Nils Anders Danielsson,
partly based on slides by Ana Bove

2020-01-30



Today

» Nondeterministic finite automata (NFAs).
» Equivalence of NFAs and DFAs.

» Perhaps something about how one can model
things using finite automata.



NFAs



NFAs

v

Like DFAs, but multiple transitions
may be possible.

v

An NFA can be in multiple states at once.

v

Can be easier to “program”.

v

Can be much more compact.



Strings over { 0,1 } that end with a one:

0,1

()

—>

When a one is read the NFA “guesses” whether it
should stay in s, or go to s;.



NFAs

An NFA can be given by a 5-tuple (Q, X, 9, qy, F):
A finite set of states (Q).

An alphabet (X).

A transition function (§ € Q@ X ¥ — p(Q)).
A start state (¢, € Q).

A set of accepting states (F' C Q).

vV v v v Vv



The language of an NFA

The language L(A) of an NFA A = (Q, %, 6, gy, F)
is defined in the following way:

» A transition function for strings is defined
by recursion:

» The language is

{wEZ*




Transition diagrams

As for DFAs, but with one change:

» For every transition d(q,a) =S, an arrow
marked with a from ¢ to every node in S.

Note:
» The alphabet is not defined unambiguously.

» No need for special treatment of missing
transitions, because d(q, a) can be empty.



As for DFAs, but with one change:

» The result of a transition is a set of states
instead of a state.



1. abba. 4. aaabaaa.

2. abbaca. 5. aaaabaa.

3. aaabaa. 6. abbaaaabaaa.



Which of the following propositions are valid?

1. 6(q,a) = (g, a)

2. 0(q,uv) = 6(q,vu)

3. 0(q,uwv) = UreS(q o d(r, u)
4. 6(% UU) - Urgg(qyu) 6<Ir7 U)

You may want to use the following lemma:

U -U U cw

yelU, . x Flz ) reXyeF(x



NFAs versus
DFASs



NFAs versus DFAs

» Every DFA can be seen as an NFA:
» Turn §(sy,a) = s4 into d(sy,a) = { s, }.
» Thus every language that can be defined by a
DFA can also be defined by an NFA.

» What about the other direction?
Are NFAs more powerful?

» No.



Subset construction

Given an NFA N = (Q, X, 4, qy, F') we can define a
DFA D with the same alphabet in such a way that
L(N)= L(D):

D= (p(@),%,0,{q},{SCQ|SNF+0})
6 (S,a) = U o(s,a)

ses

» The DFA keeps track of exactly which states
the NFA is in.

» It accepts if at least one of the NFA states is
accepting.



An NFA:

0,1

oo



Subset construction

If we apply the subset construction we get the
following DFA:

0
1
() iy O
0



If an NFA has 10 states, and we use the subset
construction to build a corresponding DFA, how
many states does the DFA have?



Accessible states

Note that some states cannot be reached from the
start state:

0
1
(1) iy O
0



Accessible states

If we remove non-accessible states, then we get
a DFA which defines the same language:

0

0



One can also rename the states:



Subset construction

» Note that one does not have to first construct
a DFA with 2/€! states, and then remove
inaccessible states.

» One can instead construct the DFA without
inaccessible states right away:
» Start with the start state.
» Add new states reachable from the start
state.
» Add new states reachable from those
states.
» And so on until there are no more new
states.



0,1

1

—{s0}




0,1
NOEO
0 1

—{so} {50}




0,1
NOEO
0 1

—{so} {s0} {s0:51}

*{80781}




0,1
NOEO
0 1

—{so} {80} {s0:51}
x{ 50,81} {50}




0,1
NOEO
0 1

—{so} {80} {8051}
x{s0,81 ) {50} {5081}




If the subset construction is used to build a DFA
corresponding to the following NFA over { a,b,c },
and inaccessible states are removed, how many
states are there in the resulting DFA?




Subset construction

Recall the subset construction for

N: (Q7E757QO7F>:
D=(p(@),%8{qp},{SCQ|SNF+0})
6 (S,a) = U i(s,a)

ses

How would you prove L(N) = L(D)?

S(qo,w)ﬂF#@}

({ g}, w) € }
(SCQ|ISNF+0}

L(N)={wex

L(D)—{wEE*




Subset construction

Recall the subset construction for

N: (Q7E757QO7F>:
D= (p(Q),%,0,{q},{SCQISNF+#0})
6 (S,a) = U i(s,a)

sesS

How would you prove L(N) = L(D)?

S(qo,w)ﬂF#@}
0({aqp}w)NF#0}

L(N)={wex
LD)={wex"




Subset construction

This follows from

Yw e X' Vg € Q. d(g,w) =8 ({q},w),

which can be proved by induction on the structure
of the string, using the following lemma:

Vwe T VS C Q. (S,w) = ({s},w
seS

The lemma can also be proved by induction on the
structure of the string.



Regular languages

» Recall that a language M C >* is regular if
there is some DFA A with alphabet ¥ such
that L(A) = M.

» A language M C X* is also regular if there is
some NFA A with alphabet ¥ such that
L(A) =M.



Models



A model of a door

Unlock

Locked, closed Unlocked, closed

Open

Unlocked, open

Unlock

Locked, open

Lock

Alphabet: { Lock, Unlock, Open, Close }.



A model of a door

Unlock

Locked, closed Unlocked, closed

Open

Unlocked, open

Unlock

Locked, open

Lock

What happens if we try to lock a locked door? Does
the system “crash”?



Try to model something as a finite automaton:
» The traffic lights of an intersection.
» A coin-operated vending machine.
> ...

How well does your model work? Does it make sense
to model the phenomenon as a finite automaton?



» Nondeterministic finite automata (NFAs).

» The subset construction.
» Models.



Nondeterministic finite automata with e-transitions.



	NFAs
	NFAs versus DFAs
	Models
	Conclusion

