Nils Anders Danielsson

2020-03-09



» A summary of the course.



Proofs and
iInduction



Throughout the course we have talked about:
» How to attack a problem.
» How to prove something.



Proofs

Some examples:

» One way to prove (p = ¢q) = 7 is to assume
that you are given a method for proving q
given p, and use that to prove r.

» You can prove —p by finding a counterexample
to p, i.e. showing that p leads to a
contradiction.



Induction

Mathematical induction.
Complete induction.
Mutual induction.

vV v v Vv

Inductively defined sets:

» Primitive recursion.
» Structural induction.

v

Inductively defined subsets.



One way to structure a proof by induction

If you want to prove something by induction on the
structure of a list of natural numbers:
» State what you want to prove, and how you
intend to prove it:

Let us prove Vs € List(N).P(xs), where
P(zs) = ..., by induction on the structure of

the list.
» Prove each case:

We have two cases:
» P(nil) holds because..

» Given z € N, xs € List(N) and P(xs), we
can prove P(cons(z, zs)) by..



Regular
languages



Terminology, notation:
» Alphabets.
» Strings.

v

Languages.
Concatenation.

>
» Exponentiation.
» Kleene star.

>



Deterministic.

5-tuples.

Transition diagrams.

Transition tables.

Transition functions for strings (4).
The language of a DFA.

vV v v v v v



States can be:
» Accessible.
» Equivalent to each other.
» Distinguishable from each other.



Nondeterministic.

5-tuples.

Transition diagrams.

Transition tables.

Transition functions for strings (4).
The language of an NFA.

vV v v v v v



DFAs and NFAs

» DFAs can easily be turned into NFAs.

» NFAs can be turned into DFAs:
» The subset construction.
» Optimisation: Skip inaccessible states.
» Potential problem: Exponential blowup.



e-NFAs

Nondeterministic and with e-transitions.
5-tuples.

Transition diagrams.

Transition tables.

e-closure.

~

Transition functions for strings (9).

vV v v v v v v

The language of an e-NFA.



DFAs, NFAs and e-NFAs

» NFAs can easily be turned into e-NFAs.
» -NFAs can be turned into DFAs:

» The subset construction with e-closure.
» Optimisation: Skip inaccessible states.



Regular expressions

» Syntax.
» The language of a regular expression.

» Proving that two regular expressions denote
the same language:

» Using known equalities and equational
reasoning.

» Using known inequalities, inequational
reasoning and antisymmetry.

» By converting to DFAs and proving that
the DFAs denote the same language.



e-NFAs and regular expressions

Translating regular expressions to equivalent
e-NFAs:

» Easy.
Translating e-NFAs to equivalent regular
expressions:

» By eliminating states.

» By using Arden’s lemma:
The equation X = AX U B has
the least solution X = A*B.



Regular languages

» Definition in terms of DFAs, NFAs, e-NFAs or
regular expressions.
» The pumping lemma.
» Closure properties:
» Union.
» Concatenation.
Kleene star/plus.
Intersection (product construction).
Complement.

v vy



The pumping lemma

For every alphabet X and regular language L C X*.

dm € N.
YweL w>m=
dt,u, v € XF.

w=tuwAu#FeAtu<mA
VneN. tu"v e L

» The pumping lemma can be used to prove that
a language is not regular.



The pumping lemma

For every alphabet X and regular language L C X*.

dm € N.
YweL w>m=
dt,u, v € XF.

w=tuwAu#FeAtu<mA
VneN. tu"v e L

» The last five lines are a necessary, but not a
sufficient, condition for being regular:
there is at least one non-regular language for
which they hold.



The pumping lemma

For every alphabet X and regular language L C X*.

dm € N.
YweL w>m=
dt,u, v € XF.

w=tuwAu#FeAtu<mA
VneN. tu"v e L

» Do not give “the pumping lemma holds, so the
language is regular” as an exam answer.



Regular languages

Algorithms:
» Conversions between different formats.
» Is the language empty?
» Is a given string a member of the language?
» Are two regular languages equal?
» Are two states equivalent?
Minimisation of DFAs.

v



Context-free
languages



4-tuples:
» Nonterminals.
» Terminals.
» Productions.
» Start symbol.



Context-free grammars

The language of a CFG can be defined in several
equivalent ways:

» Derivations.
Leftmost (rightmost) derivations.
Recursive inference.

v v VY

Parse trees.



» Ambiguous grammars.
» Associativity.
» Precedence.



» Chomsky normal form:
A—aorA— BC.

» BIN, DEL, UNIT, TERM.



Pushdown automata

» A kind of finite automaton with a single stack.
» 7-tuples.

» Instantaneous descriptions.

» Transition relation ().

» The languages of a PDA P: L(P) and N(P).



Context-free languages

» Definition in terms of CFGs or PDAs,
which define the same class of languages.

» The pumping lemma.

» Closure properties:

Substitution.

Union.

Concatenation.

Kleene star/plus.

Homomorphism.

Intersection with a regular language.

v

vV v.v. vy



Only 32% answered the following quiz question
correctly. Try to use closure properties.

Which of the following languages, if any, are

context-free?

1. {uwwwv |uwe {0}, ve {1}T}U

{uvvu | v € {0}, v e {1}7}

2. {uuwvv | v e {0}, ve {1}7} N
{uvvu | v e {0}, v e {1}7}
{ssttuvvu | s,u € {0}",t,v € {1}"}
{uvvvuvvu | v e {0}, v e {1}7}
{(wvvu)™ | w e {0}, v e {1}",n e N}
{(ab)™c®™(ab)™ | m,n € N}
{uvu | u € {0,1}*,v € {2,3}*}

LDl s e



Context-free languages

Algorithms:
» Generating symbols.
» Is the language empty?
» Nullable symbols.
» Is the empty string a member of the language?
» Is a nonempty string a member of

the language?
» The CYK algorithm.



Recursive or
recursively

enumerable
languages



Turing machines

v

A kind of simple computer.

v

Read /write head, unbounded tape,
finite set of states.

7-tuples.

Instantaneous descriptions.
Transition relation ().
The language of a TM.
Halting.

vV v v v v Vv

Undecidable problem:s.



Recursive languages

» Definition in terms of (halting) TMs, or
lambda expressions, or recursive functions, or...

» The Church-Turing thesis.



» Definition in terms of TMs, or lambda
expressions, or recursive functions, or...



A hierarchy of languages over the alphabet X
(if |X] > 2):

Finite

Regular

Context-free

Recursive

Recursively enumerable

p(X")

LOR SRR 99



A hierarchy

A hierarchy of languages over the alphabet X
(if |X] > 2):

Finite

Regular

Context-free

Recursive

Recursively enumerable

P(X7)

It might not be a good idea to give “the language is
context-free, but not regular” as an exam answer.

LOR OR 98 909



Discuss what you have learnt in this course.

» What has been most interesting?
» What has been least interesting?

» What would you like to know more about?
> ..



Coming up

» Next lecture:
» Old exam questions.
» Deadline for the seventh assignment:

2020-03-13, 23:59.

(Only one exercise, five points.)



	Proofs and induction
	Regular languages
	Context-free languages
	Recursive or recursively enumerable languages
	Conclusion

