 11×
I 10000 iterations? Unwind 10001×
I an unknown number of iterations?

Solution: use loop invariants

FMSD: Reasoning about Loops & Methods /GU 201020 20 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆

FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆

FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆

FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆

FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)

Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)

Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

Loop Invariants

Idea behind loop invariants

I A formula Inv whose validity is preserved by loop body
whenever the loop guard is true

I Consequence: if Inv was valid at start of the loop,
then it still holds after arbitrarily many loop iterations

I In particular, if the loop terminates, then Inv holds afterwards

I Challenge: construct Inv such that, together with loop exit
condition, it implies postcondition of loop

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (valid when entering loop)
Inv , b = TRUE =⇒ [p]Inv (preserved by p)
Inv , b = FALSE =⇒ [π ω]φ (assumed after exit)

Γ =⇒ U [π while(b) p ω]φ,∆
FMSD: Reasoning about Loops & Methods /GU 201020 21 / 48

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed?

i <= n

Does i <= n hold when entering loop?

Poll

Is i <= n preserved by loop body?

Poll

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 201020 22 / 48

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed? i <= n

Does i <= n hold when entering loop?

Poll

Is i <= n preserved by loop body?

Poll

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 201020 22 / 48

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed? i <= n

Does i <= n hold when entering loop?

Poll

Is i <= n preserved by loop body?

Poll

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 201020 22 / 48

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed? i <= n

Does i <= n hold when entering loop? Poll

Is i <= n preserved by loop body? Poll

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 201020 22 / 48

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

n >= 0 & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = n

Look at desired postcondition i = n

What, in addition to negated guard i >= n, is needed? i <= n

Does i <= n hold when entering loop?

Poll

Is i <= n preserved by loop body?

Poll

Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

FMSD: Reasoning about Loops & Methods /GU 201020 22 / 48

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

n >= 0 & n = m & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = m

Look at desired postcondition i = m

What, in addition to negated guard i >= n, is needed?

i <= n & n = m

Is i <= n & n = m preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!

FMSD: Reasoning about Loops & Methods /GU 201020 23 / 48

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

n >= 0 & n = m & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = m

Look at desired postcondition i = m

What, in addition to negated guard i >= n, is needed?
i <= n & n = m

Is i <= n & n = m preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!

FMSD: Reasoning about Loops & Methods /GU 201020 23 / 48

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

n >= 0 & n = m & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = m

Look at desired postcondition i = m

What, in addition to negated guard i >= n, is needed?
i <= n & n = m

Is i <= n & n = m preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!

FMSD: Reasoning about Loops & Methods /GU 201020 23 / 48

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

n >= 0 & n = m & wellFormed(heap)

-> {i := 0}

\[{ while (i < n) {

i = i + 1;

}

}\] i = m

Look at desired postcondition i = m

What, in addition to negated guard i >= n, is needed?
i <= n & n = m

Is i <= n & n = m preserved by loop body?
Does it hold when entering loop?

Yes! We have found a suitable loop invariant!

FMSD: Reasoning about Loops & Methods /GU 201020 23 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

First attempt: use postcondition x = x0 + y0

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

First attempt: use postcondition x = x0 + y0

I Not true at start whenever y0 > 0

I Not preserved by loop, because x is increased

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

What stays invariant?

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Finding the invariant

What stays invariant?

I The sum of x and y: x + y = x0 + y0 “Generalization”

I Think of delta between x and x0 + y0 within loop

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Checking the invariant

Is x + y = x0 + y0 a good invariant?

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Checking the invariant

Is x + y = x0 + y0 a good invariant?

I Holds in the beginning and is preserved by loop

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Checking the invariant

Is x + y = x0 + y0 a good invariant?

I Holds in the beginning and is preserved by loop

I But postcondition not implied by x + y = x0 + y0 and exit
condition y <= 0

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Generalization

Example (Addition: x,y program variables, x0,y0 rigid constants)

x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>

\[{

while (y > 0) {

x = x + 1;

y = y - 1;

}

}\] (x = x0 + y0)

Strenghtening the invariant

Postcondition holds if y = 0

I Add y >= 0 to invariant: x + y = x0 + y0 & y >= 0

Demo loops/simple3.key

FMSD: Reasoning about Loops & Methods /GU 201020 24 / 48

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b = TRUE =⇒ [p]Inv (preserved)
Inv , b = FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ,¬∆ cannot be assumed for arbitrary iterations or at loop exit
2nd premise State after some loop iterations is not U
3rd premise State at loop exit is not U

I Context contains preconditions and class invariants

I Only way to propagate context: add to loop invariant Inv

FMSD: Reasoning about Loops & Methods /GU 201020 25 / 48

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b = TRUE =⇒ [p]Inv (preserved)
Inv , b = FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ,¬∆ cannot be assumed for arbitrary iterations or at loop exit
2nd premise State after some loop iterations is not U
3rd premise State at loop exit is not U

I Context contains preconditions and class invariants

I Only way to propagate context: add to loop invariant Inv

FMSD: Reasoning about Loops & Methods /GU 201020 25 / 48

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b = TRUE =⇒ [p]Inv (preserved)
Inv , b = FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ,¬∆ cannot be assumed for arbitrary iterations or at loop exit
2nd premise State after some loop iterations is not U
3rd premise State at loop exit is not U

I Context contains preconditions and class invariants

I Only way to propagate context: add to loop invariant Inv

FMSD: Reasoning about Loops & Methods /GU 201020 25 / 48

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b = TRUE =⇒ [p]Inv (preserved)
Inv , b = FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context Γ, ∆, U must be omitted in 2nd and 3rd premise:

Γ,¬∆ cannot be assumed for arbitrary iterations or at loop exit
2nd premise State after some loop iterations is not U
3rd premise State at loop exit is not U

I Context contains preconditions and class invariants

I Only way to propagate context: add to loop invariant Inv

FMSD: Reasoning about Loops & Methods /GU 201020 25 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Example

Precondition: a 6= null & ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)
& a 6= null

& ClassInv

FMSD: Reasoning about Loops & Methods /GU 201020 26 / 48

Keeping the Context (As In Method Contract Rule)

I Want to keep part of the context that is not modified by loop

I assignable clauses for loops tell what can possibly be modified

@ assignable i, a[*];

I How to erase all values of assignable locations?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 27 / 48

Keeping the Context (As In Method Contract Rule)

I Want to keep part of the context that is not modified by loop

I assignable clauses for loops tell what can possibly be modified

@ assignable i, a[*];

I How to erase all values of assignable locations?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 27 / 48

Keeping the Context (As In Method Contract Rule)

I Want to keep part of the context that is not modified by loop

I assignable clauses for loops tell what can possibly be modified

@ assignable i, a[*];

I How to erase all values of assignable locations?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 27 / 48

Keeping the Context (As In Method Contract Rule)

I Want to keep part of the context that is not modified by loop

I assignable clauses for loops tell what can possibly be modified

@ assignable i, a[*];

I How to erase all values of assignable locations?

I Anonymising updates V erase information about modified locations

FMSD: Reasoning about Loops & Methods /GU 201020 27 / 48

Anonymising JAVA Locations

@ assignable i, a[*];

To erase all knowledge about these assignable locations:

I introduce a new (not yet used) constant of type int, e.g., c
I introduce a new (not yet used) constant of type Heap, e.g., han

I anonymise the current heap: anon(heap, allFields(a), han)

I compute anonymizing update for assignable locations

V = {i := c || heap := anon(heap, allFields(a), han)}

For local program variables (e.g., i) KeY computes assignable clause
automatically

FMSD: Reasoning about Loops & Methods /GU 201020 28 / 48

Anonymising JAVA Locations

@ assignable

i,

a[*];

To erase all knowledge about these assignable locations:

I introduce a new (not yet used) constant of type int, e.g., c
I introduce a new (not yet used) constant of type Heap, e.g., han

I anonymise the current heap: anon(heap, allFields(a), han)

I compute anonymizing update for assignable locations

V = {i := c || heap := anon(heap, allFields(a), han)}

For local program variables (e.g., i) KeY computes assignable clause
automatically

FMSD: Reasoning about Loops & Methods /GU 201020 28 / 48

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 201020 29 / 48

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)

Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)
Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 201020 29 / 48

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 201020 29 / 48

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 201020 29 / 48

Loop Invariants Cont’d

Improved Invariant Rule

Γ =⇒ U Inv ,∆ (initially valid)
Γ =⇒ UV(Inv & b = TRUE → [p]Inv),∆ (preserved)

Γ =⇒ UV(Inv & b = FALSE → [π ω]φ),∆ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

I Context is kept as far as possible:
V erases only information in locations assignable in the loop

I Invariant Inv does not need to include unmodified locations
I For assignable \everything (the default):

I heap := anon(heap, allLocs, han) wipes out all heap information
I Equivalent to basic invariant rule
I Avoid this! Always give a specific assignable clause

FMSD: Reasoning about Loops & Methods /GU 201020 29 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null

& ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example with Improved Invariant Rule

Precondition: a 6= null & ClassInv

int i = 0;

while(i < a.length) {

a[i] = 1;

i++;

}

Postcondition: ∀ int x ; (0 ≤ x & x < a.length→ a[x] = 1)

Loop invariant: 0 ≤ i & i ≤ a.length

& ∀ int x ; (0 ≤ x & x < i→ a[x] = 1)

FMSD: Reasoning about Loops & Methods /GU 201020 30 / 48

Example in JML/JAVA – Loop.java Demo

public int[] a;

/*@ public normal_behavior

@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);

@ diverges true;

@*/

public void m() {

int i = 0;

/*@ loop_invariant

@ 0 <= i && i <= a.length &&

@ (\forall int x; 0<=x && x<i; a[x]==1);

@ assignable a[*];

@*/

while(i < a.length) {

a[i] = 1;

i++;

}

}
FMSD: Reasoning about Loops & Methods /GU 201020 31 / 48

Example from an earlier Lecture

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

] (r = x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Needed Invariant:

@ loop_invariant

@ i>=0 && i <= n && 2*r == i*(i + 1);

@ assignable \nothing; // no heap locations changed

Demo Loop2.java

FMSD: Reasoning about Loops & Methods /GU 201020 32 / 48

Example from an earlier Lecture

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

] (r = x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Needed Invariant:

@ loop_invariant

@ i>=0 && i <= n && 2*r == i*(i + 1);

@ assignable \nothing; // no heap locations changed

Demo Loop2.java

FMSD: Reasoning about Loops & Methods /GU 201020 32 / 48

Example from an earlier Lecture

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

] (r = x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Needed Invariant:

@ loop_invariant

@ i>=0 && i <= n && 2*r == i*(i + 1);

@ assignable \nothing; // no heap locations changed

Demo Loop2.java

FMSD: Reasoning about Loops & Methods /GU 201020 32 / 48

Example from an earlier Lecture

∀ int x ;
(x = n ∧ x >= 0→

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

] (r = x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Needed Invariant:

@ loop_invariant

@ i>=0 && i <= n && 2*r == i*(i + 1);

@ assignable \nothing; // no heap locations changed

Demo Loop2.java

FMSD: Reasoning about Loops & Methods /GU 201020 32 / 48

Hints

Proving assignable

I Invariant rule above assumes that assignable is correct
E.g., possible to prove nonsense with incorrect
assignable \nothing;

I Invariant rule of KeY generates proof obligation that ensures
correctness of assignable
This proof obligation is part of ‘Body Preserves Invariant’ branch

Setting in the KeY Prover when proving loops w. given invariant

I Loop treatment: Invariant

I Quantifier treatment: No Splits with Progs

I If program contains *, /: Arithmetic treatment: DefOps

I Is search limit high enough (time out, rule apps.)?

I To prove only partial correctness, add diverges true;

FMSD: Reasoning about Loops & Methods /GU 201020 33 / 48

Hints

Proving assignable

I Invariant rule above assumes that assignable is correct
E.g., possible to prove nonsense with incorrect
assignable \nothing;

I Invariant rule of KeY generates proof obligation that ensures
correctness of assignable
This proof obligation is part of ‘Body Preserves Invariant’ branch

Setting in the KeY Prover when proving loops w. given invariant

I Loop treatment: Invariant

I Quantifier treatment: No Splits with Progs

I If program contains *, /: Arithmetic treatment: DefOps

I Is search limit high enough (time out, rule apps.)?

I To prove only partial correctness, add diverges true;

FMSD: Reasoning about Loops & Methods /GU 201020 33 / 48

Total Correctness

Is the sequent

=⇒ [i = -1; while (true){}]i = 4711

provable?

Yes, e.g.,

@ loop_invariant true;

@ assignable \nothing;

With this, correctness of non-terminating loop is provable:

I Invariant trivially initially valid and preserved:
Initial Case and Preserved Case close immediately

I Negated loop condition is false: Use case closes immediately

We need a method to prove termination of loops

FMSD: Reasoning about Loops & Methods /GU 201020 34 / 48

Total Correctness

Is the sequent

=⇒ [i = -1; while (true){}]i = 4711

provable?

Yes, e.g.,

@ loop_invariant true;

@ assignable \nothing;

With this, correctness of non-terminating loop is provable:

I Invariant trivially initially valid and preserved:
Initial Case and Preserved Case close immediately

I Negated loop condition is false: Use case closes immediately

We need a method to prove termination of loops

FMSD: Reasoning about Loops & Methods /GU 201020 34 / 48

Total Correctness

Is the sequent

=⇒ [i = -1; while (true){}]i = 4711

provable?

Yes, e.g.,

@ loop_invariant true;

@ assignable \nothing;

With this, correctness of non-terminating loop is provable:

I Invariant trivially initially valid and preserved:
Initial Case and Preserved Case close immediately

I Negated loop condition is false: Use case closes immediately

We need a method to prove termination of loops

FMSD: Reasoning about Loops & Methods /GU 201020 34 / 48

Total Correctness

Is the sequent

=⇒ [i = -1; while (true){}]i = 4711

provable?

Yes, e.g.,

@ loop_invariant true;

@ assignable \nothing;

With this, correctness of non-terminating loop is provable:

I Invariant trivially initially valid and preserved:
Initial Case and Preserved Case close immediately

I Negated loop condition is false: Use case closes immediately

We need a method to prove termination of loops

FMSD: Reasoning about Loops & Methods /GU 201020 34 / 48

Mapping Loop Execution to Well-Founded Order

while (b) {

body

}

if (b) { body }1
...

if (b) { body }17
if (b) { body }18

...

N

...

2

1

0

Need to find expression getting smaller wrt N in each iteration

Such an expression is called a decreasing term or variant

FMSD: Reasoning about Loops & Methods /GU 201020 35 / 48

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 201020 36 / 48

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 201020 36 / 48

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing

a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 201020 36 / 48

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 201020 36 / 48

Total Correctness: Decreasing Term (Variant)

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

I v ≥ 0 is initially valid

I v ≥ 0 is preserved by the loop body

I v is strictly decreased by the loop body

Proving termination in JML/JAVA

I Remove diverges true; from contract

I Add decreasing v; to loop invariant

I KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example (The array loop)

@ decreasing a.length - i;

Files:

I LoopT.java

I Loop2T.java

FMSD: Reasoning about Loops & Methods /GU 201020 36 / 48

Final Example: Computing the GCD(see 16.3.8 [KeYbook])

public class Gcd {

/*@ public normal_behavior

@ requires _small>=0 && _big>=_small;

@ ensures _big!=0 ==>

@ (_big % \result == 0 && _small % \result == 0 &&

@ (\forall int x; x>0 && _big % x == 0

@ && _small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

}

}
FMSD: Reasoning about Loops & Methods /GU 201020 37 / 48

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then

I the return value \result is a divisor of both arguments
I all other divisors x of the arguments are also divisors of

\result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 201020 38 / 48

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then

I the return value \result is a divisor of both arguments
I all other divisors x of the arguments are also divisors of

\result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 201020 38 / 48

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then

I the return value \result is a divisor of both arguments
I all other divisors x of the arguments are also divisors of

\result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 201020 38 / 48

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then
I the return value \result is a divisor of both arguments

I all other divisors x of the arguments are also divisors of
\result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 201020 38 / 48

Computing the GCD: Method Specification

public class Gcd {

/*@ public normal_behavior

@ requires small>=0 && big>= small;

@ ensures big!=0 ==>

@ (big % \result == 0 && small % \result == 0 &&

@ (\forall int x; x>0 && big % x == 0

@ && small % x == 0; \result % x == 0));

@ assignable \nothing;

@*/

private static int gcdHelp(int _big, int _small) {...}

requires normalization assumptions on method parameters
(both non-negative and _big ≥ _small)

ensures if _big positive, then
I the return value \result is a divisor of both arguments
I all other divisors x of the arguments are also divisors of

\result and thus smaller or equal to \result

FMSD: Reasoning about Loops & Methods /GU 201020 38 / 48

Computing the GCD: Specify the Loop Body

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Which locations are changed (at most)?

@ assignable \nothing; // no heap locations changed

What is the variant?

@ decreases small;

FMSD: Reasoning about Loops & Methods /GU 201020 39 / 48

Computing the GCD: Specify the Loop Body

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Which locations are changed (at most)?

@ assignable \nothing; // no heap locations changed

What is the variant?

@ decreases small;

FMSD: Reasoning about Loops & Methods /GU 201020 39 / 48

Computing the GCD: Specify the Loop Body

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Which locations are changed (at most)?

@ assignable \nothing; // no heap locations changed

What is the variant?

@ decreases small;

FMSD: Reasoning about Loops & Methods /GU 201020 39 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Possible for big to become 0 in a loop iteration?

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Possible for big to become 0 in a loop iteration? No.

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Adding big>0 to loop invariant?

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Adding big>0 to loop invariant? No. Not initially valid.

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Weaker condition necessary: _big != 0 ==> big != 0

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant

I Order between small and big preserved by loop: big>=small

I Weaker condition necessary: _big != 0 ==> big != 0

I What does the loop preserve?

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant
I Order between small and big preserved by loop: big>=small

I Weaker condition necessary: _big != 0 ==> big != 0

I What does the loop preserve? The set of divisors!
All common divisors of _big, _small are also divisors of big, small

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));

FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Specify the Loop Body Cont’d

int big = _big; int small = _small;

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big;

Loop Invariant
I Order between small and big preserved by loop: big>=small

I Weaker condition necessary: _big != 0 ==> big != 0

I What does the loop preserve? The set of divisors!
All common divisors of _big, _small are also divisors of big, small

(\forall int x; x > 0;

(_big%x == 0 && _small%x == 0)

<==>

(big%x == 0 && small%x == 0));
FMSD: Reasoning about Loops & Methods /GU 201020 40 / 48

Computing the GCD: Final Specification

int big = _big; int small = _small;

/*@ loop_invariant small >= 0 && big >= small &&

@ (_big != 0 ==> big != 0) &&

@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)

@ <==>

@ (big % x == 0 && small % x == 0));

@ decreases small;

@ assignable \nothing;

@*/

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big; // assigned to \result

Why does big divides _small and _big follow from the loop invariant?
If big is positive, one can instantiate x with it, and use small == 0

FMSD: Reasoning about Loops & Methods /GU 201020 41 / 48

Computing the GCD: Final Specification

int big = _big; int small = _small;

/*@ loop_invariant small >= 0 && big >= small &&

@ (_big != 0 ==> big != 0) &&

@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)

@ <==>

@ (big % x == 0 && small % x == 0));

@ decreases small;

@ assignable \nothing;

@*/

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big; // assigned to \result

Why does big divides _small and _big follow from the loop invariant?

If big is positive, one can instantiate x with it, and use small == 0

FMSD: Reasoning about Loops & Methods /GU 201020 41 / 48

Computing the GCD: Final Specification

int big = _big; int small = _small;

/*@ loop_invariant small >= 0 && big >= small &&

@ (_big != 0 ==> big != 0) &&

@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)

@ <==>

@ (big % x == 0 && small % x == 0));

@ decreases small;

@ assignable \nothing;

@*/

while (small != 0) {

final int t = big % small;

big = small;

small = t;

}

return big; // assigned to \result

Why does big divides _small and _big follow from the loop invariant?
If big is positive, one can instantiate x with it, and use small == 0

FMSD: Reasoning about Loops & Methods /GU 201020 41 / 48

Computing the GCD: Demo

Demo loops/Gcd.java

1. Show Gcd.java and gcd(a,b)

2. Select “One Step Simplification”, “Contract”, “DefOps”, 10k steps

3. Prove contract of gcd(), using contract of gcdHelp()

4. Note KeY check sign is in parentheses. Therefore:

4.1 Click “File → Proof Management”
4.2 Choose tab “By Proof” (has to be blue)
4.3 Select proof of gcd()
4.4 Select used method contract (gcdHelp()), and “Start Proof”
4.5 As Loop treatment, select “Invariant”

5. After finishing proof of gcdHelp(), parentheses at gdc() are gone

FMSD: Reasoning about Loops & Methods /GU 201020 42 / 48

Some Hints On Finding Invariants

General Advice

I Invariants must be developed, they don’t come out of thin air!

I Be as systematic in deriving invariants as when debugging a program

FMSD: Reasoning about Loops & Methods /GU 201020 43 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required

I Use the KeY tool to iteratively try invariants:
I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Some Hints On Finding Invariants, Cont’d

Technical Hints

I Good starting point: desired postcondition (of the loop!)
I What, in addition to negated loop guard, is needed for it to hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Try to express properties of intermediate result.
I Can you add stuff from the precondition?

I Simulate a few loop body executions to discover invariant patterns
I If the invariant is not initially valid:

I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the requires clause?

I Several “rounds” of weakening/strengthening might be required
I Use the KeY tool to iteratively try invariants:

I Loop treatment: None
I apply Loop Invariant → Enter Loop Specification
I After each change of invariant make sure all cases are ok
I If not, prune and retry

FMSD: Reasoning about Loops & Methods /GU 201020 44 / 48

Understanding Unclosed Proofs (see also p.528ff [KeYbook])

Reasons why a proof may not close

I Buggy or incomplete specification

I Bug in program

I Maximal number of steps reached: restart or increase # of steps

I Automatic proof search fails: apply some rules manually

FMSD: Reasoning about Loops & Methods /GU 201020 45 / 48

Understanding Unclosed Proofs (see also p.528ff [KeYbook])

Understanding open proof goals

I Follow the control flow from the proof root to the open goal

I Branch labels give useful hints

I Analysing failed branches more promising than analysing open goals!

I Identify unprovable part of postcondition or invariant

I Sequent remains always in “pre-state”
Constraints on program variables refer to value at start of program
(exception: formulas behind update/box/diamond)

I NB: Γ =⇒ o = null,∆ is equivalent to Γ, o 6= null =⇒ ∆

FMSD: Reasoning about Loops & Methods /GU 201020 46 / 48

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt,
M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

I W. Ahrendt, S. Grebing, Using the KeY Prover
Chapter 15 in [KeYbook], p.528ff + Section 15.3 (also for Lab2)

I B. Beckert, R. Hähnle, M. Hentschel, P.H. Schmitt,
Formal Verification with KeY: A Tutorial
Chapter 16 in [KeYbook], except Section 16.6

further reading:

I B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java
Chapter 3 in [KeYbook], Section 3.7

FMSD: Reasoning about Loops & Methods /GU 201020 47 / 48

link.springer.com

Thank You

FMSD: Reasoning about Loops & Methods /GU 201020 48 / 48

	Titlepage
	Java Dynamic Logic
	Method Calls
	Initialization
	Method Contracts
	Anonymising Updates
	Contracts for Exceptional Behavior

	Loop Invariants
	Basic Invariant Rule
	Generalization
	Context Loss
	Anonymising Updates
	Improved Invariant Rule
	Total Correctness
	Hints On Finding Invariants
	Understanding Proofs
	Understanding Proofs
	Literature

