Nils Anders Danielsson,
partly based on slides by Ana Bove

2020-01-20-21

Regular expressions

» Used in text editors:
M-x replace-regexp RET
add(\C[™,1*\), \([7)1*\)) RET
\1 + \2 RET
» Used to describe the lexical syntax of
programming languages.
» Can only describe a limited class of
“languages”.

Finite automata

» Used to implement regular expression
matching.

» Used to specify or model systems.

» One kind of finite automaton is used in
the specification of TCP.

» Equivalent to regular expressions.

https://tools.ietf.org/html/rfc793

Lock

Unlock

Finite automata

Accepts strings of ones of even length:

1
1

» The states are a kind of memory.
» Finite number of states = finite memory.

Regular expressions

» A regular expression for strings of ones of even
length: (11)*.

» A regular expression for some keywords:
while | for | if | else.

» A regular expression for positive natural
number literals (of a certain form): [1-9][0-9]*.

Finite automata

Accepts positive natural number literals:

'O','l',...,'g'

'1','2',...,'9'

—{ Start
'O','a','b',... |a| |b|

'0',..,'9",
'a','b',..

Conversions

» We will see how to convert regular expressions
to and from finite automata.

» In fact, we will discuss several kinds of finite
automata, and conversions between the
different kinds.

Context-free grammars

» More general than regular expressions.

» Used to describe the syntax of programming
languages.

» Used by parser generators. (Often restricted.)

E’xpr = Number
| Exzpr Op Expr
| (" Expr ')
Op :::'+'|'—'|'*'|'/'

Turing machines

» A model of what it means to “compute”:
» Unbounded memory: an infinite tape of
cells.
> A read/write head that can move along
the tape.
» A kind of finite state machine with
rules for what the head should do.
» Equivalent to a number of other models of
computation.

» Used to make it more likely that arguments are
correct.

» Used to make arguments more convincing.

» Regular induction for N.

» Complete (strong, course of values)
induction for N.

» An example:
The natural numbers (N={0,1,2,... }).

» Structural induction for
inductively defined sets.

See the course web pages.

Repetition
(?) of some
classical
logic

Propositions

» A proposition is, roughly speaking, some
statement that is true or false.
> 2 =23.
» The program while true do {x := 4}
terminates.
» P= NP,
» If P= NP, then 2 = 3.
» It may not always be known what the truth
value (T or L) of a proposition is.

And: A.

Or: V.

Not: —.

Implies: =.

If and only if (iff): <.

vV v v v VY

Some logical connectives

Truth tables for these connectives:

p q pANqg pvVgqg Tp p=q p=(
T T T T L T T
T L L T L L L
S . T T T L
1 1 LT T T

Note that p = ¢ is true if p is false.

Which of the following truth tables are
correct for the proposition (p V q) = p?

p ¢ (pVg=p p q (pVag=p
T T T T T T

Al T 1 B: 1 1 T
1T 1 LT 1
1 1 1 1 1 1
p q¢ (pVag=p p ¢ (pVg=p
T T T T T T

C T T Di 1+ o T
LT 1 1T T
1 L T 1 1 T

Respond at https://pingo.coactum.de/536622.

https://pingo.coactum.de/536622

» A proposition is valid, or a tautology, if it is
satisfied for all assignments of truth values to
its variables.

» Examples:

> p=D.
> pV p.

Logical equivalence

» Two propositions p and ¢ are logically
equivalent if they have the same truth tables,
i.e. if p< qis valid.

» Examples:

> 0 p <= D

(r=q < (=9 AN(g=0p)

PANqg <= qAD.

pA(gVr) < (pPAgQV(PAT).

pA(pV g < p

vV v.v .y

Which of the following propositions are valid?

(p=¢q = pVa
(p=q) = pV—q
—(pAq) & —pA—g.
—(pANq) & —pV g
(p=p) =49 =Dp.
(p=q)=p) =Dp.

o Bl oem e D=

A predicate is, roughly speaking, a function to
propositions.

» P(n) = "nis a prime number”.
> Qa,b) = “(a+b)? = a® + 2ab + b*"

Quantifiers:
» For all: V.
» Vor.z = .
> Va,b €R. (a+b)? = a®+ 2ab + b2
» There exists: 3.
» dn € N. n = 2n.

Which of the following propositions,
involving predicate variables, are valid?

1. (=VneN. P(n)) < (VneN. =P(n)).
2. (-Vn eN. P(n)) < (3In € N. =P(n)).
3. (Ym €N. In €N. P(m,n)) <

(In e N. Vm € N. P(m,n)).

Repetition
(?) of some
set theory

» A set is, roughly speaking, a collection of
elements.

» Some notation for defining sets:
» {0,1,2,4,8}.
» {neN|n>2}.
» {2" | ne N}

Members, subsets

» Membership: €.
»4e{2"|neN}.
»2¢{neN|n>2}
» Two sets are equal if they have the same
elements: (A= B) < (Vz.x € A< x € B).
» Subset relation:
(ACB)& (Ve.x € A= 2 € B).
» {2"|neN} CN.
» {0,1,2,4,8} £ {neN|n>2}

An aside

» Unrestricted naive set theory can be
inconsistent.

» Russell's paradox:
» Define S={X | X ¢ X},
where X ranges over all sets.
» We have S € S< S ¢ 517
» One can fix this problem by imposing rules
that ensure that .S is not a set.

Set operations

vV v v Vv

The empty set: (.

Union: AUB={z|x€ AVx e B}.
Intersection: ANB={z|xc€ ANz € B}.
Cartesian product:
AxB={(z,y)|re ANye B}.

Set difference:
AN\B=A—-—B={xzc€A|zx¢ B}.
Complement: A=U\ A

(if U is fixed in advance and A C U).

Power set: p(S)=2°={A|ACS}.

Which of the following propositions are valid?
Variables range over sets. U is non-empty.

P
D
Sy
I

NN
cC D
= o

D
oy
I

I
08/—"—\
—~ =
B
QQ-
I

~—

(AuB)NC.
=(AUB)N(AUC).

oo s wN e
S s S o
cCcm

CICY

D D

» A binary relation R on A is a subset of
A2 =Ax A: R C A2
» Notation: xRy means the same as (z,y) € R.

» Can be generalised from A x A to
AX BxC X,

Properties of binary relations

» Reflexive: Vo € A. zRx.

» Symmetric: Vz,y € A. xRy = yRx.

» Transitive: Vz,y,z € A. xRy NyRz = xRz.
>

Antisymmetric:
Ve,y € A. xRy N\yRx = x = y.

A partial order is reflexive, antisymmetric and
transitive.

» < for N.
» Not <.

1. {(0,0
2. {(0,0
3. {(0,0
4. {(0,0),

)
)
)
)

Y

Y

}-
(
(
(

1
0
0

9

1
1
1

1) 1

) (1,1) }.

1), (1,0) 1.

An equivalence relation is reflexive, symmetric and
transitive.

» {(n,n) |neN} CN2
» Not { (n,n) |n €N} CR2

1. {(0,0
2. {(0,0
3. {(0,0
4. {(0,0),

)
)
)
)

Y

Y

}-
(
(
(

1
0
0

9

1
1
1

1) 1

) (1,0) }.

1), (1,0),(1,1) .

Partitions

A partition of the set A is a set P C p(A)
satisfying the following properties:

» Every element is non-empty: VB € P. B # ().
> The elements cover A: | J,_, B = A.

» The elements are mutually disjoint:
VB,C e P.B+C = BnNnC=.

Equivalence classes

v

The equivalence classes of an equivalence
relation R on A: [z]p ={y€ A| xRy }.

Note that Vz,y € A. [z] = [y]|r < zRy.

The equivalence classes { [z], |z € A}
partition A.

The quotient set A/R={[z|]p |z € A}

v

v

v

Some examples:
> Z=N?/~yp,
where
(my,nq) ~z (Mg, ny) & My + 1y = my +ny.
» Q={(m,n)|meZneN\{0}}/~q,
where
(my,nq) ~q (Mg, ng) & MmNy = myn;.

Which of the following propositions are true?

L [(2,9)]., =1(0,3)].,
2. [(2,5)]., = [(3,0)],
3. [(275)]~Q = [(4, 10)]~@
4. [(2,5)]., = [(10,4)].

More properties of relations

For RC A x B:
» Total (left-total): Vo € A. 3y € B. zRy.

> Functional /deterministic:
Ve e A. Vy,z€ B. tRyANxRz = y = z.

Functions

» The set of functions from the set A to the set
B is denoted by A — B.

» |t is sometimes defined as the set of total and
functional relations f C A x B.

» Notation: f(z) =y means (x,y) € f.

» If the requirement of totality is dropped, then
we get the set of partial functions, A — B.

» The domainis A, and the codomain B.

» The imageis{ye Blxz € A, f(x) =y }.

|dentity, composition

» The identity function id on a set A is defined
by id(z) = x.

» For functions f € B— C and g € A — B the
composition fog e A — C'is defined by

(feg)(x) = flg(x)).

Injections

The function f € A — B is injective if

Vz,y € A. f(z) = fly) =z =y
» Every input is mapped to a unique output.
» Means that A is “no larger than” B.

» Holds if f has a left inverse g € B — A:
go f=1d

Surjections

The function f € A — B is surjective if
Vye B.dx € A. f(z) =v.

» The function “targets” every element in the
codomain.
» Means that A is “no smaller than” B.

» Holds if f has a right inverse g € B — A:
fog=1d

Bijections

The function f € A — B is bijective if
it is both injective and surjective.

» Means that A and B have the same “size”.

» Holds if and only if f has a left and right
inverse g € B — A.

Which of the following functions are
injective? Surjective?

» feN—=N, f(n)=n+1.

»geZ— 7, 9(i) =i+ 1.
true, if n is even,

» h € N — Bool, h =
00l, h(n) {false, otherwise.

The pigeonhole principle

» If there are n pigeonholes, and m > n pigeons
in these pigeonholes, then at least one
pigeonhole must contain more than one pigeon.

»If fe{keN|k<m}—-{keN|k<n}
for m,n € N, and m > n, then f is not
injective.

Next lecture

» Proofs.
Induction for the natural numbers.

v

v

Inductively defined sets.
» Recursive functions.

Deadline for the first quiz: 2020-01-23, 10:00.

	Overview
	Repetition (?) of some classical logic
	Repetition (?) of some set theory
	Conclusion

