
Programming Language Technology

Exam, 11 January 2021 at 08.30 – 12.30 on Canvas

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Andreas Abel. Questions may be asked in Zoom breakout room, by
email (mailto:andreas.abel@gu.se, subject: PLT exam) or telephone (+46 31 772
1731).

Exam review: Modalities will be announced later.
Allowed aids:

• All exam questions have to be solved individually.

• No communication of any form is permitted during the exam, including conversa-
tion, telephone, email, chat, asking questions in internet fora etc.

• All course materials can be used, including the book, lecture notes, previous exam
solutions, own lab solution, etc. Any material copied verbatim should be marked
as quotation with reference to the source.

• Publicly available documentation on the internet may be consulted freely to prepare
the solution. Small portions of code and text from publicly available resources may
be reused in the solution if clearly marked as quotation and properly referencing
the source.

Any violation of the above rules and further common sense rules applicable to an ex-
amination, including plagiarism or sharing solutions with others, will lead to immediate
failure of the exam (grade U), and may be subject to further persecution.
Grading scale: VG = 5, G = 4/3, U.

To pass, you need to deliver complete answers to two out of questions 1-3. (Typos,
bugs, and minor omissions are not a problem as long as your answer demonstrates good
understanding of the subject matter.) For a Chalmers grade 4 you need complete answers
to all of the questions 1-3. A VG/5 requires excellent answers on questions 1-3.

Submission instructions:

• Please answer the questions in English.

• The solutions need to be submitted as one .zip archive, named according to schema
FirstName LastName Personnummer.zip. Checklist:

– Blaise.cf
– Sum.pas
– Question2.{txt|md|pdf|...}
– Question3.{txt|md|pdf|...}
– (other relevant files)

1

mailto:andreas.abel@gu.se

In the following, a fragment Blaise of the Pascal programming language is described, in
its syntax and semantics. Two example Blaise programs, Primes.pas and Factorial.pas
are included to clarify the specification. In the exam, you are asked to describe a gram-
mar, an interpreter, and a compiler for Blaise.

1. A program consists of:

(a) header: program identifier semicolon,

(b) a list of function definitions,

(c) a list of main variable declarations,

(d) a main block, terminated by a dot.

Running a program will execute the statements of the block (from which functions
can be called). The name of the program (given by the identifier) is ignored.

2. A variable declaration starts with var followed by a comma-separated list of iden-
tifiers, a colon, a type, and a semicolon. Declared variables are implicitly initialized
to the default value of their type: integer variables are initialized to 0 and boolean
variables to false.

3. A type is Integer or Boolean.

4. A function definition consists of:

(a) header: function identifier parenthesized-parameters colon type semicolon,

(b) a list of local variable declarations,

(c) body: a block, terminated by a semicolon.

The parameters are a semicolon-separated list of parameter declarations each of
which consists of: identifier colon type.

A function needs to be called (see function call expression) with the correct number
of arguments of the correct type. The call will execute the block with parameters
initialized to their respective argument value and local variables initialized to their
default value (see above). The local variables contain an additional result variable
that bears the name of the function. This result variable can be read and assigned
like an ordinary variable or parameter. When the execution of the block ends, the
function will return the content of this result variable.

The joint list of parameters and local variables (including the result variable) may
not have any duplicates.

5. A block is delimited by keywords begin and end and contains a semicolon-separated
list of statements.

6. A statement can be one of the following. The typing and execution of the statements
is like in C/C++/Java unless noted otherwise.

(a) The empty statement, does nothing.

(b) A block.

(c) An assignment: identifier colon-equals expression.

2

(d) A conditional: if expression then statement else statement.

(e) A while-loop: while expression do statement.

(f) A for-loop: for identifier colon-equals expression to expression do statement.
The identifier is the loop variable of type Integer. The first expression
denotes the initial value of the loop variable and the second expression the
final value. Both values are integers and computed before the loop starts.
If the final value is below the initial value, the loop is not executed and the
loop variable not set. Otherwise, the loop variable is set to the initial value.
The statement is executed, and the loop variable is incremented by one. The
actions of the previous sentence are repeated as long as the loop variable is
not larger than the final value.

(g) A print statement: writeln followed by a parenthesized integer expression.
Prints the value and a newline character to the standard output.

7. An expression can be one of the following. Typing and interpretation of expressions
is like in C/C++/Java unless noted otherwise.

(a) A variable: identifier.

(b) A boolean constant true or false or an integer literal.

(c) A function call : identifier followed by a parenthesized comma-separated list
of expressions.

(d) A parenthesized expression.

(e) A infix binary operation: expression operator expression. All operators are
left associative. Operators come in three binding strengths:

i. Multiplicative operators, bind strongest:

• integer multiplication *

• integer division div

• integer remainder mod

• boolean conjunction and

ii. Additive operators, next in binding strength:

• integer addition +

• integer subtraction -

• boolean disjunction or

iii. Relational operators, least in binding strength: Equality operators = (equal)
and <> (not equal) and integer comparison operators <, <=, >, and >= with
the usual meaning.

Operators are always applied to two expression of the same type, there is
no coercion. Equality operators apply to booleans and to integers. Like in
C/C++/Java, boolean conjunction and disjunction are short-circuting, i.e., if
the left operand determines the value of the operation, the right operand is
not evaluated.

8. An identifier starts with a letter or underscore, followed by a possibly empty se-
quence of letters, digits, and underscores. (Note: this is different from BNFC’s
Ident token type.)

3

9. An integer literal is a non-empty sequence of digits.

Block comments start with (* and end with *).
An identifier is never in scope before its declaration. The detailed scoping rules are:

1. Functions are in scope after their declaration: in their own body, in functions
defined later, and in the main block. There is no mutual recursion.

2. The parameters, local variables, and result variable of a function are only in scope
in the function body.

3. The main variables (as well as all functions) are in scope in the main block.

(* Primes.pas *)

program Primes;

function prime (n : Integer): Boolean;

var i : Integer;

begin

if n <= 2 then

prime := (n = 2)

else begin

prime := (n mod 2 <> 0);

i := 3;

while prime and (i * i <= n) do begin

prime := (n mod i <> 0);

i := i + 2;

end;

end;

end;

var lower, upper : Integer;

var n : Integer;

begin

(* Primes from 1 to 100: *)

lower := 1;

upper := 100;

for n := lower to upper do

if prime(n) then writeln(n) else;

end.

4

(* Factorial.pas *)

program _;

function factorial (n : Integer) : Integer;

begin

if n < 2 then factorial := 1

else factorial := n * factorial(n - 1);

end;

var n : Integer;

begin

n := 7;

writeln (factorial(n));

end.

Question 1 (Grammar)

1. Write an Blaise program Sum.pas that computes and prints the sum of the integers
from 1 to 100. This program should contain a function sum with two integer pa-
rameters determining the range (e.g. “from 1 to 100”), and the main block should
call this function with arguments 1 and 100.

2. Write a labelled BNF grammar for Blaise in a file Blaise.cf and create a parser
from this grammar using BNFC. The parser should be free of conflicts (shift/reduce
and reduce/reduce).

3. Recommended: Test your parser on Primes.pas, Factorial.pas and Sum.pas.

Deliverables: files Blaise.cf and Sum.pas.

SOLUTION: Summation program (file Sum.pas):

(* Sum.pas *)

program _;

function sum (lower : Integer; upper : Integer): Integer;

var i : Integer;

begin

sum := 0;

for i := lower to upper do sum := sum + i;

end;

begin

writeln(sum(1,100));

end.

Grammar (file Blaise.cf):

5

-- BNFC Grammar of Blaise, a fragment of Pascal

Prg. Program ::= "program" Id ";" [FunDef] Body ".";

terminator FunDef ";";

Bdy. Body ::= [VarDecl] Block;

terminator VarDecl ";";

-- # Declarations

FunDf. FunDef ::= "function" Id "(" [ParDecl] ")" ":" Type ";" Body;

separator nonempty ParDecl ";";

ParDcl. ParDecl ::= Id ":" Type;

VarDcl. VarDecl ::= "var" [Id] ":" Type;

separator nonempty Id ",";

-- # Types

TInt. Type ::= "Integer";

TBool. Type ::= "Boolean";

internal

TVoid. Type ::= "Void";

-- # Blocks

Blck. Block ::= "begin" [Stm] "end";

separator nonempty Stm ";";

-- # Statements

SBlock. Stm ::= Block;

SAssign. Stm ::= Id ":=" Exp;

SIfElse. Stm ::= "if" Exp "then" Stm "else" Stm;

SWhile. Stm ::= "while" Exp "do" Stm;

SFor. Stm ::= "for" Id ":=" Exp "to" Exp "do" Stm;

SWriteln. Stm ::= "writeln" "(" Exp ")";

SEmpty. Stm ::= "";

-- # Expressions

EVar. Exp3 ::= Id;

ETrue. Exp3 ::= "true";

EFalse. Exp3 ::= "false";

EInt. Exp3 ::= Integer;

6

ECall. Exp3 ::= Id "(" [Exp] ")";

EMul. Exp2 ::= Exp2 MulOp Exp3;

EAdd. Exp1 ::= Exp1 AddOp Exp2;

ECmp. Exp ::= Exp CmpOp Exp1;

coercions Exp 3;

separator nonempty Exp ",";

-- # Operators

OTimes. MulOp ::= "*" ;

ODiv. MulOp ::= "div";

OMod. MulOp ::= "mod";

OAnd. MulOp ::= "and";

OPlus. AddOp ::= "+" ;

OMinus. AddOp ::= "-" ;

OOr. AddOp ::= "or" ;

OLt. CmpOp ::= "<" ;

OLtEq. CmpOp ::= "<=" ;

OGt. CmpOp ::= ">" ;

OGtEq. CmpOp ::= ">=" ;

OEq. CmpOp ::= "=" ;

ONEq. CmpOp ::= "<>" ;

-- # Identifiers

token Id (letter | ’_’) (letter | digit | ’_’)*;

-- # Comments

comment "(*" "*)";

7

Question 2 (Interpretation): Write a specification of an interpreter for the Blaise
language of Question 1. The interpreter receives a type-correct abstract syntax tree of a
Blaise program and produces the output of this program that is generated by the writeln
statements.

Deliverable: submit a text document with name Question2 (plus file extension)
that contains the specification. The text document can be a plain text file possibly using
markup (like markdown) or a PDF.

The specification should have the following structure:

A. State. Describe the components of the state of the interpreter and how these compo-
nents are implemented, i.e., which data structure (like list, map, integer...) is used for
each component. If the parts of the interpreter produce values, describe their form.

B. Initialization and run: Describe how the state is initialized and how the interpreter
(C) is started (i.e., which arguments are given to the interpreter).

C. Interpretation: Describe the interpreter: Write an explanation how each relevant
Blaise construct (expression, statement, block, declaration, ...) is evaluated or exe-
cuted. You may use judgements and rules or pseudo-code or precise language.

Restriction: You need not describe all of the binary operators. It is sufficient to cover:

(a) one logical operator (and or or),

(b) one arithmetical operator (+, -, *, div, or mod), and

(c) one comparison operator (=, <>, <, <=, >, or >=).

D. API (optional): If you used helper functions to manipulate the state in item C,
describe them here.

The specification should be written in a high-level but self-contained way so that an
informed outsider can implement the interpreter easily following your specification. An
informed outsider shall be a person who has very good programming skills and good
familiarity with programming language technology in general, but no specific knowledge
about the Blaise language nor access to the course material.

The specification will be judged on clarity and correctness.

8

SOLUTION:

A. State

The state of the interpreter has two following components:

• Signature sig: a finite map from identifiers to function definitions (FunDef).

• Environment env: a finite map from identifier to values.

A value is either (tagged union) a boolean or a integer literal.

B. Initialization and run

The interpreter receives a Program consisting of a list of function definitions, a list of
variable declarations, and a main block. The function definitions are turned into a map
indexed by the function identifier and stored in sig. The variable declarations are turned
into a map sending the variable identifier to the default value of its type: false for
Boolean and 0 for Integer. This map is stored in env. Then the interpreter for blocks
is called on the main block.

C. Interpreter

The interpreter is a collection of mutually recursive procedures and functions that execute
blocks and statements and evaluate expressions.

Execution of blocks, lists of statements, and statements changes env and may print
to standard output:

• Block: execute its statements.

• List of statements: in first-to-last order, execute each statement.

• Empty statement: no change.

• Print statement writeln(e): Evaluate expression e to an integer literal i and print
this to standard output.

• Assignment x := e: evaluate the expression e to a value v and assign x to v, i.e.,
update env so that x is mapped to v.

• Conditional if e then s1 else s2: Evaluate e to a boolean literal. If it is true,
execute s1, otherwise s2.

• Loop while e do s: Evaluate e to a boolean literal. If it is true, execute s followed
by while e do s. Otherwise, do nothing.

• Loop for x := e1 to e2 do s: Evaluate e1 to integer i1 and e2 to i2. If i2 < i1, do
nothing. Otherwise, assign x to i1 and repeat the following until the value of x is
greater than i2: Execute s and increase the value of x by 1.

Interpretation of an expression produces a value but does not change env.

9

• Literals evaluate to themselves.

• A variable x evaluates to its value in env.

• A call to function f with arguments e1, . . . , en evaluates as follows: First, evaluate
the arguments ei to values vi and save env. Then, look up f in sig yielding a
parameter list, a return type t, a local variable list and a block. We prepare a
new environment env mapping each parameter to its value vi, each local variable
to the default value of its type and identifier f to the default value of t. In this new
environment, we execute the block. The value of f in the resulting env is the value
of the function call, which we return after restoring env.

• For logical conjunction e1 and e2, we evaluate e1 to a boolean literal. If it is false,
we return false, otherwise we return the value of e2. (Disjunction or is evaluated
analogously, short-circuiting on true.)

• For arithmetic operations e1 op e2, we evaluate e1 and e2 to integer literals i1 and
i2 and return the result of applying op to these literals.

• For integer comparison operations e1 op e2, we evaluate e1 and e2 to integer literals
i1 and i2 and return true if i1 op i2 holds and false otherwise.

• Equality e1 = e2 evaluates to true if the values of e1 and e2 are the same, otherwise
to false. Inequality e1 <> e2 yields the opposite result.

10

Question 3 (Compilation): Specify a compiler from Blaise to JVM. The com-
piler takes a type-correct abstract syntax tree of a Blaise program as input and translates
this into Jasmin method definitions which are printed to the standard output.

Deliverable: submit a text document with name Question3 (plus file extension)
that contains the specification. Instructions analogous to Question 2 apply. In particular,
follow the same structure: A. State, B. Initialization and run, C. Compilation schemes,
D. API.

Restrictions of the task:

1. The compiler does not have to output a full Jasmin class file, only the methods
corresponding to the defined Blaise functions and a main method for the main
block. (You may assume that no Blaise function is called main.)

2. You need not output .limit pragmas (stack/locals).

3. You may simply use the Blaise function identifiers for the corresponding Jasmin
method names.

4. You need not care about Java modifiers like public or static.

5. As in Question 2, it is sufficient to treat one logical, one arithmetical, and one
comparison operator.

6. Choose one of if or while.

However, the compiler needs to output proper JVM instructions (not pseudo machine
code).
Good luck!

SOLUTION:

A. State

The state of the compiler consists of the following components:

1. A finite map context from identifiers to natural numbers (local variable addresses).

2. A natural number nextAddress denoting the next free slot in the JVM variable
store of the currently compiled method.

3. A natural number resultAddress denoting the address (if any) of the result vari-
able of a function.

4. A stream labels of so far unused label names. Elements are taken from this stream
whenever a new label name is needed.

Since we are directly printing the generated Jasmin to the standard output, we need not
store any generated code. Further, since we pretend that we can use Blaise function
identifiers for the corresponding Jasmin methods, we need no function “signature”.

11

B. Initialization and run

Given a type-correct Blaise program, compilation proceeds as follows:

1. The component labels is initialized to an infinite stream of distinct label names,
e.g. L0, L1,

2. Each function definition is compiled (see below)

3. Output: .method main

4. The context is reset to an empty map and nextAddress to 0.

5. Each variable declaration is compiled (see below).

6. The main block is compiled (see below).

7. Output: .end method

C. Compiler

The compiler is specified as an overloaded procedure compile in pseudo-code acting on
Blaise abstract syntax from Question 1.

-- Definitions

compile (FunDf f pars t body):

emit (.method f)

context <- empty

nextAddress <- 0

for (x:t in pars): addVar x

resultAddress <- initVar f

compile body

emit (iload resultAddress)

emit (ireturn)

emit (.end method)

compile (Bdy vars block):

for (x:t in vars): initVar x

compile block

-- Statements

compile (Blck ss):

for (s : ss) compile s

compile (SBlock block):

compile block

compile (SEmpty): -- emit nothing

compile (SAssign x e):

12

a <- lookupVar x

compile e

emit (istore a)

compile (SWriteln e):

compile e

emit (invokestatic writeln)

compile (SIfElse e s1 s2):

else, done <- newLabel

compile e

emit (ifeq else)

compile s1

emit (goto done)

emit (else:)

compile s2

emit (done:)

compile (SWhile e s):

start, done <- newLabel

emit (start:)

compile e

emit (ifeq done)

compile s

emit (goto start)

emit (done:)

compile (SFor x e1 e2 s):

start, done <- newLabel

compile e2

compile e1

emit (start:)

emit (dup2) -- copy bounds for comparison

emit (if_icmplt done)

a <- lookupVar x

emit (istore a)

compile s

emit (iload a)

emit (ldc 1)

emit (iadd) -- bounds are again on top of stack

emit (goto start)

emit (done:)

emit pop2

-- Expressions

compile (EInt i): emit (ldc i)

13

compile (ETrue) : emit (ldc 1)

compile (EFalse): emit (ldc 0)

compile (EId x):

a <- lookupVar x

emit (iload a)

compile (ECall f es):

for (e : es) compile e

emit (invokestatic f)

compile (EAdd e1 OMinus e2):

compile e1

compile e2

emit (isub)

compile (ECmp e1 OLt e2):

true, done <- newLabel

compile e1

compile e2

emit (if_icmplt true)

emit (ldc 0)

emit (goto done)

emit (true:)

emit (ldc 1)

emit (done:)

compile (EMul e1 OAnd e2):

false, done <- newLabel

compile e1

emit (dup)

emit (ifeq done) -- short-circuit if e1 is false

emit (pop)

compile e2

emit (done:)

D. API

• emit (text): Write text and newline to standard output.
• addVar x: Set address of x to nextAddress in context. Increase nextAddress by

one. Return address of x.
• initVar x: Like addVar, but also emit code to initialize variable to 0 (via ldc 0

and istore).
• lookupVar x: Return address of x in map context.
• newLabel: Extract the next element from stream labels.

14

