
Finite automata and
formal languages

(DIT322, TMV028)

Nachiappan V.,
based on slides by Thomas Sewell

and Nils Anders Danielsson

2020-02-10

Today

▶ Converting regular expressions to finite
automata.

▶ More regular expression algebra.

▶ Closure properties of regular languages.

▶ Technique for proving that languages are not
regular.

Converting
REs to FA

Converting REs to FA

Given a regular expression 𝑒, we can construct an
𝜀-NFA by structural recursion on 𝑒.

...

∅

..

𝜀

.

𝜀

.. 𝑎.𝑎 ∈ Σ

Converting REs to FA: 𝑒1𝑒2

𝑒1𝑒2

.. 𝑒1. 𝑒2. 𝜀

Converting REs to FA: 𝑒1 + 𝑒2

𝑒1 + 𝑒2

..

𝑒1

.

𝜀

.

𝜀

. 𝑒2.
𝜀

.
𝜀

Converting REs to FA: 𝑒∗

𝑒∗

.. 𝑒.

𝜀

.

𝜀

. 𝜀. 𝜀

Which RE converts to the following 𝜀-NFA?

............ 𝜀.
𝜀

.

0

.
𝜀

. 𝜀.
𝜀

.

1

.
𝜀

. 𝜀.

𝜀

. 1

1. (0 + 1)1.
2. 01 + 1.
3. (0∗ + 1∗)1.
4. (0 + 1)∗1.

Regular
Expression

Algebra

Regular Expression Algebra

Recall from earlier:
▶ 𝑒1 = 𝑒2 if 𝐿(𝑒1) = 𝐿(𝑒2).
▶ Algebraic laws for ∅, 𝜀, 𝑎, 𝑒1 + 𝑒2, and 𝑒1𝑒2.

What about 𝑒∗?

Laws of the Closure Operator ∗

▶ (𝑒∗)∗ = 𝑒∗

▶ ∅∗ = 𝜀
▶ 𝜀∗ = 𝜀
▶ 𝑒𝑒∗ = 𝑒∗𝑒
▶ 𝑒1(𝑒2𝑒1)∗ = (𝑒1𝑒2)∗𝑒1 (called Shifting)
▶ (𝑒∗

1𝑒2)∗𝑒∗
1 = (𝑒1 + 𝑒2)∗ (called Denesting)

Which of the following equalities hold? You
may consider the alphabet {𝑎, 𝑏} if needed.

1. 𝑒∗𝑒∗ = 𝑒∗.
2. (𝑒1 + 𝑒2)∗ = 𝑒∗

1 + 𝑒∗
2.

3. 𝑒∗ = 𝑒𝑒∗ + 𝜀.
4. (𝜀 + ∅)∗ = 𝜀.

Disproving RE Equalities, quickly!

How do we disprove (𝑒1 + 𝑒2)∗ = 𝑒∗
1 + 𝑒∗

2 ?
▶ Replace expression variables with letters from

the alphabet: 𝑒1 with 𝑎, and 𝑒2 with 𝑏.

▶ Refute the equality (𝑎 + 𝑏)∗ = 𝑎∗ + 𝑏∗:
▶ 𝑎𝑏 ∈ 𝐿((𝑎 + 𝑏)∗) but 𝑎𝑏 ∉ 𝐿(𝑎∗ + 𝑏∗),
▶ hence 𝐿((𝑎 + 𝑏)∗) ≠ 𝐿(𝑎∗ + 𝑏∗),
▶ hence (𝑎 + 𝑏)∗ ≠ 𝑎∗ + 𝑏∗.

▶ Rejoice in cleverness of constructing a
counter-example ©.

Closure
Properties

Closure Properties of Regular Languages

Given two regular languages 𝐿1 and 𝐿2,

▶ 𝐿1 ∪ 𝐿2 is regular
▶ 𝐿1 ∩ 𝐿2 is regular
▶ 𝐿1 and 𝐿2 are regular

i.e., regular languages are closed under these
operations.

Proving Closure Properties

Proof for closure of regular languages under ∩:

▶ Given two regular languages 𝐿1 and 𝐿2, and
hence their respective DFAs 𝐴1 and 𝐴2,
construct the product DFA 𝐴1 ⊗ 𝐴2.

▶ 𝐿(𝐴1 ⊗ 𝐴2)
= 𝐿(𝐴1) ∩ 𝐿(𝐴2)
= 𝐿1 ∩ 𝐿2

▶ 𝐿(𝐴1 ⊗ 𝐴2) is regular, hence so is 𝐿1 ∩ 𝐿2.

Proving Closure Properties

Similarly, to show that regular languages are closed
under ∪ and , we use the corresponding DFA
constructions ⊕ and .

Given that 𝐿1, 𝐿2, and 𝐿3 are regular, which
of the following languages are also regular?

1. 𝐿1 ∪ (𝐿2 ∩ 𝐿3)
2. 𝐿1 − 𝐿2
3. 𝐿1
4. 𝐿1

∗

Proving Closure Properties using REs

Some closure properties can also be proved using
regular expressions:

▶ Given that 𝐿 is regular, it must have a
corresponding regular expression 𝑒.

▶ 𝑒∗ is a valid regular expression, and by its
semantics, 𝐿∗ is also regular.

The
Pumping
Lemma

Proving Languages are not Regular

▶ Some languages, such as {0𝑛1𝑛|𝑛 ≥ 1}, are
not regular.

▶ Intuitively, this is because FAs have a finite
number of states and cannot remember an
arbitrary number of input symbols.

▶ But how do we show this?

Proving Languages are not Regular

Let’s prove that 𝐿 = {0𝑛1𝑛|𝑛 ≥ 1} is not regular.
▶ Suppose that 𝐿 is regular. Then there must

exist a DFA 𝐴 with some 𝑘 states s.t.
𝐿(𝐴) = 𝐿.

▶ 0𝑘1𝑘 ∈ 𝐿, hence there must exist a sequence
of transitions:

.. 𝑠0. 𝑠1. 𝑠2. 𝑠𝑘.. 01. 02. 03...0𝑘

▶ Notice that the sequence involves 𝑘 + 1 state
variables.

Proving Languages are not Regular

Since 𝐴 only has 𝑘 states, by the pigeon hole
principle, some state must be “visited twice”:
𝑠𝑖 = 𝑠𝑗 for some distinct 𝑖 and 𝑗.

.. 𝑠0. 𝑠1. 𝑠𝑖/𝑗. 𝑠𝑘.. 01. 02...0𝑖.

0𝑖+1...0𝑗

.
0𝑗+1...0𝑘

Proving Languages are not Regular

Thus the DFA 𝐴 must be of the form:

...... 𝑥 = 01...0𝑖.

𝑦 = 0𝑖+1...0𝑗

.
𝑧 = 0𝑗+1...0𝑘1𝑘

Notice that the word 𝑥𝑦𝑧 is accepted as expected,
but so are the words 𝑥𝑧, 𝑥𝑦𝑦𝑧, 𝑥𝑦𝑦𝑦𝑧,..., etc.

Proving Languages are not Regular

▶ The words 𝑥𝑧, 𝑥𝑦𝑦𝑧, 𝑥𝑦𝑦𝑦𝑧..., etc., are
accepted by 𝐴, but are not in 𝐿 since they
don’t have the same number of 0s and 1s.

▶ Contradicts the fact that 𝐿(𝐴) = 𝐿, hence our
assumption must be wrong.

▶ Therefore, L is not regular.

The Pumping Lemma

▶ The Pumping Lemma provides a convenient
generalization of the previous proof as a
property that all regular languages must have.

▶ We can use it as a tool to argue by
contradiction that a given language is not
regular.

The Pumping Lemma, informally

“Informally, it says that all sufficiently long words in
a regular language may be pumped—that is, have a
middle section of the word repeated an arbitrary
number of times—to produce a new word that also
lies within the same language.” - Wikipedia

The Pumping Lemma, precisely
Given L is regular, there exists a constant 𝑛 such
that for all words 𝑤 of length 𝑚 with 𝑚 ≥ 𝑛, we
have 𝑤 = 𝑥𝑦𝑧 such that:
▶ |𝑦| > 0
▶ |𝑥𝑦| = 𝑗 s.t. 𝑗 ≤ 𝑛
▶ ∀𝑘 ≥ 0. 𝑥𝑦𝑘𝑧 ∈ 𝐿

...... 𝑥 = 𝑎1...𝑎𝑖.

𝑦 = 𝑎𝑖+1...𝑎𝑗

.
𝑧 = 𝑎𝑗+1...𝑎𝑚

Which of the following languages are not
regular? The alphabet is {0, 1}. If you
suspect that a language is not regular, use
the pumping lemma to verify by
contradiction.

1. Words with equal number of 0s and 1s.

2. {0𝑛10𝑛|𝑛 ≥ 1}.

Today

▶ Regular expressions to finite automata.

▶ RE laws involving the closure operator.

▶ Closure properties of regular languages.

▶ Pumping lemma for regular languages.

	Converting REs to FA
	Regular Expression Algebra
	Closure Properties
	The Pumping Lemma
	Conclusion

