Finite automata and formal languages (DIT322, TMV028)

Nils Anders Danielsson

2020-02-24

Today

- Context-free languages.
- ► Some equivalences.
- Ambiguity.
- Designing grammars.

Context-free

languages

Context-free languages

A language $L\subseteq \Sigma^*$ is context-free if L=L(G), where G is a context-free grammar with Σ as the set of terminals.

Some

equivalences

With $\alpha \in (N \cup \Sigma)^*$:

The property

$$\forall \alpha, \gamma \in (N \cup \Sigma)^*. \ (\alpha \Rightarrow^* \gamma) \ \Rightarrow \ \gamma \in L_{\mathrm{NL}}(G, \alpha)$$

can be proved by induction on the structure of the derivation, using the following lemmas:

- \bullet $\alpha \in L_{\mathrm{NL}}(G, \alpha)$
- $\begin{array}{c} \blacktriangleright \; \beta \in L_{\rm NL}(G,\alpha) \wedge \gamma \in L_{\rm NL}(G,\beta) \Rightarrow \\ \gamma \in L_{\rm NL}(G,\alpha) \end{array}$

The property

$$\forall \alpha, \gamma \in (N \cup \Sigma)^*. \ (\alpha \Rightarrow^* \gamma) \ \Rightarrow \ \gamma \in L_{\mathrm{NL}}(G, \alpha)$$

can be proved by induction on the structure of the derivation, using the following lemmas:

- \bullet $\alpha \in L_{\rm NL}(G, \alpha)$
- $\begin{array}{c} \blacktriangleright \; \beta \in L_{\mathrm{NL}}(G,\alpha) \wedge \gamma \in L_{\mathrm{NL}}(G,\beta) \Rightarrow \\ \gamma \in L_{\mathrm{NL}}(G,\alpha) \end{array}$

Note that \Rightarrow has two different meanings!

The property

$$\forall \alpha,\beta \in (N \cup \Sigma)^*. \ (\alpha \Rightarrow \beta) \ \Rightarrow \ \beta \in L_{\mathrm{NL}}(G,\alpha)$$

can be proved using the following additional lemmas:

- $\blacktriangleright \ \alpha \in L_{\rm N}(G,A) \Rightarrow \alpha \in L_{\rm NL}(G,A)$
- $\beta \in L_{\rm NL}(G,\alpha) \land \beta' \in L_{\rm NL}(G,\alpha') \Rightarrow \beta \beta' \in L_{\rm NL}(G,\alpha\alpha')$

Prove

$$\forall \alpha, \beta \in (N \cup \Sigma)^*. \ (\alpha \Rightarrow \beta) \Rightarrow \beta \in L_{\mathrm{NL}}(G, \alpha).$$

Use the following rules and lemmas:

1.
$$\frac{\alpha, \beta \in (N \cup \Sigma)^* \quad A \in N \quad (A, \gamma) \in P}{\alpha A \beta \Rightarrow \alpha \gamma \beta}$$
2.
$$\frac{(A, \alpha) \in P \quad \beta \in L_{\text{NL}}(G, \alpha)}{\alpha A \beta \Rightarrow \alpha \gamma \beta}$$

$$eta \in L_{
m N}(G,A)$$

3.
$$\alpha \in L_{\mathrm{NL}}(G, \alpha)$$

4.
$$\alpha \in L_{N}(G, A) \Rightarrow \alpha \in L_{NL}(G, A)$$

5. $\beta \in L_{NL}(G, \alpha) \land \beta' \in L_{NL}(G, \alpha') \Rightarrow \beta \beta' \in L_{NL}(G, \alpha \alpha')$

The property

$$\forall A \in N, w \in \Sigma^*. \ w \in L_{\mathcal{N}}(G, A) \ \Rightarrow \ (A \Rightarrow_{\mathsf{Im}}^* w)$$

can be proved by induction on the structure of the recursive inference, using the following lemmas:

- $\blacktriangleright \ (\alpha \Rightarrow_{\mathsf{Im}}^* \alpha') \ \Rightarrow \ (\alpha\beta \Rightarrow_{\mathsf{Im}}^* \alpha'\beta)$
- $\bullet \ (\alpha \Rightarrow_{\mathsf{Im}}^* \beta) \land (\beta \Rightarrow_{\mathsf{Im}}^* \gamma) \ \Rightarrow \ (\alpha \Rightarrow_{\mathsf{Im}}^* \gamma)$

A grammar $G=(N,\Sigma,P,S)$ is ambiguous if there is a string $w\in\Sigma^*$ such that there are two different...

- ...parse trees in P(G, S) with yield w.
- ...leftmost derivations $S \Rightarrow_{\mathsf{Im}}^* w$.
- ...rightmost derivations $S \Rightarrow_{\mathsf{rm}}^* w$.
- ...derivations of $w \in L(G, S)$.

Consider the following (underspecified) context-free grammar over $\{+,-,\cdot,/,(,)\}\cup\{0,1,...,9\}$:

$$\begin{array}{l} Expr \rightarrow Expr \ Op \ Expr \mid Digit \mid (\ Expr \) \\ Op \quad \rightarrow + \mid - \mid \cdot \mid \mid / \\ Digit \rightarrow 0 \mid 1 \mid \dots \mid 9 \end{array}$$

How should 7 - 3 - 2 be interpreted?

A parse tree for 7 - 3 - 2:

Another parse tree for 7 - 3 - 2:

- ▶ The values differ: (7-3)-2=2, but 7-(3-2)=6.
- ▶ If a grammar is used to determine how to interpret an expression, then it may be unclear how to interpret an ambiguous string.

For which of the following sets of productions P is $(\{S,A\},\{0,1\},P,S)$ an ambiguous grammar?

4. $S \rightarrow 1S1 \mid 1A1 \mid \varepsilon, A \rightarrow 1A1 \mid S$

5. $S \rightarrow 1S1 \mid 1A1 \mid \varepsilon, A \rightarrow 0S0$

1.
$$S \to S$$

2. $S \to S \mid \varepsilon$

$$S \rightarrow S \mid$$

$$S \rightarrow 1S1$$

3.
$$S \rightarrow 1S1 \mid 0S0 \mid \varepsilon$$

- ▶ It is common to interpret 7-3-2 as (7-3)-2.
- ► The minus operator is said to "associate to the left".
- $\,\blacktriangleright\,$ Exponentiation typically associates to the right: $3^{3^3}=3^{(3^3)}.$

- ▶ It is also common to interpret $7 \cdot 3 2$ as $(7 \cdot 3) 2$, and not $7 \cdot (3 2)$.
- ► The multiplication operator is said to "bind tighter than" the subtraction operator, or to have "higher precedence".

The following (underspecified) context-free grammar over $\{+,-,\cdot,/,(,)\}\cup\{0,1,...,9\}$ is unambiguous:

```
\begin{array}{ll} Expr & \rightarrow Term \ Add\text{-}op \ Expr \mid Term \\ Term & \rightarrow Term \ Mul\text{-}op \ Factor \mid Factor \\ Factor & \rightarrow Digit \mid (Expr) \\ Add\text{-}op & \rightarrow + \mid - \\ Mul\text{-}op & \rightarrow \cdot \mid / \\ Digit & \rightarrow 0 \mid 1 \mid \dots \mid 9 \end{array}
```

Use this grammar to parse the following string. Compute the value of the expression, using the parse tree to guide the evaluation.

$$3 - 8/4/2 - 1$$

$$\begin{array}{ll} Expr & \rightarrow Term \ Add\text{-}op \ Expr \mid Term \\ Term & \rightarrow Term \ Mul\text{-}op \ Factor \mid Factor \\ Factor & \rightarrow Digit \mid (Expr) \\ Add\text{-}op & \rightarrow + \mid - \\ Mul\text{-}op & \rightarrow \cdot \mid / \\ Digit & \rightarrow 0 \mid 1 \mid \dots \mid 9 \end{array}$$

The parse tree

Right associative?

- ▶ Subtraction is right associative for this grammar: 3 (((8/4)/2) 1) = 3.
- ▶ The usual way of parsing instead leads to (3 ((8/4)/2)) 1 = 1.

- ▶ It is undecidable whether a context-free grammar is ambiguous.
- However, several parser generators use restricted context-free grammars that are guaranteed to be unambiguous.
- ▶ If such a tool complains about a "conflict", then the problem might be that the grammar is ambiguous.

Suggest some replacement for $\ref{eq:constraint}$ that ensures that $3 \ \ 3 \ \ 3$ is a valid string that is interpreted as $3 \ \ (3 \ \ 3)$. The start symbol is E_0 .

symbol is
$$E_0$$
.

$$E_0 \longrightarrow E_0 \ Add\text{-}op \ E_1 \mid E_1$$

$$E_1 \longrightarrow E_1 \ Mul\text{-}op \ E_2 \mid E_2$$

$$E_2 \longrightarrow ???$$

$$E_3 \longrightarrow Digit \mid (E_0)$$

$$Add\text{-}op \rightarrow + \mid -$$

 $Mul-op \rightarrow \cdot \mid /$

 $Digit \rightarrow 0 \mid 1 \mid \dots \mid 9$

- ► There are context-free languages for which there are no unambiguous context-free grammars.
- Such languages are called inherently ambiguous.
- See the book for an example.

Designing grammars

Define a grammar for some simple (context-free) language, perhaps a tiny programming language. Try to make the grammar unambiguous.

Designing grammars

If you want to know more about the use of grammars in the specification and implementation of programming languages you might be interested in the course *Programming language technology*.

Today

- Context-free languages.
- ► Some equivalences.
- Ambiguity.
- Designing grammars.

Next lecture

- ▶ Grammar transformations.
- Chomsky normal form.
- ► The pumping lemma for context-free languages.