Nils Anders Danielsson

2020-02-03

» NFAs with e-transitions.
» Exponential blowup.

e-NFAs

e-NFAs

» Like NFAs, but with e-transitions:
The automaton can “spontaneously” make a
transition from one state to another.

» Can be used to convert regular expressions to
finite automata.

e-NFAs

Strings over { 0,1 } that start and end with a one,
or that contain two consecutive ones:

e-NFAs

An e-NFA can be given by a 5-tuple
(@Q,%,0,qy, F):

> A finite set of states (Q).

> An alphabet (X with ¢ ¢).

» A transition function

(e x(ZU{c}) = p(@)
> A start state (¢, € Q).
» A set of accepting states (F C Q).

As for NFAs, but arrows can be labelled with €.

As for NFAs, but with one column for €.

e-closure

The e-closure of a state g consists of
those states that one can reach from ¢
by following zero or more e-transitions.

e-closure

Given an e-NFA A = (Q, X, 9, ¢y, F') one can, for
each state g € @, define the e-closure of ¢ (a subset
of ()) inductively in the following way:

q € e-closure(q)

q' € e-closure(q) q¢" €46(¢,¢)

q" € e-closure(q)

The e-closure of a set S C Q:

e-closure(S) = U e-closure(s)

seS

Transition functions applied to a set S C Q:

d(S,a) = U i(s,a)

sesS

3(S,w) = | d(s,w)

seS

Computing the e-closure

The e-closure of ¢ can be computed (perhaps not
very efficiently) in the following way:

> Initialise C' to { q }.

> Repeat until 6(C,¢e) C C"
» Set C'to C'UJ(C,e).

» Return C.

Which of the following propositions hold for
the following e-NFA over { 0,1 }?

1. gy € e-closure(qy). 4. qg € e-closure(qg).
2. q5 € e-closure(qy). 5. qg € e-closure(qy).

3. e-closure(q,) C 6. e-closure(q,) C
e-closure(q). e-closure(qs).

Semantics

The language of an e-NFA
The language L(A) of an e-NFA
A=(Q,%,0,qy, F) is defined in the following way:

» A transition function for strings is defined
by recursion:

» The language is

{wEZ* g(qo,w)ﬂF#@}.

1. abba. 4. aaabaaa.

2. abbaca. 5. aaaabaa.
3. aaabaa. 6. abbaaaabaa.

Which of the following propositions are valid?

1. e-closure(e-closure(q)) = e-closure(q).

2. S(q, w) = 5(€—closure(q), w).

3. (i(é(s—closure(q), a),w) =
d(e-closure(d(q,a)),w).

Constructions

Subset construction

Given an e-NFA N = (Q, %, 4, qy, F') we can define
a DFA D with the same alphabet in such a way that
L(N) = L(D):

D = (p(Q),%,0",e-closure(qq), F’)
6’ (S,a) = e-closure(d(S,a))
Fr={SCQ|SNF+0}

Every accessible state S is e-closed

(i.e. S = e-closure(S)).

If the subset construction is used to build a DFA
corresponding to the following e-NFA over { a,b },
and inaccessible states are removed, how many
states are there in the resulting DFA?

Regular languages

» Recall that a language M C X* is regular if
there is some DFA (or NFA) A with alphabet
Y such that L(A) = M.

» For alphabets ¥ with € ¢ 3 a language
M C X¥* is also regular if and only if there is
some e-NFA A with alphabet ¥ such that
L(A)= M.

Recall:

» One can use e-NFAs to convert regular
expressions to finite automata.

Union

Given two e-NFAs A, and A, with the same
alphabet we can construct an e-NFA A, @ A, that
satisfies the following property:

L<A1 S” Az) — L(A1> U L(Az)-

Construction:
: ji
€

» The transitions go to the start states.
» States are renamed if the state sets overlap.

A,

Ay

Can one do something similar for NFAs by
“merging” the start states?

Given two NFAs A; = (Q4,%,6;, 401, F}) and
Ay =(Q2, 5,05, oo, Fy) satisfying Q; N Q5 =0 and
qo ¢ Q1 U Q, is the language of the NFA
(f(RIUQ2),X, fod,qy, f(F, UF,;)), where
F(S)=(5\{q01:902})U{do |01 €SVap €5},
61(go1,a) Uds(goa,a), if s =gqo,
5(s,a) =< 8,(s,a), if s € Qy,
d5(s, a), if s €@,

equal to L(A;) U L(A,)?

1. Yes, always. 3. No, not always,
2. No, never. but sometimes.

Exponential
blowup

Consider the following family of languages:

AeN=p({0,1})
An) ={ulv|u,ve{0,1}",|v|=n}

Exponential blowup

The family:
A(n) = {ulv|u,0€{0,1} ,|v]=n}

For every n € N the NFAs for A(n) with the least
number of states have at most n + 2 states:

0,1

Exponential blowup

Furthermore one can prove:
> For every n € N the DFAs for A(n) with the

least number of states have at least 27!
states.

A key part of the proof in the course text book uses
the pigeonhole principle:

» A DFA over { 0,1 } with less than 2 states
has to end up in the same state for at least two
distinct k-bit strings.

Exponential blowup

Thus it might be inefficient to check if a string
belongs to a language represented by an NFA (or
e-NFA) by using the following method:
» Translate the NFA to a corresponding DFA.
» Use the DFA to check if the string belongs to
the language.

Exponential blowup

» This method is used in practice by some tools.
» |t seems to work fine in many practical cases.
» Exercise (optional):
Make such a tool “blow up” by giving it a short
piece of carefully crafted input.

e-NFAs.
e-closure.
Semantics.
Constructions.

vV v v Vv Vv

Exponential blowup.

» Regular expressions.

» Translation from finite automata to regular
expressions.

	ε-NFAs
	ε-closure
	Semantics
	Constructions
	Exponential blowup
	Conclusion

