
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson,
partly based on slides by Ana Bove

2020-01-30

Today

▶ Nondeterministic finite automata (NFAs).
▶ Equivalence of NFAs and DFAs.
▶ Perhaps something about how one can model

things using finite automata.

NFAs

NFAs

▶ Like DFAs, but multiple transitions
may be possible.

▶ An NFA can be in multiple states at once.
▶ Can be easier to “program”.
▶ Can be much more compact.

NFAs

Strings over { 0, 1 } that end with a one:

.. 𝑠0. 𝑠1..

0, 1

. 1

When a one is read the NFA “guesses” whether it
should stay in 𝑠0 or go to 𝑠1.

NFAs

An NFA can be given by a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹):
▶ A finite set of states (𝑄).
▶ An alphabet (Σ).
▶ A transition function (𝛿 ∈ 𝑄 × Σ → ℘(𝑄)).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A set of accepting states (𝐹 ⊆ 𝑄).

The language of an NFA
The language 𝐿(𝐴) of an NFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)
is defined in the following way:
▶ A transition function for strings is defined

by recursion:

̂𝛿 ∈ 𝑄 × Σ∗ → ℘(𝑄)
̂𝛿(𝑞, 𝜀) = { 𝑞 }
̂𝛿(𝑞, 𝑎𝑤) = ⋃𝑟∈𝛿(𝑞,𝑎)

̂𝛿(𝑟, 𝑤)

▶ The language is

{ 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ } .

Transition diagrams

As for DFAs, but with one change:
▶ For every transition 𝛿(𝑞, 𝑎) = 𝑆, an arrow

marked with 𝑎 from 𝑞 to every node in 𝑆.
Note:
▶ The alphabet is not defined unambiguously.
▶ No need for special treatment of missing

transitions, because 𝛿(𝑞, 𝑎) can be empty.

Transition tables

As for DFAs, but with one change:
▶ The result of a transition is a set of states

instead of a state.

Which strings are members of the language
of the following NFA over { 𝑎, 𝑏, 𝑐 }?

.. 𝑠0. 𝑠1. 𝑠2.

𝑠4

.

𝑠3

.. 𝑎.

𝑎

. 𝑏.

𝑏

.

𝑏

.

𝑎

.

𝑎

.

𝑎

1. 𝑎𝑏𝑏𝑎.
2. 𝑎𝑏𝑏𝑎𝑐𝑎.
3. 𝑎𝑎𝑎𝑏𝑎𝑎.

4. 𝑎𝑎𝑎𝑏𝑎𝑎𝑎.
5. 𝑎𝑎𝑎𝑎𝑏𝑎𝑎.
6. 𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎.

Which of the following propositions are valid?
1. ̂𝛿(𝑞, 𝑎) = 𝛿(𝑞, 𝑎).
2. ̂𝛿(𝑞, 𝑢𝑣) = ̂𝛿(𝑞, 𝑣𝑢).
3. ̂𝛿(𝑞, 𝑢𝑣) = ⋃𝑟∈ ̂𝛿(𝑞,𝑣)

̂𝛿(𝑟, 𝑢).
4. ̂𝛿(𝑞, 𝑢𝑣) = ⋃𝑟∈ ̂𝛿(𝑞,𝑢)

̂𝛿(𝑟, 𝑣).

You may want to use the following lemma:

⋃
𝑦 ∈ ⋃𝑥 ∈ 𝑋 𝐹(𝑥)

𝐺(𝑦) = ⋃
𝑥 ∈ 𝑋

⋃
𝑦 ∈ 𝐹(𝑥)

𝐺(𝑦)

NFAs versus
DFAs

NFAs versus DFAs

▶ Every DFA can be seen as an NFA:
▶ Turn 𝛿(𝑠1, 𝑎) = 𝑠2 into 𝛿(𝑠1, 𝑎) = { 𝑠2 }.

▶ Thus every language that can be defined by a
DFA can also be defined by an NFA.

▶ What about the other direction?
Are NFAs more powerful?

▶ No.

Subset construction
Given an NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) we can define a
DFA 𝐷 with the same alphabet in such a way that
𝐿(𝑁) = 𝐿(𝐷):

𝐷 = (℘(𝑄), Σ, 𝛿′, { 𝑞0 } , { 𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅ })
𝛿′(𝑆, 𝑎) = ⋃

𝑠∈𝑆
𝛿(𝑠, 𝑎)

▶ The DFA keeps track of exactly which states
the NFA is in.

▶ It accepts if at least one of the NFA states is
accepting.

Subset construction

An NFA:

.. 𝑠0. 𝑠1..

0, 1

. 1

Subset construction

If we apply the subset construction we get the
following DFA:

.. { 𝑠0 }. { 𝑠0, 𝑠1 }.

{ 𝑠1 }

.

∅

..

0

.

1

.

0

. 1.

0, 1

.

0, 1

If an NFA has 10 states, and we use the subset
construction to build a corresponding DFA, how
many states does the DFA have?

Accessible states

Note that some states cannot be reached from the
start state:

.. { 𝑠0 }. { 𝑠0, 𝑠1 }.

{ 𝑠1 }

.

∅

..

0

.

1

.

0

. 1.

0, 1

.

0, 1

Accessible states

If we remove non-accessible states, then we get
a DFA which defines the same language:

.. { 𝑠0 }. { 𝑠0, 𝑠1 }..

0

.

1

.

0

. 1

Accessible states

One can also rename the states:

.. 𝑞0. 𝑞1..

0

.
1

.

0

. 1

Subset construction
▶ Note that one does not have to first construct

a DFA with 2|𝑄| states, and then remove
inaccessible states.

▶ One can instead construct the DFA without
inaccessible states right away:
▶ Start with the start state.
▶ Add new states reachable from the start

state.
▶ Add new states reachable from those

states.
▶ And so on until there are no more new

states.

Subset construction

.. 𝑠0. 𝑠1..

0, 1

. 1

0 1
→ { 𝑠0 }

{ 𝑠0 } { 𝑠0, 𝑠1 }
∗ { 𝑠0, 𝑠1 } { 𝑠0 } { 𝑠0, 𝑠1 }

Subset construction

.. 𝑠0. 𝑠1..

0, 1

. 1

0 1
→ { 𝑠0 } { 𝑠0 }

{ 𝑠0, 𝑠1 }
∗ { 𝑠0, 𝑠1 } { 𝑠0 } { 𝑠0, 𝑠1 }

Subset construction

.. 𝑠0. 𝑠1..

0, 1

. 1

0 1
→ { 𝑠0 } { 𝑠0 } { 𝑠0, 𝑠1 }

∗ { 𝑠0, 𝑠1 }

{ 𝑠0 } { 𝑠0, 𝑠1 }

Subset construction

.. 𝑠0. 𝑠1..

0, 1

. 1

0 1
→ { 𝑠0 } { 𝑠0 } { 𝑠0, 𝑠1 }

∗ { 𝑠0, 𝑠1 } { 𝑠0 }

{ 𝑠0, 𝑠1 }

Subset construction

.. 𝑠0. 𝑠1..

0, 1

. 1

0 1
→ { 𝑠0 } { 𝑠0 } { 𝑠0, 𝑠1 }

∗ { 𝑠0, 𝑠1 } { 𝑠0 } { 𝑠0, 𝑠1 }

If the subset construction is used to build a DFA
corresponding to the following NFA over { 𝑎, 𝑏, 𝑐 },
and inaccessible states are removed, how many
states are there in the resulting DFA?

.. 0. 1. 2.

4

.

3

.. 𝑎.

𝑎

. 𝑏.

𝑏

. 𝑏.

𝑎

.

𝑎

.

𝑎

Subset construction
Recall the subset construction for
𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹):

𝐷 = (℘(𝑄), Σ, 𝛿′, { 𝑞0 } , { 𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅ })
𝛿′(𝑆, 𝑎) = ⋃

𝑠∈𝑆
𝛿(𝑠, 𝑎)

How would you prove 𝐿(𝑁) = 𝐿(𝐷)?

𝐿(𝑁) = { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ }

𝐿(𝐷) = { 𝑤 ∈ Σ∗ ∣ 𝛿′({ 𝑞0 } , 𝑤) ∈
{ 𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅ } }

Subset construction
Recall the subset construction for
𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹):

𝐷 = (℘(𝑄), Σ, 𝛿′, { 𝑞0 } , { 𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅ })
𝛿′(𝑆, 𝑎) = ⋃

𝑠∈𝑆
𝛿(𝑠, 𝑎)

How would you prove 𝐿(𝑁) = 𝐿(𝐷)?

𝐿(𝑁) = { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ }
𝐿(𝐷) = { 𝑤 ∈ Σ∗ ∣ 𝛿′({ 𝑞0 } , 𝑤) ∩ 𝐹 ≠ ∅ }

Subset construction

This follows from

∀𝑤 ∈ Σ∗. ∀𝑞 ∈ 𝑄. ̂𝛿(𝑞, 𝑤) = 𝛿′({ 𝑞 } , 𝑤),

which can be proved by induction on the structure
of the string, using the following lemma:

∀𝑤 ∈ Σ∗. ∀𝑆 ⊆ 𝑄. 𝛿′(𝑆, 𝑤) = ⋃
𝑠∈𝑆

𝛿′({ 𝑠 } , 𝑤)

The lemma can also be proved by induction on the
structure of the string.

Regular languages

▶ Recall that a language 𝑀 ⊆ Σ∗ is regular if
there is some DFA 𝐴 with alphabet Σ such
that 𝐿(𝐴) = 𝑀 .

▶ A language 𝑀 ⊆ Σ∗ is also regular if there is
some NFA 𝐴 with alphabet Σ such that
𝐿(𝐴) = 𝑀 .

Models

A model of a door

.. Locked, closed. Unlocked, closed.

Locked, open

.

Unlocked, open

..

Unlock

.

Lock

.

Open

.

Close

.

Lock

.

Unlock

Alphabet: { Lock, Unlock, Open, Close }.

A model of a door

.. Locked, closed. Unlocked, closed.

Locked, open

.

Unlocked, open

..

Unlock

.

Lock

.

Open

.

Close

.

Lock

.

Unlock

What happens if we try to lock a locked door? Does
the system “crash”?

Try to model something as a finite automaton:
▶ The traffic lights of an intersection.
▶ A coin-operated vending machine.
▶ …

How well does your model work? Does it make sense
to model the phenomenon as a finite automaton?

Today

▶ Nondeterministic finite automata (NFAs).
▶ The subset construction.
▶ Models.

Next lecture

Nondeterministic finite automata with 𝜀-transitions.

	NFAs
	NFAs versus DFAs
	Models
	Conclusion

