Formal Methods for Software Development Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

8 October 2020

Part I

Where are we?

before specification of JAVA programs with JML

before specification of JAVA programs with JML **now** dynamic logic (DL) for resoning about JAVA programs

before specification of JAVA programs with JML now dynamic logic (DL) for resoning about JAVA programs after that generating DL from JML+JAVA

FMSD: DL 1 CHALMERS/GU 201008 3 / 39

Aim

Consider the method

```
public void doubleContent(int[] a) {
   int i = 0;
   while (i < a.length) {
      a[i] = a[i] * 2;
      i++;
   }
}</pre>
```

Aim

Consider the method

```
public void doubleContent(int[] a) {
  int i = 0;
  while (i < a.length) {
    a[i] = a[i] * 2;
    i++;
  }
}</pre>
```

We want a logic/calculus allowing to express/prove properties like, e.g.:

FMSD: DL 1 CHALMERS/GU 201008 4 / 3

Aim

Consider the method

```
public void doubleContent(int[] a) {
  int i = 0;
  while (i < a.length) {
    a[i] = a[i] * 2;
    i++;
  }
}</pre>
```

We want a logic/calculus allowing to express/prove properties like, e.g.:

```
If a \neq null then doubleContent terminates normally and afterwards all elements of a are twice the old value
```

FMSD: DL 1 CHALMERS/GU 201008 4 / 3

Dynamic Logic (Preview)

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows:

```
\begin{split} \mathbf{a} &\neq \mathtt{null} \\ &\wedge \mathbf{a} \neq \mathtt{old\_a} \\ &\wedge \forall \mathtt{int} \ \mathbf{i}; ((0 \leq \mathtt{i} \wedge \mathtt{i} < \mathtt{a.length}) \rightarrow \mathtt{a[i]} = \mathtt{old\_a[i]}) \\ &\rightarrow \langle \mathtt{doubleContent(a)}; \rangle \\ &\forall \mathtt{int} \ \mathbf{i}; ((0 \leq \mathtt{i} \wedge \mathtt{i} < \mathtt{a.length}) \rightarrow \mathtt{a[i]} = 2 * \mathtt{old\_a[i]}) \end{split}
```

FMSD: DL 1 CHALMERS/GU 201008 5 / 39

Dynamic Logic (Preview)

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows:

```
a \neq \text{null}
\land a \neq \text{old\_a}
\land \forall \text{int } i; ((0 \leq i \land i < \text{a.length}) \rightarrow a[i] = \text{old\_a}[i])
\rightarrow \langle \text{doubleContent(a)}; \rangle
\forall \text{int } i; ((0 \leq i \land i < \text{a.length}) \rightarrow a[i] = 2 * \text{old\_a}[i])
```

Observations

- ▶ DL combines first-order logic (FOL) with programs
- ► Theory of DL extends theory of FOL

Connection to FOL

Introducing dynamic logic for JAVA

- ▶ short recap first-order logic (FOL)
- ▶ dynamic logic = extending FOL with
 - dynamic interpretations
 - programs to describe state change

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

- ightharpoonup a set T_{Σ} of type symbols
- ightharpoonup a set F_{Σ} of function symbols
- ightharpoonup a set P_{Σ} of predicate symbols

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

- ightharpoonup a set T_{Σ} of type symbols
- ightharpoonup a set F_{Σ} of function symbols
- ightharpoonup a set P_{Σ} of predicate symbols

Type Declarations

- $\triangleright \tau x$; 'variable x has type τ '
- ▶ $p(\tau_1, ..., \tau_r)$; 'predicate p has argument types $\tau_1, ..., \tau_r$ '
- ightharpoonup au $f(au_1,\ldots, au_r)$; 'function f has argument types au_1,\ldots, au_r and result type au'

FMSD: DL 1 CHALMERS/GU 201008 7 / 3

First-Order States

Definition (First-Order State)

Let \mathcal{D} be a domain with typing function δ .

For each f be declared as $\tau f(\tau_1, \ldots, \tau_r)$;

and each p be declared as $p(\tau_1, \ldots, \tau_r)$;

$$\mathcal{I}(f)$$
 is a mapping $\mathcal{I}(f): \mathcal{D}^{ au_1} imes \cdots imes \mathcal{D}^{ au_r} o \mathcal{D}^{ au}$

$$\mathcal{I}(p)$$
 is a set $\mathcal{I}(p) \subseteq \mathcal{D}^{ au_1} imes \cdots imes \mathcal{D}^{ au_r}$

Then $S = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state

Part II

Towards Dynamic Logic

Towards Dynamic Logic

Reasoning about Java programs requires extensions of FOL

- ► JAVA type hierarchy
- ► JAVA program variables
- ► JAVA heap for reference types

Type Hierarchy

Definition (Type Hierarchy)

- $ightharpoonup T_{\Sigma}$ is set of *types*
- ▶ Subtype relation $\sqsubseteq \subseteq T_{\Sigma} \times T_{\Sigma}$ with top element \top
 - u $\tau \sqsubseteq \top$ for all $\tau \in T_{\Sigma}$

Type Hierarchy

Definition (Type Hierarchy)

- $ightharpoonup T_{\Sigma}$ is set of *types*
- Subtype relation $\sqsubseteq \subseteq T_{\Sigma} \times T_{\Sigma}$ with top element \top
 - u $\tau \sqsubseteq \top$ for all $\tau \in T_{\Sigma}$

Example (A Minimal Type Hierarchy)

$$T_{\Sigma} = \{\top\}$$

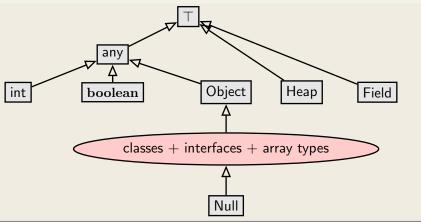
All signature symbols have same type \top

Example (Type Hierarchy for Java)

(see next slide)

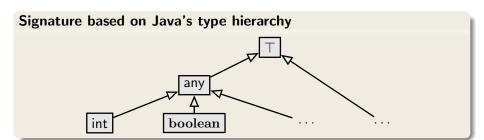
Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java's type hierarchy (sketch)



Each interface and class in libary and aplication becomes type with appropriate subtype relation

Subset of Types



We start with int and boolean, only. Class, interfaces, arrays: later.

Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

- ▶ Values of fields in a certain range
- ▶ Invariant of a class implies invariant of its interface

Considers only one program state at a time

Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

- ▶ Values of fields in a certain range
- ▶ Invariant of a class implies invariant of its interface

Considers only one program state at a time

Goal: Express behavior of a program, e.g.:

If method setAge is called on an object o of type Person and the method argument newAge is positive then afterwards field age has same value as newAge

Requirements for a logic to reason about programs

Requirements for a logic to reason about programs

► Can relate different program states, i.e., *before* and *after* execution, within a single formula

Requirements for a logic to reason about programs

- ► Can relate different program states, i.e., *before* and *after* execution, within a single formula
- Program variables are represented by constant symbols, whose value depend on program state

Requirements for a logic to reason about programs

- ► Can relate different program states, i.e., *before* and *after* execution, within a single formula
- Program variables are represented by constant symbols, whose value depend on program state

Dynamic Logic meets the above requirements

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + programs p
- \blacktriangleright + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ *DL* formula)
- ► + ... (later)

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + programs p
- \blacktriangleright + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ *DL* formula)
- ► + ... (later)

An Example

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Meaning?

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + programs p
- \blacktriangleright + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ *DL* formula)
- ► + ...(later)

An Example

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Meaning?

If program variable i is greater than 5 in current state, then after executing the JAVA statement "i = i + 10;", i is greater than 15

FMSD: DL 1 CHALMERS/GU 201008 16 / 39

Program Variables

Dynamic Logic = Typed
$$FOL + \dots$$

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Program variable i refers to different values before and after execution

- Program variables such as i are state-dependent constant symbols
- Value of state-dependent symbols changeable by a program

FMSD: DL 1 CHALMERS/GU 201008 17 / 39

Program Variables

Dynamic Logic = Typed
$$FOL + \dots$$

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Program variable i refers to different values before and after execution

- ▶ Program variables such as i are state-dependent constant symbols
- ▶ Value of state-dependent symbols changeable by a program

Three words *one* meaning: state-dependent, non-rigid, flexible

Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but in addition, there are program variables

Rigid versus Flexible

- ▶ Rigid symbols, meaning insensitive to program states
 - First-order variables (aka logical variables)
 - ▶ Built-in functions and predicates such as 0,1,...,+,*,...,<,...
- Flexible (or non-rigid) symbols, meaning depends on state.
 Capture side effects on state during program execution
 - Program variables are flexible

Any term containing at least one flexible symbol is called flexible

Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

```
\begin{split} \Sigma &= (P_{\Sigma}, \, F_{\Sigma}, \, PV_{\Sigma}, \, \alpha_{\Sigma}), \quad F_{\Sigma} \cap PV_{\Sigma} = \emptyset \\ \text{(Rigid) } \textit{Predicate Symbols} &\quad P_{\Sigma} = \{>, >=, \ldots\} \\ \text{(Rigid) } \textit{Function Symbols} &\quad F_{\Sigma} = \{+, -, *, 0, 1, \ldots\} \\ \text{Flexible } \textit{Program variables} &\quad \text{e.g. } PV_{\Sigma} = \{\mathtt{i}, \mathtt{j}, \mathtt{ready}, \ldots\} \end{split}
```

Standard typing of JAVA symbols: boolean TRUE; <(int,int); ...

Dynamic Logic Signature - KeY input file

```
\sorts {
  // only additional sorts (int, boolean, any predefined)
}
\functions {
  // only additional rigid functions
  // (arithmetic functions like +,- etc., predefined)
}
\predicates { /* same as for functions */ }
```

Empty sections can be left out

Dynamic Logic Signature - KeY input file

```
\sorts {
// only additional sorts (int, boolean, any predefined)
\functions {
// only additional rigid functions
// (arithmetic functions like +,- etc., predefined)
\predicates { /* same as for functions */ }
\programVariables { // flexible
  int i, j;
  boolean ready;
```

Empty sections can be left out

Again: Two Kinds of Variables

Rigid:

Definition (First-Order/Logical Variables)

Typed *logical variables* (rigid), declared locally in *quantifiers* as $T \times T$; They must not occur in programs!

Flexible:

Program Variables

- Are not FO variables
- Cannot be quantified
- ► Can occur in programs and formulas

Dynamic Logic Programs

Programs here: any legal sequence of JAVA statements.

Dynamic Logic Programs

```
Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.
```

Example

```
Signature for PV_{\Sigma}: int r; int i; int n;

Signature for F_{\Sigma}: int 0; int +(int,int); int -(int,int);

Signature for P_{\Sigma}: <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;
```

Dynamic Logic Programs

```
Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.
```

Example

```
Signature for PV_{\Sigma}: int r; int i; int n;

Signature for F_{\Sigma}: int 0; int +(int,int); int -(int,int);

Signature for P_{\Sigma}: <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;
```

Which value does the program compute in r?

DL extends FOL with two additional operators:

- $ightharpoonup \langle p \rangle \phi$ (diamond)
- ightharpoonup [p] ϕ (box)

with p a program, ϕ another DL formula

DL extends FOL with two additional operators:

- $ightharpoonup \langle p \rangle \phi$ (diamond)
- ightharpoonup [p] ϕ (box)

with p a program, ϕ another DL formula

Intuitive Meaning

 $ightharpoonup \langle p \rangle \phi$: p terminates and formula ϕ holds in final state (total correctness)

DL extends FOL with two additional operators:

- $ightharpoonup \langle p \rangle \phi$ (diamond)
- ightharpoonup [p] ϕ (box)

with p a program, ϕ another DL formula

Intuitive Meaning

- $ho \langle p \rangle \phi$: p terminates and formula ϕ holds in final state (total correctness)
- ▶ [p] ϕ : If p terminates then formula ϕ holds in final state (partial correctness)

DL extends FOL with two additional operators:

- $ightharpoonup \langle p \rangle \phi$ (diamond)
- ightharpoonup [p] ϕ (box)

with p a program, ϕ another DL formula

Intuitive Meaning

- $ho \langle p \rangle \phi$: p terminates and formula ϕ holds in final state (total correctness)
- ▶ [p] ϕ : If p terminates then formula ϕ holds in final state (partial correctness)

Attention: JAVA programs are deterministic, i.e., *if* a JAVA program terminates then exactly *one* state is reached from a given initial state.

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

1. $i = old_i \rightarrow \langle i = i + 1; \rangle i > old_i$

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

i = old_i → (i = i + 1;)i > old_i
 If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

- i = old_i → ⟨i = i + 1;⟩i > old_i
 If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.
- 2. $i = old_i \rightarrow [while(true)\{i = old_i 1;\}]i > old_i$

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

- 1. $i = old_i \rightarrow \langle i = i + 1; \rangle i > old_i$ If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

- i = old_i → (i = i + 1;)i > old_i
 If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.
- **3.** $\forall x$. ($\langle prog_1 \rangle i = x \leftrightarrow \langle prog_2 \rangle i = x$)

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

- i = old_i → ⟨i = i + 1;⟩i > old_i
 If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.
- 3. $\forall x$. ($\langle prog_1 \rangle i = x \leftrightarrow \langle prog_2 \rangle i = x$) $prog_1$ and $prog_2$ are equivalent concerning termination and the final value of i.

Dynamic Logic: KeY Input File

```
\programVariables { // Declares global program variables
  int i;
  int old_i;
}
```

Dynamic Logic: KeY Input File

```
\programVariables { // Declares global program variables
  int i;
  int old_i;
}

\problem { // The problem to verify is stated here
        i = old_i -> \<{ i = i + 1; }\> i > old_i
}
```

Dynamic Logic: KeY Input File

```
\programVariables { // Declares global program variables
  int i;
  int old_i;
}

\problem { // The problem to verify is stated here
        i = old_i -> \<{ i = i + 1; }\> i > old_i
}
```

Visibility

- ▶ Program variables declared globally can be accessed anywhere
- Program variables declared inside a modality only visible therein. E.g., in "pre $\rightarrow \langle int j; p \rangle post$ ", j not visible in post

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

- ► Each FOL formula is a DL formula
- ▶ If p is a program and ϕ a DL formula, then $\left\{ \begin{pmatrix} \mathbf{p} \rangle \phi \\ [\mathbf{p}] \phi \\ \end{pmatrix}$ is a DL formula
- ▶ DL formulas closed under FOL quantifiers and connectives

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

- ► Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula, then $\left\{ \begin{pmatrix} \mathsf{p} \rangle \phi \\ \mathsf{p} \end{bmatrix}$ is a DL formula
- ▶ DL formulas closed under FOL quantifiers and connectives
- Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested, e.g., $\langle p \rangle [q] \phi$

Example (Well-formed? If yes, under which signature?)

 $\blacktriangleright \forall \text{ int } y; ((\langle x = 2; \rangle x = y) \leftrightarrow (\langle x = 1; x++; \rangle x = y))$

Example (Well-formed? If yes, under which signature?)

▶ \forall int y; (($\langle x = 2; \rangle x = y$) \leftrightarrow ($\langle x = 1; x++; \rangle x = y$)) Well-formed if PV_{Σ} contains int x;

Example (Well-formed? If yes, under which signature?)

- ▶ \forall int y; (($\langle x = 2; \rangle x = y$) \leftrightarrow ($\langle x = 1; x++; \rangle x = y$)) Well-formed if PV_{Σ} contains int x;
- ▶ $\exists \text{ int } x; [x = 1;](x = 1)$

Example (Well-formed? If yes, under which signature?)

- ▶ \forall int y; (($\langle x = 2; \rangle x = y$) \leftrightarrow ($\langle x = 1; x++; \rangle x = y$)) Well-formed if PV_{Σ} contains int x;
- ▶ $\exists \text{ int } x$; [x = 1;](x = 1)Not well-formed, because logical variable occurs in program

Example (Well-formed? If yes, under which signature?)

- ▶ \forall int y; (($\langle x = 2; \rangle x = y$) \leftrightarrow ($\langle x = 1; x++; \rangle x = y$)) Well-formed if PV_{Σ} contains int x;
- ▶ $\exists \text{ int } x$; [x = 1;](x = 1)Not well-formed, because logical variable occurs in program
- $\blacktriangleright \langle x = 1; \rangle ([while (true) {})] false)$

Example (Well-formed? If yes, under which signature?)

- ▶ \forall int y; (($\langle x = 2; \rangle x = y$) \leftrightarrow ($\langle x = 1; x++; \rangle x = y$)) Well-formed if PV_{Σ} contains int x;
- ▶ $\exists \text{ int } x$; [x = 1;](x = 1)Not well-formed, because logical variable occurs in program
- ► $\langle x = 1; \rangle$ ([while (true) {}] false) Well-formed if PV_{Σ} contains int x; program formulas can be nested

Dynamic Logic Semantics: States

First-order state can be considered as program state

- ► Interpretation of (flexible) program variables can vary from state to state
- ▶ Interpretation of *rigid* symbols is the same in all states (e.g., built-in functions and predicates)

Program states as first-order states

We identify *first-order state* $S = (D, \delta, I)$ with program state.

- ▶ Interpretation \mathcal{I} only changes on program variables.
 - \Rightarrow Enough to record values of variables $\in PV_{\Sigma}$
- ► Set of all states S is called States

Kripke Structure

Definition (Kripke Structure)

Kripke Structure or Labelled Transition System $K = (States, \rho)$

- ▶ States $S = (D, \delta, I) \in S$ tates
- ▶ Transition relation ρ : Program \rightarrow (States \rightharpoonup States)

$$\rho(p)(\mathcal{S}_1) = \mathcal{S}_2$$
 iff.

program p executed in state S_1 terminates and its final state is S_2 , otherwise undefined.

- ightharpoonup
 ho is the *semantics* of programs \in *Program*
- ho(p)(S) can be undefined ('ightharpoonup'): p may *not terminate* when started in S
- ▶ JAVA programs are deterministic (unlike PROMELA): $\rho(p)$ is a partial function (at most one value)

Definition (Validity Relation for Program Formulas)

▶ $\mathcal{S} \models \langle \mathbf{p} \rangle \phi$ iff $\rho(\mathbf{p})(\mathcal{S})$ is defined and $\rho(\mathbf{p})(\mathcal{S}) \models \phi$ (p terminates and ϕ is true in the final state after execution)

Definition (Validity Relation for Program Formulas)

- ▶ $\mathcal{S} \models \langle \mathbf{p} \rangle \phi$ iff $\rho(\mathbf{p})(\mathcal{S})$ is defined and $\rho(\mathbf{p})(\mathcal{S}) \models \phi$ (p terminates and ϕ is true in the final state after execution)
- ▶ $\mathcal{S} \models [p]\phi$ iff $\rho(p)(\mathcal{S}) \models \phi$ whenever $\rho(p)(\mathcal{S})$ is defined (If p terminates then ϕ is true in the final state after execution)

Definition (Validity Relation for Program Formulas)

- ▶ $\mathcal{S} \models \langle \mathbf{p} \rangle \phi$ iff $\rho(\mathbf{p})(\mathcal{S})$ is defined and $\rho(\mathbf{p})(\mathcal{S}) \models \phi$ (p terminates and ϕ is true in the final state after execution)
- ▶ $\mathcal{S} \models [p]\phi$ iff $\rho(p)(\mathcal{S}) \models \phi$ whenever $\rho(p)(\mathcal{S})$ is defined (If p terminates then ϕ is true in the final state after execution)

A DL formula ϕ is *valid* iff $S \models \phi$ for all states S.

Definition (Validity Relation for Program Formulas)

- ▶ $\mathcal{S} \models \langle \mathbf{p} \rangle \phi$ iff $\rho(\mathbf{p})(\mathcal{S})$ is defined and $\rho(\mathbf{p})(\mathcal{S}) \models \phi$ (p terminates and ϕ is true in the final state after execution)
- ▶ $\mathcal{S} \models [p]\phi$ iff $\rho(p)(\mathcal{S}) \models \phi$ whenever $\rho(p)(\mathcal{S})$ is defined (If p terminates then ϕ is true in the final state after execution)

A DL formula ϕ is *valid* iff $\mathcal{S} \models \phi$ for all states \mathcal{S} .

▶ Duality: $\langle \mathbf{p} \rangle \phi$ iff $\neg [\mathbf{p}] \neg \phi$ Exercise: justify this with help of semantic definitions

Definition (Validity Relation for Program Formulas)

- ▶ $\mathcal{S} \models \langle \mathbf{p} \rangle \phi$ iff $\rho(\mathbf{p})(\mathcal{S})$ is defined and $\rho(\mathbf{p})(\mathcal{S}) \models \phi$ (p terminates and ϕ is true in the final state after execution)
- ▶ $\mathcal{S} \models [p]\phi$ iff $\rho(p)(\mathcal{S}) \models \phi$ whenever $\rho(p)(\mathcal{S})$ is defined (If p terminates then ϕ is true in the final state after execution)

A DL formula ϕ is *valid* iff $\mathcal{S} \models \phi$ for all states \mathcal{S} .

- ▶ Duality: $\langle \mathbf{p} \rangle \phi$ iff $\neg [\mathbf{p}] \neg \phi$ Exercise: justify this with help of semantic definitions
- ▶ Implication: if $\langle p \rangle \phi$ then $[p]\phi$ Total correctness implies partial correctness
 - converse is false
 - holds only for deterministic programs

Meaning?

Example

$$\forall \tau \ y; ((\langle p \rangle x = y) \leftrightarrow (\langle q \rangle x = y))$$

Meaning?

Example

$$\forall \tau y$$
; $((\langle p \rangle x = y) \leftrightarrow (\langle q \rangle x = y))$

Programs p and q behave equivalently on variable τ x.

Meaning?

Example

$$\forall \tau y$$
; $((\langle p \rangle x = y) \leftrightarrow (\langle q \rangle x = y))$

Programs p and q behave equivalently on variable τ x.

Example

$$\exists \tau y$$
; $(x = y \rightarrow \langle p \rangle true)$

Meaning?

Example

$$\forall \tau \ y; ((\langle p \rangle x = y) \leftrightarrow (\langle q \rangle x = y))$$

Programs p and q behave equivalently on variable τ x.

Example

$$\exists \tau \ y; \ (x = y \rightarrow \langle p \rangle true)$$

Program p terminates if initial value of x is suitably chosen.

Semantics of Programs

In labelled transition system $K = (States, \rho)$: $\rho : Program \rightarrow (States \rightharpoonup States)$ is semantics of programs $p \in Program$

ho defined recursively on programs

Semantics of Programs

In labelled transition system $K = (States, \rho)$: $\rho : Program \rightarrow (States \rightharpoonup States)$ is semantics of programs $p \in Program$

ho defined recursively on programs

Example (Semantics of assignment)

States S interpret program variables v with $\mathcal{I}_{S}(v)$

$$\rho(\texttt{x=t;})(\mathcal{S}) = \mathcal{S}' \quad \text{where} \quad \mathcal{I}_{\mathcal{S}'}(y) := \left\{ \begin{array}{ll} \mathcal{I}_{\mathcal{S}}(y) & y \neq \texttt{x} \\ \textit{val}_{\mathcal{S}}(\texttt{t}) & y = \texttt{x} \end{array} \right.$$

Semantics of Programs

In labelled transition system $K = (States, \rho)$: $\rho : Program \rightarrow (States \rightharpoonup States)$ is semantics of programs $p \in Program$

ho defined recursively on programs

Example (Semantics of assignment)

States $\mathcal S$ interpret program variables v with $\mathcal I_{\mathcal S}(v)$

$$\rho(\mathtt{x=t}\,;)(\mathcal{S}) = \mathcal{S}' \quad \text{where} \quad \mathcal{I}_{\mathcal{S}'}(y) := \left\{ \begin{array}{ll} \mathcal{I}_{\mathcal{S}}(y) & y \neq \mathtt{x} \\ \mathit{val}_{\mathcal{S}}(\mathtt{t}) & y = \mathtt{x} \end{array} \right.$$

Very advanced task to define ρ for JAVA \Rightarrow Not done in this course We go directly to calculus for dynamic logic!

FMSD: DL 1 CHALMERS/GU 201008 32 / 39

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- \blacktriangleright + modalities $\langle p \rangle \phi$, $[p] \phi$ (p program, ϕ *DL* formula)
- ▶ + ... (later)

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- $ightharpoonup + \text{modalities } \langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)
- ▶ + ... (later)

Remark on Hoare Logic and DL

In Hoare logic {Pre} p {Post}

(Pre, Post must be FOL)

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- ► + (JAVA) programs p
- $ightharpoonup + \text{modalities } \langle p \rangle \phi$, $[p] \phi$ (p program, ϕ DL formula)
- ▶ + ... (later)

Remark on Hoare Logic and DL

In Hoare logic {Pre} p {Post}

In DL Pre \rightarrow [p]Post

(Pre, Post must be FOL)

(Pre, Post any DL formula)

Proving DL Formulas

An Example

```
\forall int x;

(x >= 0 \land n = x \rightarrow [i = 0; r = 0;

while(i < n)\{i = i + 1; r = r + i;\}

r = r + r - n;

]r = x * x)
```

How can we prove that the above formula is valid (i.e. satisfied in all states)?

FMSD: DL 1 CHALMERS/GU 201008 34 / 39

Semantics of DL Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of DL formulas where all logical variables occur bound.

Recall:
$$\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$$
 iff $\mathcal{S} \models (\phi_1 \land \cdots \land \phi_n) \rightarrow (\psi_1 \lor \cdots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over DL formulas is *valid* iff

$$\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$$
 in all states \mathcal{S}

Semantics of DL Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of DL formulas where all logical variables occur bound.

Recall:
$$\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$$
 iff $\mathcal{S} \models (\phi_1 \land \cdots \land \phi_n) \rightarrow (\psi_1 \lor \cdots \lor \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over DL Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over DL formulas is *valid* iff

$$\mathcal{S} \models (\Gamma \Longrightarrow \Delta)$$
 in *all* states \mathcal{S}

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula. What is "top-level" in a sequential program p; q; r; ?

Symbolic Execution

- Follow the natural control flow when analysing a program
- ▶ Values of some variables unknown: symbolic state representation

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula. What is "top-level" in a sequential program p; q; r; ?

Symbolic Execution

- Follow the natural control flow when analysing a program
- ▶ Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

$$x=x+y$$
; $y=x-y$; $x=x-y$;

Typical form of DL formulas in symbolic execution

```
\langle \mathtt{stmt}; \ \mathit{rest} \rangle \phi \qquad [\mathtt{stmt}; \ \mathit{rest}] \phi
```

- ► Rules symbolically execute *first* statement ("active statement")
- Repeated application of such rules corresponds to symbolic program execution

FMSD: DL 1 CHALMERS/GU 201008 37 / 39

Typical form of DL formulas in symbolic execution

```
\langle \mathtt{stmt}; \ \mathit{rest} \rangle \phi \qquad [\mathtt{stmt}; \ \mathit{rest}] \phi
```

- Rules symbolically execute first statement ("active statement")
- Repeated application of such rules corresponds to symbolic program execution

Symbolic execution of conditional

$$\text{if } \frac{ \Gamma, \mathbf{b} = \mathsf{TRUE} \Longrightarrow \langle \mathbf{p}; \ \mathit{rest} \rangle \phi, \Delta \quad \Gamma, \mathbf{b} = \mathsf{FALSE} \Longrightarrow \langle \mathbf{q}; \ \mathit{rest} \rangle \phi, \Delta }{ \Gamma \Longrightarrow \langle \mathbf{if} \ (\mathbf{b}) \ \{ \ \mathbf{p} \ \} \ \mathsf{else} \ \{ \ \mathbf{q} \ \} \ ; \ \mathit{rest} \rangle \phi, \Delta }$$

Symbolic execution must consider all possible execution branches

FMSD: DL 1 CHALMERS/GU 201008 38 / 39

Symbolic execution of conditional

$$\text{if } \frac{ \Gamma, \mathbf{b} = \mathsf{TRUE} \Rightarrow \langle \mathbf{p}; \ \mathit{rest} \, \rangle \phi, \Delta \quad \Gamma, \mathbf{b} = \mathsf{FALSE} \Rightarrow \langle \mathbf{q}; \ \mathit{rest} \, \rangle \phi, \Delta }{\Gamma \Rightarrow \langle \mathbf{if} \ (\mathbf{b}) \ \{ \ \mathbf{p} \ \} \ \mathsf{else} \ \{ \ \mathbf{q} \ \} \ ; \ \mathit{rest} \, \rangle \phi, \Delta }$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

FMSD: DL 1 CHALMERS/GU 201008 38 / 39

Literature for this Lecture

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors. Deductive Software Verification - The KeY Book Vol 10001 of LNCS, Springer, 2016 (E-book at link.springer.com)

W. Ahrendt, S. Grebing, Using the KeY Prover Chapter 15 in [KeYbook]

further reading:

B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java Chapter 3 in [KeYbook]