Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson

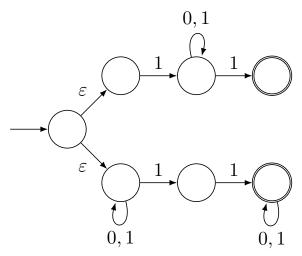
2020-02-03

Today

- ▶ NFAs with ε -transitions.
- ► Exponential blowup.

- ▶ Like NFAs, but with ε -transitions: The automaton can "spontaneously" make a transition from one state to another.
- ► Can be used to convert regular expressions to finite automata.

Strings over $\{0,1\}$ that start and end with a one, or that contain two consecutive ones:



An ε -NFA can be given by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

- ▶ A finite set of states (Q).
- An alphabet (Σ with $\varepsilon \notin \Sigma$).
- ▶ A transition function $(\delta \in Q \times (\Sigma \cup \{ \varepsilon \}) \to \wp(Q)).$
- ▶ A start state $(q_0 \in Q)$.
- ▶ A set of accepting states $(F \subseteq Q)$.

Transition diagrams

As for NFAs, but arrows can be labelled with ε .

Transition tables

As for NFAs, but with one column for ε .

ε -closure

ε -closure

The ε -closure of a state q consists of those states that one can reach from q by following zero or more ε -transitions.

ε -closure

Given an ε -NFA $A=(Q,\Sigma,\delta,q_0,F)$ one can, for each state $q\in Q$, define the ε -closure of q (a subset of Q) inductively in the following way:

$$\frac{q' \in \varepsilon\text{-}closure(q)}{q'' \in \varepsilon\text{-}closure(q)}$$

$$\frac{q' \in \varepsilon\text{-}closure(q)}{q'' \in \varepsilon\text{-}closure(q)}$$

Some notation

The ε -closure of a set $S \subseteq Q$:

$$\varepsilon\text{-}closure(S) = \bigcup_{s \in S} \varepsilon\text{-}closure(s)$$

Transition functions applied to a set $S \subseteq Q$:

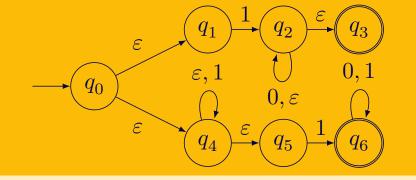
$$\delta(S, a) = \bigcup_{s \in S} \delta(s, a)$$
$$\hat{\delta}(S, w) = \bigcup_{s \in S} \hat{\delta}(s, w)$$

Computing the ε -closure

The ε -closure of q can be computed (perhaps not very efficiently) in the following way:

- ▶ Initialise C to $\{q\}$.
- ▶ Repeat until $\delta(C, \varepsilon) \subseteq C$:
 - ▶ Set C to $C \cup \delta(C, \varepsilon)$.
- ▶ Return C.

Which of the following propositions hold for the following ε -NFA over $\{0,1\}$?



$$1. \ q_0 \in \varepsilon\text{-}closure(q_0). \qquad 4. \ q_6 \in \varepsilon\text{-}closure(q_0).$$

 $\begin{array}{lll} \text{1.} & q_0 \in \varepsilon \text{ } closure(q_0). & \text{4.} & q_6 \in \varepsilon \text{ } closure(q_0). \\ \text{2.} & q_5 \in \varepsilon \text{-} closure(q_0). & \text{5.} & q_3 \in \varepsilon \text{-} closure(q_1). \\ \text{3.} & \varepsilon \text{-} closure(q_4) \subseteq \\ & \varepsilon \text{-} closure(q_0). & \varepsilon \text{-} closure(q_5). \end{array}$

Semantics

The language of an ε -NFA

The language L(A) of an $\varepsilon\text{-NFA}$ $A=(Q,\Sigma,\delta,q_0,F)$ is defined in the following way:

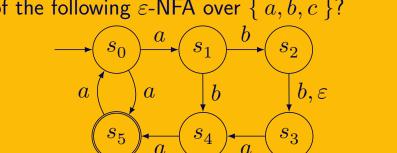
► A transition function for strings is defined by recursion:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to \wp(Q) \\ \hat{\delta}(q,\varepsilon) &= \varepsilon\text{-}closure(q) \\ \hat{\delta}(q,aw) &= \hat{\delta}(\delta(\varepsilon\text{-}closure(q),a),w) \end{split}$$

The language is

$$\left\{\;w\in\Sigma^*\;\middle|\;\widehat{\delta}(q_0,w)\cap F\neq\emptyset\;\right\}.$$

Which strings are members of the language of the following ε -NFA over $\{a, b, c\}$? \boldsymbol{a}



- 1. abba. 4. aaabaaa.
- 2. abbaca. 5. aaaabaa.
- 3. aaabaa. 6. abbaaaabaa.

Which of the following propositions are valid?

1.
$$\varepsilon$$
-closure(ε -closure(q)) = ε -closure(q).

1.
$$\varepsilon$$
-closure(ε -closure(q)) = ε -closure(q).

2.
$$\hat{\delta}(q, w) = \hat{\delta}(\varepsilon - closure(q), w)$$
.

3. $\hat{\delta}(\delta(\varepsilon\text{-}closure(q), a), w) =$ $\hat{\delta}(\varepsilon$ -closure $(\delta(q,a)), w)$.

Constructions

Subset construction

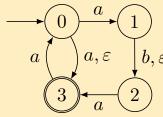
Given an $\varepsilon\text{-NFA }N=(Q,\Sigma,\delta,q_0,F)$ we can define a DFA D with the same alphabet in such a way that L(N)=L(D):

$$\begin{split} D &= (\wp(Q), \Sigma, \delta', \varepsilon\text{-}closure(q_0), F') \\ \delta'(S, a) &= \varepsilon\text{-}closure(\delta(S, a)) \\ F' &= \{ \ S \subseteq Q \mid S \cap F \neq \emptyset \ \} \end{split}$$

Every accessible state S is ε -closed (i.e. $S = \varepsilon$ -closure(S)).

If the subset construction is used to build a DFA corresponding to the following ε -NFA over $\{a,b\}$, and inaccessible states are removed, how many

states are there in the resulting DFA?



Regular languages

- ▶ Recall that a language $M \subseteq \Sigma^*$ is regular if there is some DFA (or NFA) A with alphabet Σ such that L(A) = M.
- ▶ For alphabets Σ with $\varepsilon \notin \Sigma$ a language $M \subseteq \Sigma^*$ is also regular if and only if there is some ε -NFA A with alphabet Σ such that L(A) = M.

Union

Recall:

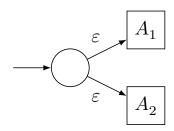
▶ One can use ε -NFAs to convert regular expressions to finite automata.

Union

Given two ε -NFAs A_1 and A_2 with the same alphabet we can construct an ε -NFA $A_1 \oplus A_2$ that satisfies the following property:

$$L(A_1 \oplus A_2) = L(A_1) \cup L(A_2).$$

Construction:



- ▶ The transitions go to the start states.
- ▶ States are renamed if the state sets overlap.

Can one do something similar for NFAs by "merging" the start states?

Given two NFAs
$$A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$$
 and $A_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ satisfying $Q_1\cap Q_2=\emptyset$ and $q_0\notin Q_1\cup Q_2$, is the language of the NFA
$$(f(Q_1\cup Q_2),\Sigma,f\circ\delta,q_0,f(F_1\cup F_2)), \text{ where }$$

$$f(S) = (S \setminus \{\ q_{01}, q_{02}\ \}) \cup \{\ q_0 \mid q_{01} \in S \vee q_{02} \in S\ \}\,,$$

$$\delta(s, a) = \begin{cases} \delta_1(q_{01}, a) \cup \delta_2(q_{02}, a), & \text{if } s = q_0,\\ \delta_1(s, a), & \text{if } s \in Q_1,\\ \delta_2(s, a), & \text{if } s \in Q_2 \end{cases}$$

equal to
$$L(A_1) \cup L(A_2)$$
?

Yes, always.
 No, not always, but sometimes.

Consider the following family of languages:

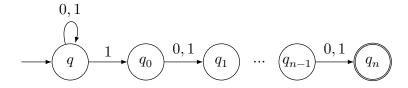
$$A \in \mathbb{N} \to \wp(\{0,1\}^*)$$

 $A(n) = \{u1v \mid u, v \in \{0,1\}^*, |v| = n\}$

The family:

$$A(n) = \{ u1v \mid u, v \in \{0, 1\}^*, |v| = n \}$$

For every $n \in \mathbb{N}$ the NFAs for A(n) with the least number of states have at most n+2 states:



Furthermore one can prove:

▶ For every $n \in \mathbb{N}$ the DFAs for A(n) with the least number of states have at least 2^{n+1} states.

A key part of the proof in the course text book uses the pigeonhole principle:

▶ A DFA over $\{0,1\}$ with less than 2^k states has to end up in the same state for at least two distinct k-bit strings.

Thus it might be inefficient to check if a string belongs to a language represented by an NFA (or ε -NFA) by using the following method:

- ► Translate the NFA to a corresponding DFA.
- Use the DFA to check if the string belongs to the language.

- ▶ This method is used in practice by some tools.
- ▶ It seems to work fine in many practical cases.
- Exercise (optional): Make such a tool "blow up" by giving it a short piece of carefully crafted input.

Today

- \triangleright ε -NFAs.
- \triangleright ε -closure.
- Semantics.
- Constructions.
- ► Exponential blowup.

Next lecture

- ► Regular expressions.
- ► Translation from finite automata to regular expressions.