
Programming Language Technology

Exam, 7 April 2020 at 08.30 – 12.30 on Canvas

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Andreas Abel. Questions may be asked by email (mailto:andreas.
abel@gu.se, subject: PLT reexam) or telephone (+46 31 772 1731).

Exam review: Contact examiner Andreas Abel if you wish an exam review.
Allowed aids:

• All exam questions have to be solved individually.

• No communication of any form is permitted during the exam, including conversa-
tion, telephone, email, chat, asking questions in internet fora etc.

• All course materials can be used, including the book, lecture notes, previous exam
solutions, own lab solution, etc.

• Publicly available documentation on the internet may be consulted freely to prepare
the solution.

• Small portions of code and text from publicly available resources may be reused in
the solution if clearly marked as quotation and properly referencing the source.

Any violation of the above rules and further common sense rules applicable to an ex-
amination, including plagiarism or sharing solutions with others, will lead to immediate
failure of the exam (grade U), and may be subject to further persecution.
Grading scale: VG = 5, G = 4/3, U.

To pass, you need to deliver complete answers to two out of questions 1-3. For a
Chalmers grade 4 you need complete answers to all of the questions 1-3. A VG/5 requires
excellent answers on questions 1-3.

Submission instructions:

• Please answer the questions in English.

• The solutions need to be submitted as one .zip archive, named according to schema
FirstName LastName Personnummer.zip. Checklist:

– SSM.cf
– abs.ssm
– Question2.{txt|md|pdf|...}
– Question3.{txt|md|pdf|...}
– (other relevant files)

1

mailto:andreas.abel@gu.se
mailto:andreas.abel@gu.se


Question 1 (Grammars) Consider the following fantasy assembly language, called
simple stack machine (SSM). It is a simplification of the Java Virtual Machine. An
example SSM program is given on the next page.

• Program: a non-empty list of whitespace-separated blocks.

Execution starts with the first block and ends at the end of the last block (no
return instruction).

• Block: a label followed by a colon and a possibly whitespace-separated list of in-
structions.

• Label: an identifier starting with a letter and then followed by a possibly empty
sequence consisting of letters, digits, and underscores. (Note: this is different from
BNFC’s Ident token type.)

• Instruction: A keyword followed by 0, 1, or 2 whitespace-separated arguments. The
following instructions are supported:

– Unconditional jump: goto with 1 argument: label.

– Conditional jump: if with 2 arguments: condition, label.

If the condition holds on the top value of the stack, the jump is executed.
Different to the JVM, the stack is not changed.

– Load local variable onto stack: load with 1 argument: address.

– Store top of stack into local variable: store with 1 argument: address.

– Load fixed number onto stack: const with 1 argument: literal.

– Arithmetic operation applied to top two stack elements: one of add, sub, mul,
div without argument.

As for the JVM, the second operand resides on top of the stack and the first
operand is next-to-top. Both operands are removed by the operation and the
result is put on the stack instead.

• Condition: one of pos (value is positive), neg (value is negative), zero (value is 0).

• Address: a non-negative decimal number.

• Literal: a non-negative decimal number.

Lines starting with two dashes are comments.

1. Write an SSM program abs.ssm that computes the absolute value of a given integer.
The input shall reside in local variable 1 and the output shall be left as only entry
on the stack.

2. Write a labelled BNF grammar for SSM in a file SSM.cf and create a parser from
this grammar using BNFC. The parser should be free of conflicts (shift/reduce and
reduce/reduce).

3. Test your parser on abs.ssm and factorial.ssm.

Deliverables: files SSM.cf and abs.ssm.

2



-- Compute factorial on the simple stack machine (SSM).

--

-- Input n is in local variable 1.

-- Output n! is left on the stack.

-- If input is <= 1, output is 1.

-- The bottom of the stack holds the current result.

begin: const 1 -- Put 1 (result) onto the stack

-- Put n on the stack and make sure n is positive.

-- From then on, n will never become negative.

load 1 -- Put n on the stack.

if neg end -- If n was negative, nothing to do.

-- Main loop: If top of the stack n == 0, we are done.

loop: if zero end -- If this is = 0, goto end.

-- Multiply it onto the result.

mul

-- Decrement n by one.

load 1

const 1

sub

store 1

-- Continue with n-1.

load 1

goto loop

-- The product is on the stack, after we remove the final n

-- by storing it in dummy local variable 0.

end: store 0

3



SOLUTION: Grammar (file SSM.cf):

-- A simple stack machine in the style of the JVM.

--

-- Only has signed integers.

-- Potentially infinitely many local variables.

--

-- * load and store top of the stack into local variables

-- * push literals onto stack

-- * add, subtract, multiply, divide on stack

-- * labels and goto

-- * test for 0, positive, negative, leave result on the stack

--

-- Run

--

-- * halt by falling off the end

-- * result is content of stack from bottom to top

-- * input is content of local variables 1..n

--

-- Simulate

--

-- * pop: store into dummy local variable

-- * dup: pop and then load dummy twice on the stack

-- A program is a non-empty list of basic blocks,

-- separated by whitespace.

Prg. Program ::= [Block];

terminator nonempty Block "";

-- A block starts with a label, which is an identifier,

-- followed by a colon and a possibly empty list of commands.

Blk. Block ::= Label ":" [Cmd];

terminator Cmd "";

-- Commands for control flow:

Goto. Cmd ::= "goto" Label ;

Branch. Cmd ::= "if" Cond Label ;

-- Jump conditions.

Pos. Cond ::= "pos" ;

Neg. Cond ::= "neg" ;

4



Zero. Cond ::= "zero" ;

-- Commands for local variables

Load. Cmd ::= "load" Integer ;

Store. Cmd ::= "store" Integer ;

-- Commands for arithmetic:

Const. Cmd ::= "const" Integer ;

Arith. Cmd ::= Op ;

Add. Op ::= "add" ;

Sub. Op ::= "sub" ;

Mul. Op ::= "mul" ;

Div. Op ::= "div" ;

-- Labels

token Label letter (letter | digit | ’_’)* ;

comment "--" ;

SSM computation of absolute value (file abs.ssm):

-- Compute absolute value of an integer.

--

-- The given integer n is expected in local variable 1.

-- Its absolute value will be left on the stack.

begin: load 1 -- Load n onto the stack.

if pos end -- If it is non-negative, we are done.

if zero end

-- If n is negative, we have to compute 0-n.

-- We first remove n to put the zero on the stack first.

store 1

const 0

load 1

sub

-- The absolute value of n is now the only element of the stack.

end:

5



Question 2 (Interpretation): Write a specification of an interpreter for the simple
stack machine (SSM) of Question 1. Input to the interpreter are:

i. An abstract syntax tree of a SSM program.

ii. A list of integers serving as the inputs to the SSM program. These, say n, inputs are
the starting values for the local variables 1..n.

The output of the interpreter, if successful, are the values left on the stack after reaching
the end on the SSM program. If the program cannot be interpreted, the interpreter shall
flag an error instead.

Deliverable: submit a text document with name Question2 (plus file extension)
that contains the specification. The text document can be a plain text file possibly using
markup (like markdown) or a PDF.

The specification should have the following structure:

A. State. Describe the components of the state of the interpreter and how these compo-
nents are implemented, i.e., which data structure you use for each component.

B. Initialization, run, finalization: Describe how the state is initialized and how the
interpreter (C) is started (i.e., which arguments are given to the interpreter). Describe
how the output is obtained after the interpreter has finished.

C. Interpretation: Describe the interpreter: Write an explanation for each case of SSM
instruction. You may use pseudo-code if you wish.

D. API (optional): If you used helper functions to manipulate the state in item C,
describe them here.

The specification should be written in a high-level but self-contained way so that an
informed outsider can implement the interpreter easily following your specification. An
informed outsider shall be a person who has very good programming skills and good
familiarity with programming language technology in general, but no specific knowledge
about the SMM nor access to the course material.

The specification will be judged on clarity and correctness.

SOLUTION:

A. State

The state of the interpreter has the following components:

• code: A finite map from labels to basic blocks, which are linked lists of SSM
instructions. This component is read-only, i.e., does not change during the course
of interpretation.

• next: A finite map taking a label to the label of the next basic block, if such a next
block exists.

• current: The label of the currently executed basic block.

• stack: A linked list of integers, with the top of the stack being the front of the list.

6



• locals: A finite map from non-negative integers (local variable number/address)
to integers (local variable content).

The interpreter may throw any of the exceptions EmptyStack, UndefinedLabel, and
UninitializedLocal.

B. Initialization, run, finalization

The interpreter takes an AST of an SSM program and a list of integers as input and shall
return a list of integers, where the first element in the list corresponds to the bottom
element of the final stack. The interpreter works as follows:

The AST of the given SSM program is converted to a map from labels to blocks and
stored in code. From the list of all labels we initialize the map next by adding an entry
l 7→ l′ for each pair of subsequent elements l, l′ in the list. The n inputs are written into
locals at addresses 1..n. The stack is initialized to the empty list. Component current
is set to the label of the first basic block. The interpreter function exec is then called
with the list of SSM instructions in the first basic block as argument. After completion
of exec, the reversed content of stack is returned.

C. Interpreter

The function exec takes a list of statements as input manipulates the state of the inter-
preter. It has no output, but may throw an exception.

If the given list is empty, we look up the label l following current in map next. If
such l exists, we call exec with single instruction goto l. Otherwise, interpretation ends.

If the list is non-empty, let its first element be i and the rest be b. We say “continue”
to mean exec b. We distinguish the following cases on i:

• goto l: We lookup up l in map code to get its associated block b′. If l does not
exist, throw UndefinedLabel. Otherwise, set current to l and call exec with
block b′.

• if c l. If the stack is empty, throw EmptyStack. If condition c is satisfied on the
top of the stack, then exec goto l, otherwise continue.

• const k. Add integer k to the front of list stack and continue.

• add/sub/mul/div: Remove the top two elements y, x of stack. If this fails, throw
EmptyStack. Push x + y onto stack (or x− y, x · y, x/y, resp.) and continue.

• load r: Lookup value k of local variable r in locals. It this fails, throw
UninitializedLocal. Otherwise push k onto stack and continue.

• store r: Remove the top of the stack and store it at address r into locals. If this
fails, throw EmptyStack, else continue.

7



Question 3 (Compilation): Consider the following subset CMM of the C programming
language. (BNFC grammar on following page.)
• Program: a single function definition
• Definition: type followed by function name, parenthesized comma-separated list of

declarations followed by a function definition block in braces
• Function definition block: a semicolon-separated list of declarations followed by a

list of statements
• Declaration: a type followed by an indentifier
• Statement:

– assignment: identifier followed by =, expression, and semicolon
– return followed by an expression and a semicolon
– loop: while followed by a parenthesized condition and a statement
– conditional: if followed by a parenthesized condition, a statement, else, and

another statement
– block: a sequence of statements enclosed in braces

• Condition: e1 op e2 with op one of less-than (<), less-or-equal-than (<=), greater-
than (>), greater-or-equal-than (>=), equal (==), inequal (!=)
• Expression e:

– integer literal
– identifier
– arithmetical operation: e1 op e2 with op one of addition (+), subtraction (-),

multiplication (*), division (/)
• Type: int
• Identifier: letter followed by letters, digits, and underscores

Example: The following CMM program computes the factorial of the given argument:

/* Factorial function in CMM */

int factorial (int n) {

int result;

result = 1;

while (n > 1) {

result = result * n;

n = n - 1;

}

return result;

}

Specify a compiler from CMM to SSM. The compiler takes an abstract syntax
tree of a CMM program as input and translates this into an abstract syntax tree of a
SSM program, or throws an exception if the CMM input is ill-formed, e.g., has unbound
identifiers.

Deliverable: submit a text document with name Question3 (plus file extension)
that contains the specification. Instructions analogous to Question 2 apply. In particular,
follow the same structure: A. State, B. Initialization, run, finalization, C. Compilation
schemes, D. API.

Restriction of the task: From the arithmetical operations, show compilation of one
form of your choice (+, -, *, or /). Same for the comparison operations. Choose one of
if or while.

8



-- BNFC grammar for CMM fragment of C

-- # A Program is a single function definition.

Def. Program ::= Type Id "(" [Arg] ")" "{" [Decl] [Stm] "}" ;

-- ## Function parameters.

ADecl. Arg ::= Type Id ;

separator Arg "," ;

-- ## Variable declarations.

VDecl. Decl ::= Type Id ;

terminator Decl ";" ;

-- # Statements.

SAssign. Stm ::= Id "=" Exp ";" ;

SReturn. Stm ::= "return" Exp ";" ;

SWhile. Stm ::= "while" "(" Cmp ")" Stm ;

SIfElse. Stm ::= "if" "(" Cmp ")" Stm "else" Stm ;

SBlock. Stm ::= "{" [Stm] "}" ;

terminator Stm "" ;

-- # Expressions.

EInt. Exp2 ::= Integer ;

EId. Exp2 ::= Id ;

EMul. Exp1 ::= Exp1 MulOp Exp2 ; -- Left assoc.

EAdd. Exp ::= Exp AddOp Exp1 ; -- Left assoc.

coercions Exp 2 ;

-- # Operators.

OTimes. MulOp ::= "*" ; OPlus. AddOp ::= "+" ;

ODiv. MulOp ::= "/" ; OMinus. AddOp ::= "-" ;

-- # Comparison.

CCmp. Cmp ::= Exp CmpOp Exp ;

OLt. CmpOp ::= "<" ; OGt. CmpOp ::= ">" ;

OLtEq. CmpOp ::= "<=" ; OGtEq. CmpOp ::= ">=" ;

OEq. CmpOp ::= "==" ; ONEq. CmpOp ::= "!=" ;

-- # Types, identifiers, comments

TInt. Type ::= "int" ;

token Id letter (letter | digit | ’_’)* ;

comment "/*" "*/" ;

9



SOLUTION:

A. State

The state of the compiler consists of the following components:

1. A finite map context from identifiers to natural numbers (local variable addresses).
This map is unchanged after initialization.

2. A stream labels of so far unused label names. Elements are taken from this stream
whenever a new label name is needed. The stream does not contain the two special
label names "begin" and "end".

3. A nonempty snoc-list output of blocks, each block consisting of a label and a
possibly empty snoc-list of SSM instructions.

The compiler may raise exceptions UnboundIdentifier and DuplicateIdentifier.

B. Initialization, run, finalization

Given a CMM program argument list args , declaration list decls and statements ss ,
create a list xs of all variable names from the concatenation of args and decls . If xs
has duplicates, raise exception DuplicateIdentifier, otherwise create the finite map
context by subsequently mapping the elements of xs to 1, 2, . . . . Initialize labels to
the infinite stream "L1", "L2", . . . . Initialize snoc-list output to contain a single block
with label "begin" and empty instruction list.

Run compile on statements ss . If no exception was thrown, extend the output by
an empty block with label "end" and return it as SSM syntax tree.

C. Compiler

compile ss:

for (s : ss) compile s

compile (SAssign x e):

r <- lookupVar x

compile e

emit (store r)

compile (SReturn e):

compile e

emit (goto "end")

compile (SBlock ss):

compile ss

compile (SWhile (CCmp e1 OGtEq e2) s):

start, done <- newLabel

emitLabel start

10



compile e1

compile e2

emit (sub)

emit (if neg done)

pop

compile s

emit (goto start)

emitLabel done

pop

compile (SIfElse (CCmp e1 OEq e2) s1 s2):

false, done <- newLabel

compile e1

compile e2

emit (sub)

emit (if pos false)

emit (if neg false)

pop

compile s1

emit (goto done)

emitLabel false

pop

compile s2

emitLabel done

compile (EInt i):

emit (const i)

compile (EId x):

r <- lookupVar x

emit (load r)

compile (EAdd e1 OSub e2):

compile e1

compile e2

emit (sub)

D. API

• emitLabel l: Append a new block to output with label l and empty instruction
list.
• emit i: Append SSM instruction i to the instruction list of the last block.
• pop: Short for emit (store 0).
• lookupVar x: Return value of x in map context. If non-existent, throw exception
UnboundIdentifier.
• newLabel: Extract the next element from stream labels.

11


