Formal Methods for Software Development Introduction

Wolfgang Ahrendt

Department of Computer Science and Engineering
Chalmers University of Technology
and
University of Gothenburg

01 September 2020

Course Team

- Wolfgang Ahrendt (WA) examiner, lecturer
- Andreas Lööw (AL) teaching assistant

Course Team

- Wolfgang Ahrendt (WA) examiner, lecturer
- ► Andreas Lööw (AL) teaching assistant

teaching assistant activities include:

- giving exercise classes
- correcting lab hand-ins
- student support via:
 - e-mail
 - online meetings on e-mail request

Course Team

- Wolfgang Ahrendt (WA) examiner, lecturer
- ► Andreas Lööw (AL) teaching assistant

teaching assistant activities include:

- giving exercise classes
- correcting lab hand-ins
- student support via:
 - ► e-mail
 - online meetings on e-mail request

Breakout

Information Channels

Course Home Page

On Canvas, via Chalmers and GU.

Also used for online news and discussions.

Course Structure

Course Structure

Topic	# Lectures	# Exercises	Lab
Intro	1	X	X
Modeling & Model Checking with	6	3	V
Promela & Spin			
Specification & Verification with	6 (+1?)	3	V
JML & KeY			

PROMELA & SPIN abstract programs, model checking, automated JML & KeY concrete Java, deductive verification, semi-automated

... more on this later!

This year, entire course held online

This year, entire course held online

Held as Zoom meetings:

- Lectures
- Exercises

This year, entire course held online

Held as Zoom meetings:

- Lectures
- Exercises
- Oral Examination

This year, entire course held online

Held as Zoom meetings:

- Lectures
- Exercises
- Oral Examination

Information on Zoom access on Canvas

Zoom

► Online lectures, held live via Zoom

Zoom

- ► Online lectures, held live via Zoom
- ► Slides appear online shortly *after* each lecture

Zoom

- Online lectures, held live via Zoom
- ▶ Slides appear online shortly *after* each lecture
- Live lectures recorded, available on Canvas afterwards,

Zoom

- Online lectures, held live via Zoom
- ▶ Slides appear online shortly *after* each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Zoom

- Online lectures, held live via Zoom
- Slides appear online shortly after each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Interaction

Interaction in online lectures more difficult

Zoom

- Online lectures, held live via Zoom
- ► Slides appear online shortly after each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Interaction

- Interaction in online lectures more difficult
- Let us all make an extra effort!

Zoom

- Online lectures, held live via Zoom
- ► Slides appear online shortly after each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Interaction

- ▶ Interaction in online lectures more difficult
- Let us all make an extra effort!
- ► Ask questions during lectures (writing "Q" in Chat to raise hand)

Zoom

- Online lectures, held live via Zoom
- ► Slides appear online shortly after each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Interaction

- Interaction in online lectures more difficult
- Let us all make an extra effort!
- ► Ask questions during lectures (writing "Q" in Chat to raise hand)
- Try to answer my questions (write "A" in Chat to raise hand)

Zoom

- Online lectures, held live via Zoom
- ► Slides appear online shortly after each lecture
- ► Live lectures recorded, available on Canvas afterwards, accessible only to course participants, deleted after course

Interaction

- Interaction in online lectures more difficult
- Let us all make an extra effort!
- ► Ask questions during lectures (writing "Q" in Chat to raise hand)
- Try to answer my questions (write "A" in Chat to raise hand)

Poll

Online Exercises

Exercises

- ► Held as Zoom meetings
- ▶ One exercise web page (almost) each week (6 in total)
- Discussed in next exercise session
- ▶ Play around with the exercises before coming to the session
- ► Have installed tools or browser interfaces readily available
- Exercise participation highly recommended

Passing Criteria

- Oral examination (via Zoom) in exam week
- Two lab hand-ins
- ► (No written end-exam)
- Oral exam and labs can be passed separately

► Individual, oral examination

- ► Individual, oral examination
- ▶ 30 min per student

- ► Individual, oral examination
- ▶ 30 min per student
- ► Slots between 26 and 30 October

- Individual, oral examination
- ▶ 30 min per student
- Slots between 26 and 30 October
- ▶ See course page for more information

Labs

Labs

- ▶ 2 Lab hand-ins: PROMELA/SPIN 02 Oct, JML/KeY 26 Oct
- 2 Lab Questions Sessions
- Submission via Fire, linked from course home page
- ▶ If submission is returned, roughly one week for correction

Labs

Labs

- ▶ 2 Lab hand-ins: PROMELA/SPIN 02 Oct, JML/KeY 26 Oct
- 2 Lab Questions Sessions
- Submission via Fire, linked from course home page
- ▶ If submission is returned, roughly one week for correction
- You work in groups of two. No exception!^a You pair up by either:
 - 1. contact people on your own
 - 2. post request via Canvas
 - 3. participate in pairing at first exercise session

If all that is not successful, contact Andreas by e-mail.

^aOnly PhD students have to work alone.

Web Presence

- Canvas
- ► Web Pages (linked from Canvas)
- ► Fire System (for lab submissions)

Web Presence

- Canvas
- ► Web Pages (linked from Canvas)
- ► Fire System (for lab submissions)

(inspect course schedule)

Course Evaluation

- 1. course evaluation group:
 - student representatives
 - randomly selected (Chalmers)
 - volunteers (GU)
 - one meeting during the course, one after
- 2. web questionnaire after the course

Course Evaluation

- 1. course evaluation group:
 - student representatives
 - randomly selected (Chalmers)
 - volunteers (GU)
 - one meeting during the course, one after
- 2. web questionnaire after the course

Randomly selected Chalmers students:

- Sebastian Hafström (hafstrom.sebastian@gmail.com)
- Philip Nord (nordp@student.chalmers.se)
- Vallisha Somayagi (vas.atloor@gmail.com)
- Mohammad Jasim Uddin (jasim.arc@gmail.com)
- Riccardo Zanetti (znt.riccardo@gmail.com)

Course Evaluation

- 1. course evaluation group:
 - student representatives
 - randomly selected (Chalmers)
 - volunteers (GU)
 - one meeting during the course, one after
- 2. web questionnaire after the course

Randomly selected Chalmers students:

- Sebastian Hafström (hafstrom.sebastian@gmail.com)
- Philip Nord (nordp@student.chalmers.se)
- Vallisha Somayagi (vas.atloor@gmail.com)
- Mohammad Jasim Uddin (jasim.arc@gmail.com)
- ► Riccardo Zanetti (znt.riccardo@gmail.com)

GU students: please consider volunteering

Course Literature

► In part I, we partly use:

Ben-Ari Mordechai Ben-Ari
Principles of the Spin Model Checker
Springer, 2008
Ben-Ari received ACM award for outstanding
contributions to CS education. Recommended by
G. Holzmann. Excellent student text book.
(E-book at link.springer.com)

Relevant for part II:

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors. Deductive Software Verification - The KeY Book Vol 10001 of LNCS, Springer, 2016 (E-book at link.springer.com)

Additional Literature

Holzmann Gerard J. Holzmann
The Spin Model Checker
Addison Wesley, 2004

BayerKatoen Christel Baier, Joost-Pieter Katoen
Principles of Model Checking
MIT Press, 2008

Connection to other Courses

Prerequisites

- Skills in first-order logic and temporal logic, e.g., from
 - ► Logic in Computer Science, or
 - Discrete Event Systems
- ► Skills in object-oriented programming (like Java)

Related courses (not assumed!)

- Concurrent Programming
- Finite Automata
- Testing, Debugging, and Verification

Connection to other Courses

Prerequisites

- Skills in first-order logic and temporal logic, e.g., from
 - ► Logic in Computer Science, or
 - Discrete Event Systems
- ► Skills in object-oriented programming (like Java)

Related courses (not assumed!)

- Concurrent Programming
- Finite Automata
- Testing, Debugging, and Verification

Poll

(anonymous)

Motivation: Software Defects cause BIG Failures

Tiny faults in technical systems can have catastrophic consequences

In particular, this goes for software systems

- ► Ariane 5
- Mars Climate Orbiter
- London Ambulance Dispatch System
- NEDAP Voting Computer Attack
- **.**...

Motivation:

Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software is almost everywhere:

- Mobiles
- Clouds
- Smart cards
- Smart devices
- Cars
- Blockchain
- **>** ...

Motivation:

Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software is almost everywhere:

- Mobiles
- ► Clouds
- Smart cards
- Smart devices
- Cars
- Blockchain
- **>** ...

software/specification quality is a growing commercial and legal issue

Well-known strategies from mechanical and civil engineering

▶ Precise calculations (or accurate estimations) of forces, stress, etc.

- ▶ Precise calculations (or accurate estimations) of forces, stress, etc.
- Redundancy ("make it a bit stronger than necessary")

- ▶ Precise calculations (or accurate estimations) of forces, stress, etc.
- Redundancy ("make it a bit stronger than necessary")
- Robust design (single fault not catastrophic)

- ▶ Precise calculations (or accurate estimations) of forces, stress, etc.
- Redundancy ("make it a bit stronger than necessary")
- ► Robust design (single fault not catastrophic)
- Clear separation of subsystems

- ▶ Precise calculations (or accurate estimations) of forces, stress, etc.
- Redundancy ("make it a bit stronger than necessary")
- ► Robust design (single fault not catastrophic)
- Clear separation of subsystems
- Design follows patterns that are proven to work

Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- Redundancy as replication does not help against bugs. Redundant SW development only viable in special cases.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- Redundancy as replication does not help against bugs.
 Redundant SW development only viable in special cases.
- Insufficient separation of subsystems.
 Seemingly correct sub-systems may together behave incorrectly.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- ► Redundancy as replication does not help against bugs. Redundant SW development only viable in special cases.
- Insufficient separation of subsystems.
 Seemingly correct sub-systems may together behave incorrectly.
- Software designs have very high logical complexity.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- Redundancy as replication does not help against bugs.
 Redundant SW development only viable in special cases.
- Insufficient separation of subsystems.
 Seemingly correct sub-systems may together behave incorrectly.
- ► Software designs have very high logical complexity.
- Most SW engineers untrained to address correctness.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- ► Redundancy as replication does not help against bugs. Redundant SW development only viable in special cases.
- Insufficient separation of subsystems.
 Seemingly correct sub-systems may together behave incorrectly.
- ► Software designs have very high logical complexity.
- Most SW engineers untrained to address correctness.
- Cost efficiency favoured over reliability.

- Software systems compute non-continuous functions. Single bit-flip may change behaviour completely.
- ► Redundancy as replication does not help against bugs. Redundant SW development only viable in special cases.
- Insufficient separation of subsystems.
 Seemingly correct sub-systems may together behave incorrectly.
- ► Software designs have very high logical complexity.
- Most SW engineers untrained to address correctness.
- Cost efficiency favoured over reliability.
- Design practise for reliable software in immature state for complex (e.g., distributed) systems.

How to Ensure Software Correctness/Compliance?

```
A central strategy: testing (others: SW processes, reviews, libraries, . . . )
```

FMSD: Introduction CHALMERS/GU 200901 20 / 49

How to Ensure Software Correctness/Compliance?

```
A central strategy: testing (others: SW processes, reviews, libraries, . . . )
```

Testing against internal SW errors ("bugs")

- ▶ find (hopefully) representative test configurations
- check intentional system behaviour on those

How to Ensure Software Correctness/Compliance?

```
A central strategy: testing (others: SW processes, reviews, libraries, ...)
```

Testing against internal SW errors ("bugs")

- ▶ find (hopefully) representative test configurations
- check intentional system behaviour on those

Testing against external faults

- inject faults (memory, communication) by simulation or radiation
- trace fault propagation

FMSD: Introduction CHALMERS/GU 200901 20 / 49

Limitations of Testing

 Testing shows presence of errors, not their absence (exhaustive testing viable only for trivial systems)

Limitations of Testing

- Testing shows presence of errors, not their absence (exhaustive testing viable only for trivial systems)
- ► Representativeness of test cases/injected faults subjective. How to test for the unexpected? Rare cases?

Limitations of Testing

- Testing shows presence of errors, not their absence (exhaustive testing viable only for trivial systems)
- ► Representativeness of test cases/injected faults subjective. How to test for the unexpected? Rare cases?
- ► Testing is labour intensive, hence expensive

What are Formal Methods

- ▶ Rigorous methods for system design/development/analysis
- ► Mathematics and symbolic logic ⇒ formal
- Increase confidence in a system
- ► Two aspects:
 - System requirements
 - ► System implementation
- ► Formalise both
- ► Use tools for
 - exhaustive search for failing scenario, or
 - mechanical proof that implementation satisfies requirements

What are Formal Methods for

Cover every possible run

What are Formal Methods for

- Cover every possible run
- Complement other analysis and design methods
- ► Increase confidence in system correctness
- Good at finding bugs (in code and specification)
- Ensure certain properties of the system (model)
- ▶ Should ideally be as automated as possible

What are Formal Methods for

- Cover every possible run
- Complement other analysis and design methods
- ► Increase confidence in system correctness
- Good at finding bugs (in code and specification)
- Ensure certain properties of the system (model)
- ▶ Should ideally be as automated as possible

and

► Training in Formal Methods increases high quality development skills

FMSD: Introduction CHALMERS/GU 200901 23 / 49

- Simple properties
 - Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually

- Simple properties
 - Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...

- Simple properties
 - ► Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...
- Non-functional properties
 - Execution time, memory, usability, ...

- Simple properties
 - Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...
- ► Non-functional properties
 - Execution time, memory, usability, ...
- ► Full behavioural specification
 - Code functionality described by contracts

- Simple properties
 - ► Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...
- ► Non-functional properties
 - Execution time, memory, usability, ...
- ► Full behavioural specification
 - ► Code functionality described by contracts
 - Data consistency, system invariants
 (in particular for efficient, i.e., redundant, data representations)

- Simple properties
 - Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...
- ► Non-functional properties
 - Execution time, memory, usability, ...
- ► Full behavioural specification
 - ► Code functionality described by contracts
 - Data consistency, system invariants
 (in particular for efficient, i.e., redundant, data representations)
 - ► Modularity, encapsulation

- Simple properties
 - Safety properties
 Something bad will never happen (e.g., green light mutual exclusion)
 - Liveness properties
 Something good will happen eventually
- ► General properties of concurrent/distributed systems
 - deadlock-free, no starvation, fairness, ...
- ► Non-functional properties
 - Execution time, memory, usability, ...
- ► Full behavioural specification
 - ► Code functionality described by contracts
 - Data consistency, system invariants
 (in particular for efficient, i.e., redundant, data representations)
 - ► Modularity, encapsulation
 - Refinement relation

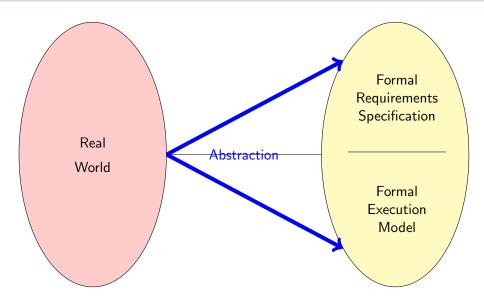
The Main Point of Formal Methods is Not

- to show correctness of entire systems
- ▶ to replace testing
- ▶ to replace good design practises

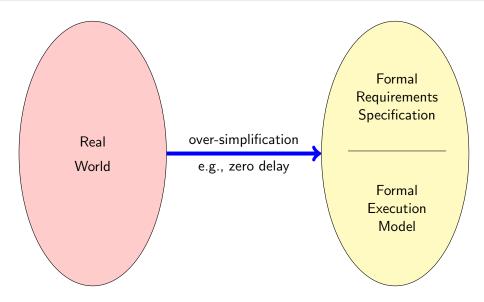
There is no silver bullet!

▶ No correct system without clear requirements & good design

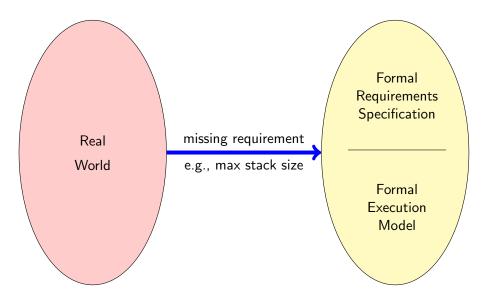
But ...

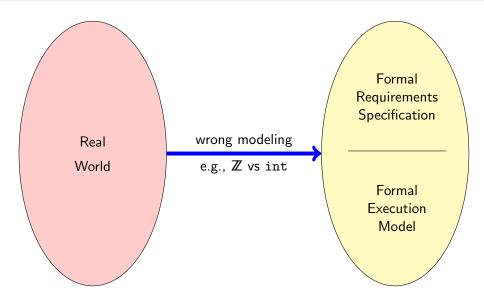

- Formal proof can replace arbitrarily many test cases
- ► Formal methods improve the quality of specs (even without formal verification)
- ► Formal methods guarantee specific properties of system (model)

A Fundamental Fact


Formalisation of system requirements is hard

Let's see why ...


Difficulties in Creating Formal Models


Difficulties in Creating Formal Models

Difficulties in Creating Formal Models

Difficulties in Creating Formal Models

Errors in specifications are as common as errors in code

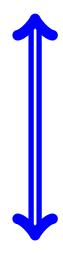
Errors in specifications are as common as errors in code, but their discovery gives deep insights in (mis)conceptions of the system.

Errors in specifications are as common as errors in code, but their discovery gives deep insights in (mis)conceptions of the system.

 Wellformedness and consistency of formal specs partly machine-checkable

Errors in specifications are as common as errors in code, but their discovery gives deep insights in (mis)conceptions of the system.

- Wellformedness and consistency of formal specs partly machine-checkable
- Declared signature (symbols) helps to spot incomplete specs


Errors in specifications are as common as errors in code, but their discovery gives deep insights in (mis)conceptions of the system.

- Wellformedness and consistency of formal specs partly machine-checkable
- ▶ Declared signature (symbols) helps to spot incomplete specs
- ► Failed verification of implementation against spec gives feedback on erroneous formalization

Another Fundamental Fact

Proving properties of systems can be hard

Level of System (Implementation) Description

Abstract level

- ► Finitely many states (bounded size datatypes)
- ► Simplification, unfaithful modeling inevitable
 - ► Automated proofs are (in principle) possible

Concrete level

- Unbounded size datatypes (pointer chains, dynamic containers, streams)
- Complex datatypes and control structures
- ► Realistic programming model (e.g., Java)
- Automated proofs hard or impossible!

Expressiveness of Specification

▶ Simple

- Simple or general properties
- Finitely many case distinctions
- Approximation, low precision
- Automated proofs are (in principle) possible

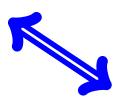
Complex

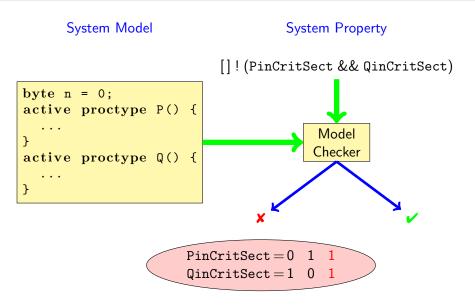
- Full behavioural specification
- Quantification over infinite or large domains
- High precision, tight modeling
- Automated proofs hard or impossible!

Main Approaches

Abstract programs,	Abstract programs,
Simple properties	Complex properties
Concrete programs,	Concrete programs,
Simple properties	Complex properties

Main Approaches


Model
Checking,
1st part
of course stract programs,
Simple properties
Concrete programs,
Simple properties
Concrete programs,
Simple properties
Complex properties
Complex properties


Main Approaches

Proof Automation

- "Automated" Proof ("batch-mode")
 - ► Not required: interaction
 - ► Required: tuning of tool parameters
 - ► Formal specification still "by hand"
- "Semi-Automated" Proof ("interactive")
 - Interaction (or lemmas) may be required
 - Need certain knowledge of tool internals Intermediate inspection can help
 - User steps are checked by tool

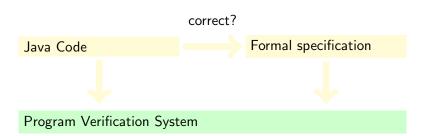
Model Checking in Industry—Examples

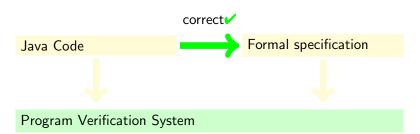
- Hardware verification
 - ► Good match between limitations of methods and application
 - ► Intel, Motorola, AMD, . . .
- Software verification
 - Specialized software: control systems, protocols
 - Typically no direct checking of executable system, but of abstractions
 - ► Bell Labs, Microsoft

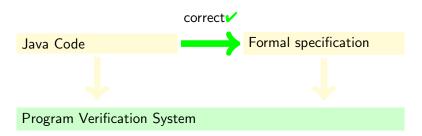
A Major Case Study with Spin

Checking feature interaction for telephone call processing software

- ► Software for PathStar[©] server from Lucent Technologies
- ► Automated abstraction of unchanged C code into PROMELA
- ▶ Web interface, with SPIN as back-end, to:
 - determine properties (ca. 20 temporal formulas)
 - invoke verification runs
 - report error traces
- Finds error trace, reported as C execution trace
- Work farmed out to 16 computers, daily, overnight runs
- ▶ 18 months, 300 versions of system model, 75 bugs found
- Strength: detection of undesired feature interactions (difficult with traditional testing)
- ► Main challenge: defining meaningful properties


Java Code


Formal specification


correct?

Java Code

Formal specification

Proof rules establish relation "implementation conforms to specs"

Deductive Verification in Industry—Examples

- Hardware verification
 - ► For complex subsystems, mostly floating-point units
 - ► Intel, Motorola, AMD, ...
- Software verification
 - Safety critical systems:
 - Paris driver-less metro (Meteor)
 - Emergency closing system in North Sea
 - Libraries
 - ► Implementations of Protocols
 - (critical parts of) Norwegian Election Software

Major Case Studies with KeY

Java Card 2.2.1 API Reference Implementation

- Reference implementation and full functional specification
- ► All Java Card 2.2.1 API classes and methods
 - ▶ 60 classes; ca. 5,000 LoC (250kB) source code
 - ▶ specification ca. 10,000 LoC
- Conformant to implementation on actual smart cards
- ► All methods fully verified against their spec
 - 293 proofs; 5–85,000 nodes
- ► Total effort several person months
- Most proofs fully automatic
- ► Main challenge: getting specs right

Major Case Studies with KeY: TimSort

TimSort

Hybrid sorting algorithm (insertion sort + merge sort) optimized for partially sorted arrays (typical for real-world data).

Major Case Studies with KeY: TimSort

TimSort

Hybrid sorting algorithm (insertion sort + merge sort) optimized for partially sorted arrays (typical for real-world data).

Facts

- Designed by Tim Peters (for Python)
- ► Since Java 1.7 default algorithm for non-primitive arrays/collections

Major Case Studies with KeY: TimSort

TimSort

Hybrid sorting algorithm (insertion sort + merge sort) optimized for partially sorted arrays (typical for real-world data).

Facts

- Designed by Tim Peters (for Python)
- ► Since Java 1.7 default algorithm for non-primitive arrays/collections

TimSort is used in

- ► Java (standard libraries OpenJDK, Oracle)
- Python (standard library)
- Android (standard library)
- ... and many more languages / frameworks!

► Tim Peters

- ► Tim Peters
- ► Sorting Algorithm Designer

- ► Tim Peters
- Sorting Algorithm Designer
- ▶ Python Guru

- ► Tim Peters
- Sorting Algorithm Designer
- ▶ Python Guru

Stijn de Gouw

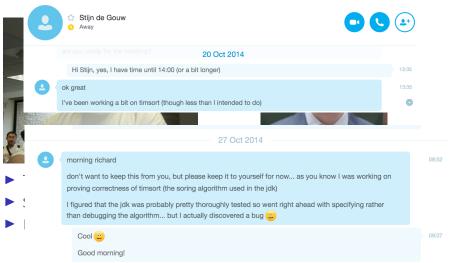
- ► Tim Peters
- ► Sorting Algorithm Designer
- ▶ Python Guru

- ► Stijn de Gouw
- Assistant Professor

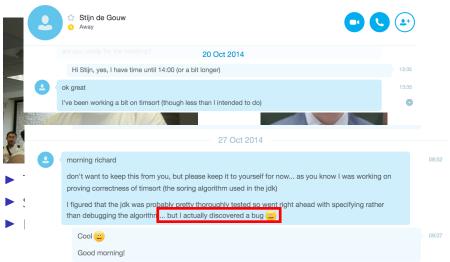
- ▶ Tim Peters
- Sorting Algorithm Designer
- Python Guru

- Stijn de Gouw
- Assistant Professor
- Formerly postman in the NL

- ▶ Tim Peters
- ► Sorting Algorithm Designer
- Python Guru


- ► Stijn de Gouw
- Assistant Professor
- Formerly postman in the NL
- Interested in sorting for professional reasons

- Tim Peters
- Sorting Algorithm Designer
- Python Guru


- Stijn de Gouw
- Assistant Professor
- Formerly postman in the NL
- Interested in sorting for professional reasons

TimSort: People

protessional reasons

TimSort: People

protessional reasons

Found Bug in Java Libraries' main Sorting Method using KeY

- java.util.Collections.sort and java.util.Arrays.sort implement TimSort
- ► KeY verification of OpenJDK implementation revealed bug.
- ► Same bug present in Android SDK, Phyton library, Haskell library, ...

Found Bug in Java Libraries' main Sorting Method using KeY

- java.util.Collections.sort and java.util.Arrays.sort implement TimSort
- ► KeY verification of OpenJDK implementation revealed bug.
- ► Same bug present in Android SDK, Phyton library, Haskell library, ...

Verified Fix using KeY

- Fixing the implementation
- Verified absence of the bug in new version with KeY

Found Bug in Java Libraries' main Sorti Method using KeY

- itil.Arrays.sort
- vealed bug.
- Same by researchers found an error in the explained here, logic of merge collapse, explained here, and with corrected code shown in It should be fixed anyway, and their sug-, Haskell library, ... Tim Peters via Python-Bugtracker
 - gested fix looks good to me.

Verified

- Fixing
- bug in new version with KeY

Found Bug in Java Libraries' main Sorti Method using KeY

- java.uti Constitutations.scor in the impleme for finding and fixing a bug in Time et al. impleme for finding and fixing a bug in Timsort itil.Arrays.sort
 - vealed bug.
 - , Haskell library, ...

g It should be fixed good in new version term Key

Verified

- Tim Peters via Fixing
- Verified

Tool Support is Essential

Reasons for Using Tools

- Automate repetitive tasks
- ► Avoid typos, etc.
- ► Cope with large/complex programs
- Make verification certifiable

Tool Support is Essential

Reasons for Using Tools

- Automate repetitive tasks
- Avoid typos, etc.
- ► Cope with large/complex programs
- ► Make verification certifiable

Tools used in this course:

SPIN to verify PROMELA programs against Temporal Logic specs
SPIN web interface developed for this course!

JSPIN front-end for SPIN

KeY to verify Java programs against contracts in JML All are free and run on Windows/Unixes/Mac.

Tool Support is Essential

Reasons for Using Tools

- Automate repetitive tasks
- Avoid typos, etc.
- ► Cope with large/complex programs
- Make verification certifiable

Tools used in this course:

SPIN to verify PROMELA programs against Temporal Logic specs
SPIN web interface developed for this course!

JSPIN front-end for SPIN

KeY to verify Java programs against contracts in JML All are free and run on Windows/Unixes/Mac. Install first SPIN and JSPIN on your computer, or make sure our SPIN web interface works for you.

Modelling, and modelling languages

- ► Modelling, and modelling languages
- ► Specification, and specification languages

- ► Modelling, and modelling languages
- Specification, and specification languages
- In depth analysis of possible system behaviour

- ► Modelling, and modelling languages
- Specification, and specification languages
- In depth analysis of possible system behaviour
- Typical types of errors

- ► Modelling, and modelling languages
- Specification, and specification languages
- In depth analysis of possible system behaviour
- Typical types of errors
- Reasoning about system (mis)behaviour

- ► Modelling, and modelling languages
- Specification, and specification languages
- In depth analysis of possible system behaviour
- Typical types of errors
- ► Reasoning about system (mis)behaviour
- **...**

Learning Outcomes—Knowledge and Understanding

- ► Explain the potential and limitations of using logic based verification methods for assessing and improving software correctness
- ► Identify what can and what cannot be expressed by certain specification/modeling formalisms
- ▶ Identify what can and cannot be analyzed with certain logics and proof methods

Learning Outcomes—Skills and Abilities

- Express safety and liveness properties of (concurrent) programs in a formal way
- Describe the basics of verifying safety and liveness properties via model checking
- Successfully employ tools which prove or disprove temporal properties
- Write formal specifications of object-oriented system units, using the concepts of method contracts and class invariants
- Describe how the connection between programs and formal specifications can be represented in a program logic
- Verify functional properties of simple Java programs with a verification tool

Learning Outcomes—Judgment and Approach

- Judge and communicate the significance of correctness for software development
- ► Employ abstraction, modelling, and rigorous reasoning when approaching the development of correctly functioning software

- FM in SE B. Beckert, R. Hähnle, T. Hoare, D. Smith, C. Green, S. Ranise, C. Tinelli, T. Ball, and S. K. Rajamani: Intelligent Systems and Formal Methods in Software Engineering. IEEE Intelligent Systems, 21(6):71–81, 2006 (Access to e-version via Chalmers Library)
 - KeY R. Hähnle: Quo Vadis Formal Verification. In: W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich editors. Vol 10001 of LNCS, Springer, 2016 (E-book at link.springer.com)
 - SPIN Gerard J. Holzmann: A Verification Model of a Telephone Switch. In: The Spin Model Checker, Chapter 14, Addison Wesley, 2004