
Finite automata and
formal languages

(DIT322, TMV028)

Nils Anders Danielsson

2020-02-27

Today

▶ Grammar transformations.
▶ Chomsky normal form.
▶ The pumping lemma for

context-free languages.

Old exams

If you look at the sample solutions for the old
exams, note that I have changed some notation:
▶ 𝐿L used to be 𝐿∗.

Grammar
transforma-

tions

Grammar transformations

▶ A number of transformations of grammars.
▶ Will be used for parsing (next lecture).
▶ I have taken some information and terminology

from “To CNF or not to CNF? An Efficient Yet
Presentable Version of the CYK Algorithm” by
Lange and Leiß.

Bin

▶ Result: No production 𝐴 → 𝛼 where |𝛼| ≥ 3.
▶ Replace each production 𝐴 → 𝑋1𝑋2…𝑋𝑛,

where 𝑛 ≥ 3, with:

𝐴 → 𝑋1𝐴2
𝐴2 → 𝑋2𝐴3

⋮
𝐴𝑛−1 → 𝑋𝑛−1𝑋𝑛

Here 𝐴2, …, 𝐴𝑛−1 are new nonterminals.
▶ 𝐿(Bin(𝐺)) = 𝐿(𝐺).

Del

▶ Result: No “deletion rules”,
i.e. productions of the form 𝐴 → 𝜀.

▶ A nonterminal 𝐴 is nullable if 𝐴 ⇒∗ 𝜀.

Del
An example:
▶ Replace the production 𝐴 → 𝛼𝐵𝛽𝐶𝛾, where 𝐵

and 𝐶 are the only nullable nonterminals, with

𝐴 → 𝛼𝐵𝛽𝐶𝛾,
𝐴 → 𝛼𝛽𝐶𝛾,
𝐴 → 𝛼𝐵𝛽𝛾 and, if 𝛼𝛽𝛾 ≠ 𝜀,
𝐴 → 𝛼𝛽𝛾.

▶ The new productions are not deletion rules.
▶ If we do this for every production, then

no nonterminal will be nullable, and
𝐿(Del(𝐺), 𝐴) = 𝐿(𝐺, 𝐴) ∖ { 𝜀 }.

Del

𝐿(Del(𝐺)) = 𝐿(𝐺) ∖ { 𝜀 }.

Del

If Del is applied to the following grammar,
how many productions does the resulting
grammar contain?

({ 𝑆, 𝐴 } , { 0 } , (𝑆 → (𝑆𝐴)10 ∣ 𝜀, 𝐴 → 0), 𝑆)

Del

▶ The Del transformation can make the
grammar much larger.

▶ If every production 𝐴 → 𝛼 satisfies |𝛼| ≤ 2,
then the blowup is contained.

▶ Run Bin before Del.

Unit

▶ Result: No production of the form 𝐴 → 𝐵.
▶ (𝐴, 𝐵) is a unit pair if 𝐴 = 𝐵 or

𝐴 → 𝐶1 → ⋯ → 𝐶𝑛 → 𝐵 (where 𝑛 ∈ ℕ).
▶ Include exactly the following productions:

{𝐴 → 𝛼 | (𝐴, 𝐵) is a unit pair,
𝐵 → 𝛼 ∈ 𝑃,
𝛼 is not a single nonterminal}

Unit
Example:
▶ Before:

𝐴 → 1 ∣ 𝐵
𝐵 → 2 ∣ 𝐶
𝐶 → 𝐴𝐵

▶ After:

𝐴 → 1 ∣ 2 ∣ 𝐴𝐵
𝐵 → 2 ∣ 𝐴𝐵
𝐶 → 𝐴𝐵

𝐿(Unit(𝐺)) = 𝐿(𝐺).

Unit

The resulting grammar could be much larger than
the original one:

𝐴1 → 𝐴2 ∣ 1
𝐴2 → 𝐴3 ∣ 2
𝐴3 → 𝐴4 ∣ 3

⋮
𝐴𝑛 → 𝐴1 ∣ 𝑛

Unit

The resulting grammar could be much larger than
the original one:

𝐴1 → 1 ∣ 2 ∣ 3 ∣ … ∣ 𝑛
𝐴2 → 1 ∣ 2 ∣ 3 ∣ … ∣ 𝑛
𝐴3 → 1 ∣ 2 ∣ 3 ∣ … ∣ 𝑛

⋮
𝐴𝑛 → 1 ∣ 2 ∣ 3 ∣ … ∣ 𝑛

Construct a grammar 𝐺 for which Del(Unit(𝐺))
contains a production of the form 𝐴 → 𝐵.

Run Del before Unit.

Construct a grammar 𝐺 for which Del(Unit(𝐺))
contains a production of the form 𝐴 → 𝐵.

Run Del before Unit.

Term

▶ Result: No terminals in productions
𝐴 → 𝛼 where |𝛼| ≥ 2.

▶ Find all terminals in such productions.
▶ For each such terminal 𝑏, add a new

nonterminal 𝐵 with a single production 𝐵 → 𝑏,
and substitute 𝐵 for 𝑏 in every production
𝐴 → 𝛼 where |𝛼| ≥ 2.

▶ 𝐿(Term(𝐺)) = 𝐿(𝐺).

Bin/Term

▶ I have written Bin(𝐺) and Term(𝐺), as if
Bin and Term were functions.

▶ However, these transformations are not
functions, because the names of the new
nonterminals are not uniquely specified.

▶ Below I will pretend that the transformations
are functions.

Chomsky
normal form

Chomsky normal form

▶ A context-free grammar is in
Chomsky normal form if every production is
of the form 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎.

▶ For any context-free grammar 𝐺 the grammar
𝐺′ = Term(Unit(Del(Bin(𝐺)))) is in
Chomsky normal form and satisfies
𝐿(𝐺′) = 𝐿(𝐺) ∖ { 𝜀 }.

I dropped the text book’s requirement that there
should be no useless symbols.

Chomsky normal form

▶ A context-free grammar is in
Chomsky normal form if every production is
of the form 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎.

▶ For any context-free grammar 𝐺 the grammar
𝐺′ = Term(Unit(Del(Bin(𝐺)))) is in
Chomsky normal form and satisfies
𝐿(𝐺′) = 𝐿(𝐺) ∖ { 𝜀 }.

I dropped the text book’s requirement that there
should be no useless symbols.

Consider the grammar
𝐺 = ({ 𝑆, 𝐴 } , { 0, 1 } , 𝑃 , 𝑆), where 𝑃 is
defined in the following way:

𝑆 → 0𝐴 ∣ 𝑆
𝐴 → 1𝑆 ∣ 𝜀

▶ Is 𝐺 ambiguous?
▶ Is Term(Unit(Del(Bin(𝐺)))) ambiguous?

If 𝐺 is ambiguous, then Unit(𝐺) is sometimes
ambiguous, sometimes not.

Consider the grammar
𝐺 = ({ 𝑆, 𝐴 } , { 0, 1 } , 𝑃 , 𝑆), where 𝑃 is
defined in the following way:

𝑆 → 0𝐴 ∣ 𝑆
𝐴 → 1𝑆 ∣ 𝜀

▶ Is 𝐺 ambiguous?
▶ Is Term(Unit(Del(Bin(𝐺)))) ambiguous?

If 𝐺 is ambiguous, then Unit(𝐺) is sometimes
ambiguous, sometimes not.

The
pumping
lemma

The pumping lemma for CFLs

For every context-free language 𝐿
over the alphabet Σ:

∃𝑚 ∈ ℕ.
∀𝑤 ∈ 𝐿. |𝑤| ≥ 𝑚 ⇒

∃𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ∈ Σ∗.
𝑤 = 𝑟𝑠𝑡𝑢𝑣 ∧ |𝑠𝑡𝑢| ≤ 𝑚 ∧ 𝑠𝑢 ≠ 𝜀 ∧
∀𝑛 ∈ ℕ. 𝑟𝑠𝑛𝑡𝑢𝑛𝑣 ∈ 𝐿

?
The pumping lemma for CFLs

For every context-free language 𝐿
over the alphabet Σ:

∃𝑚 ∈ ℕ.
∀𝑤 ∈ 𝐿. |𝑤| ≥ 𝑚 ⇒

∃𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ∈ Σ∗.
𝑤 = 𝑟𝑠𝑡𝑢𝑣 ∧ |𝑠𝑡𝑢| ≤ 𝑚 ∧ 𝑠𝑢 ≠ 𝜀 ∧
∀𝑛 ∈ ℕ. 𝑟𝑠𝑛𝑡𝑢𝑛𝑣 ∈ 𝐿

Height

The height of a parse tree in 𝑃(𝐺, 𝐴) is the largest
number of nonterminals encountered on any path
from the root to a leaf.

height

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

..𝐴.

𝐴

.

0

.

𝐴

.

0

.

0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= 2

Height

For context-free grammars in
Chomsky normal form:

∀𝑝 ∈ 𝑃(𝐺, 𝐴). |yield(𝑝)| ≤ 2height(𝑝)−1

Proof: Exercise.

Height

For context-free grammars in
Chomsky normal form:

∀𝑝 ∈ 𝑃(𝐺, 𝐴). |yield(𝑝)| ≤ 2height(𝑝)−1

Proof: Exercise.

Height

Consider the following grammar and parse tree:

({ 𝑆 } , { 0 } , (𝑆 → 𝑆𝑆𝑆 ∣ 0), 𝑆)

𝑝 =

..S.

S

.

0

.

S

.

0

.

S

.

0
We have
|yield(𝑝)| = |000| = 3 ≰ 2 = 22−1 = 2height(𝑝)−1.

The pumping lemma for CFLs

Proof sketch:
▶ Take any context-free grammar 𝐺 for 𝐿.
▶ Let 𝐺′ = Term(Unit(Del(Bin(𝐺)))).
▶ If 𝐺′ = (𝑁, Σ, 𝑃 , 𝑆), let 𝑚 = 2|𝑁|.
▶ Given a string 𝑤 ∈ 𝐿 with |𝑤| ≥ 𝑚 we know

that 𝑤 ≠ 𝜀, so we have 𝑤 ∈ 𝐿 ∖ { 𝜀 } = 𝐿(𝐺′).

The pumping lemma for CFLs

▶ Take any parse tree 𝑝 for 𝑤 with respect to 𝐺′.
▶ We know that 2|𝑁| = 𝑚 ≤ |𝑤| ≤ 2height(𝑝)−1,

so height(𝑝) > |𝑁|.
▶ Take a path of maximal length from

the root of 𝑝 to a leaf.
▶ Such a path must contain

at least |𝑁| + 1 nonterminals.
▶ By the pigeonhole principle the path must

contain two instances of the same nonterminal,
at most |𝑁| + 1 steps from the leaf.

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝐴

. 𝑎..
𝑟

..
𝑠

..
𝑡

..
𝑢

..
𝑣

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝐴

. 𝑎..
𝑟

..
𝑠

..
𝑡

..
𝑢

..
𝑣

𝑤 = 𝑟𝑠𝑡𝑢𝑣

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝐴

. 𝑎..
𝑟

..
𝑠

..
𝑡

..
𝑢

..
𝑣

|𝑠𝑡𝑢| ≤ 2(|𝑁|+1)−1 = 2|𝑁| = 𝑚

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝐴

. 𝑎..
𝑟

..
𝑠

..
𝑡

..
𝑢

..
𝑣

No nonterminal is nullable, 𝐴 → 𝐵𝐶 ⇒
𝑠 ≠ 𝜀 ∨ 𝑢 ≠ 𝜀 ⇒ 𝑠𝑢 ≠ 𝜀

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝑎

..
𝑟

..
𝑡

..
𝑣

𝑟𝑡𝑣 ∈ 𝐿(𝐺′) ⊆ 𝐿

The pumping lemma for CFLs

..

𝑆

.

𝐴

.

𝐴

. 𝐴.

𝑎

..
𝑟

..
𝑠

..

𝑠

..

𝑡

..

𝑢

..
𝑢

..
𝑣

𝑟𝑠2𝑡𝑢2𝑣 ∈ 𝐿(𝐺′) ⊆ 𝐿

The pumping lemma for CFLs
The language 𝐿 = { 0𝑛1𝑛2𝑛 | 𝑛 ∈ ℕ } over
Σ = { 0, 1, 2 } is not context-free. Proof sketch:
▶ Assume that 𝐿 is context-free.
▶ Take the constant 𝑚 ∈ ℕ that we get from the

pumping lemma.
▶ Consider the string 𝑤 = 0𝑚1𝑚2𝑚 ∈ 𝐿.
▶ Because |𝑤| ≥ 𝑚 we get some information:

∃𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ∈ Σ∗.
𝑤 = 𝑟𝑠𝑡𝑢𝑣 ∧ |𝑠𝑡𝑢| ≤ 𝑚 ∧ 𝑠𝑢 ≠ 𝜀 ∧
∀𝑛 ∈ ℕ. 𝑟𝑠𝑛𝑡𝑢𝑛𝑣 ∈ 𝐿

The pumping lemma for CFLs
▶ Because |𝑤| ≥ 𝑚 we get some information:

∃𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ∈ Σ∗.
𝑤 = 𝑟𝑠𝑡𝑢𝑣 ∧ |𝑠𝑡𝑢| ≤ 𝑚 ∧ 𝑠𝑢 ≠ 𝜀 ∧
∀𝑛 ∈ ℕ. 𝑟𝑠𝑛𝑡𝑢𝑛𝑣 ∈ 𝐿

▶ Because |𝑠𝑡𝑢| ≤ 𝑚 this substring cannot
contain both 0 and 2.

▶ Because 𝑠𝑢 ≠ 𝜀 either 𝑠 or 𝑢 must contain at
least one symbol from Σ.

▶ Thus 𝑟𝑡𝑣 does not contain the same number of
each symbol from Σ.

▶ This is a contradiction, because 𝑟𝑡𝑣 ∈ 𝐿.

What is the smallest possible value of “𝑚”
for a non-empty context-free language 𝐿
over Σ?

∃𝑚 ∈ ℕ.
∀𝑤 ∈ 𝐿. |𝑤| ≥ 𝑚 ⇒

∃𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ∈ Σ∗.
𝑤 = 𝑟𝑠𝑡𝑢𝑣 ∧ |𝑠𝑡𝑢| ≤ 𝑚 ∧ 𝑠𝑢 ≠ 𝜀 ∧
∀𝑛 ∈ ℕ. 𝑟𝑠𝑛𝑡𝑢𝑛𝑣 ∈ 𝐿

Today

▶ Grammar transformations.
▶ Chomsky normal form.
▶ The pumping lemma for

context-free languages.

Next lecture

▶ Closure properties.
▶ Algorithms.

	Grammar transformations
	Chomsky normal form
	The pumping lemma
	Conclusion

