
Finite automata theory and
formal languages

(DIT321, TMV027)

Nils Anders Danielsson

2019-02-04

Today

▶ NFAs with 𝜀-transitions.
▶ Exponential blowup.

𝜀-NFAs

𝜀-NFAs

▶ Like NFAs, but with 𝜀-transitions:
The automaton can “spontaneously” make a
transition from one state to another.

▶ Can be used to convert regular expressions to
finite automata.

𝜀-NFAs
Strings over { 0, 1 } that start and end with a one,
or that contain two consecutive ones:

..........
𝜀

.

𝜀

.

1

.

0, 1

.

1

.

0, 1

.

1

.

1

.

0, 1

𝜀-NFAs

An 𝜀-NFA can be given by a 5-tuple
(𝑄, Σ, 𝛿, 𝑞0, 𝐹):
▶ A finite set of states (𝑄).
▶ An alphabet (Σ with 𝜀 ∉ Σ).
▶ A transition function

(𝛿 ∈ 𝑄 × (Σ ∪ { 𝜀 }) → ℘(𝑄)).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A set of accepting states (𝐹 ⊆ 𝑄).

Transition diagrams

As for NFAs, but arrows can be labelled with 𝜀.

Transition tables

As for NFAs, but with one column for 𝜀.

𝜀-closure

𝜀-closure

Given an 𝜀-NFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) one can, for
each state 𝑞 ∈ 𝑄, define the 𝜀-closure of 𝑞 (a subset
of 𝑄) inductively in the following way:

𝑞 ∈ 𝜀‐closure(𝑞)

𝑞′ ∈ 𝜀‐closure(𝑞) 𝑞″ ∈ 𝛿(𝑞′, 𝜀)
𝑞″ ∈ 𝜀‐closure(𝑞)

Some notation

The 𝜀-closure of a set 𝑆 ⊆ 𝑄:

𝜀‐closure(𝑆) = ⋃
𝑠∈𝑆

𝜀‐closure(𝑠)

Transition functions applied to a set 𝑆 ⊆ 𝑄:

𝛿(𝑆, 𝑎) = ⋃
𝑠∈𝑆

𝛿(𝑠, 𝑎)

̂𝛿(𝑆, 𝑎) = ⋃
𝑠∈𝑆

̂𝛿(𝑠, 𝑎)

Computing the 𝜀-closure

The 𝜀-closure of 𝑞 can be computed in the following
way:
▶ Initialise 𝐶 to { 𝑞 }.
▶ Repeat until 𝛿(𝐶, 𝜀) ⊆ 𝐶:

▶ Set 𝐶 to 𝐶 ∪ 𝛿(𝐶, 𝜀).
▶ Return 𝐶.

Which of the following propositions hold for
the following 𝜀-NFA over { 0, 1 }?

.. 𝑞0.

𝑞1

.

𝑞2

.

𝑞3

.

𝑞4

.

𝑞5

.

𝑞6

..
𝜀

.

𝜀

.

1

. 0, 𝜀.

𝜀

. 𝜀, 1.

𝜀

.

1

. 0, 1

1. 𝑞0 ∈ 𝜀‐closure(𝑞0).
2. 𝑞5 ∈ 𝜀‐closure(𝑞0).
3. 𝜀‐closure(𝑞4) ⊆

𝜀‐closure(𝑞0).

4. 𝑞6 ∈ 𝜀‐closure(𝑞0).
5. 𝑞3 ∈ 𝜀‐closure(𝑞1).
6. 𝜀‐closure(𝑞4) ⊆

𝜀‐closure(𝑞5).

Semantics

The language of an 𝜀-NFA
The language 𝐿(𝐴) of an 𝜀-NFA
𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) is defined in the following way:

▶ A transition function for strings is defined
by recursion:

̂𝛿 ∈ 𝑄 × Σ∗ → ℘(𝑄)
̂𝛿(𝑞, 𝜀) = 𝜀‐closure(𝑞)
̂𝛿(𝑞, 𝑎𝑤) = ̂𝛿(𝛿(𝜀‐closure(𝑞), 𝑎), 𝑤)

▶ The language is

{ 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅ } .

Which strings are members of the language
of the following 𝜀-NFA over { 𝑎, 𝑏, 𝑐 }?

.. 𝑠0. 𝑠1. 𝑠2.

𝑠5

.

𝑠4

.

𝑠3

.. 𝑎.

𝑎

. 𝑏.

𝑏

.

𝑏, 𝜀

.

𝑎

.

𝑎

.

𝑎

1. 𝑎𝑏𝑏𝑎.
2. 𝑎𝑏𝑏𝑎𝑐𝑎.
3. 𝑎𝑎𝑎𝑏𝑎𝑎.

4. 𝑎𝑎𝑎𝑏𝑎𝑎𝑎.
5. 𝑎𝑎𝑎𝑎𝑏𝑎𝑎.
6. 𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑎𝑎.

Which of the following propositions are valid?

1. 𝜀‐closure(𝜀‐closure(𝑞)) = 𝜀‐closure(𝑞).
2. ̂𝛿(𝑞, 𝑤) = ̂𝛿(𝜀‐closure(𝑞), 𝑤).
3. ̂𝛿(𝛿(𝜀‐closure(𝑞), 𝑎), 𝑤) =

̂𝛿(𝜀‐closure(𝛿(𝑞, 𝑎)), 𝑤).

Constructions

Subset construction

Given an 𝜀-NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) we can define
a DFA 𝐷 with the same alphabet in such a way that
𝐿(𝑁) = 𝐿(𝐷):

𝐷 = (℘(𝑄), Σ, 𝛿′, 𝜀‐closure(𝑞0), 𝐹 ′)
𝛿′(𝑆, 𝑎) = 𝜀‐closure(𝛿(𝑆, 𝑎))
𝐹 ′ = { 𝑆 ⊆ 𝑄 | 𝑆 ∩ 𝐹 ≠ ∅ }

Every accessible state 𝑆 is 𝜀-closed
(i.e. 𝑆 = 𝜀‐closure(𝑆)).

If the subset construction is used to build a DFA
corresponding to the following 𝜀-NFA over { 𝑎, 𝑏 },
and inaccessible states are removed, how many
states are there in the resulting DFA?

.. 0. 1.

3

.

2

.. 𝑎.

𝑎

.

𝑏, 𝜀

.

𝑎, 𝜀

.

𝑎

Regular languages

▶ Recall that a language 𝑀 ⊆ Σ∗ is regular if
there is some DFA (or NFA) 𝐴 with alphabet
Σ such that 𝐿(𝐴) = 𝑀 .

▶ For alphabets Σ with 𝜀 ∉ Σ a language
𝑀 ⊆ Σ∗ is also regular if and only if there is
some 𝜀-NFA 𝐴 with alphabet Σ such that
𝐿(𝐴) = 𝑀 .

Union

Recall:
▶ One can use 𝜀-NFAs to convert regular

expressions to finite automata.

Union
Given two 𝜀-NFAs 𝐴1 and 𝐴2 with the same
alphabet we can construct an 𝜀-NFA 𝐴1 ⊕ 𝐴2 that
satisfies the following property:

𝐿(𝐴1 ⊕ 𝐴2) = 𝐿(𝐴1) ∪ 𝐿(𝐴2).
Construction:

...
𝐴1

.

𝐴2

..
𝜀

.
𝜀

▶ The transitions go to the start states.
▶ States are renamed if the state sets overlap.

Can one do something similar for NFAs by
“merging” the start states?
Given two NFAs 𝐴1 = (𝑄1, Σ, 𝛿1, 𝑞01, 𝐹1) and
𝐴2 = (𝑄2, Σ, 𝛿2, 𝑞02, 𝐹2) satisfying 𝑄1 ∩ 𝑄2 = ∅ and
𝑞0 ∉ 𝑄1 ∪ 𝑄2, is the language of the NFA

(𝑓(𝑄1 ∪ 𝑄2), Σ, 𝑓 ∘ 𝛿, 𝑞0, 𝑓(𝐹1 ∪ 𝐹2)), where
𝑓(𝑆) = (𝑆 ∖ { 𝑞01, 𝑞02 }) ∪ { 𝑞0 | 𝑞01 ∈ 𝑆 ∨ 𝑞02 ∈ 𝑆 } ,

𝛿(𝑠, 𝑎) =
⎧{
⎨{⎩

𝛿1(𝑞01, 𝑎) ∪ 𝛿2(𝑞02, 𝑎), if 𝑠 = 𝑞0,
𝛿1(𝑠, 𝑎), if 𝑠 ∈ 𝑄1,
𝛿2(𝑠, 𝑎), if 𝑠 ∈ 𝑄2

equal to 𝐿(𝐴1) ∪ 𝐿(𝐴2)?

1. Yes, always.
2. No, never.

3. No, not always,
but sometimes.

Exponential
blowup

Exponential blowup

Consider the following family of languages:

𝐴 ∈ ℕ → ℘({ 0, 1 }∗)
𝐴(𝑛) = { 𝑢1𝑣 ∣ 𝑢, 𝑣 ∈ { 0, 1 }∗ , |𝑣| = 𝑛 }

Exponential blowup

The family:

𝐴(𝑛) = { 𝑢1𝑣 ∣ 𝑢, 𝑣 ∈ { 0, 1 }∗ , |𝑣| = 𝑛 }

For every 𝑛 ∈ ℕ the NFAs for 𝐴(𝑛) with the least
number of states have at most 𝑛 + 2 states:

.. 𝑞. 𝑞0. 𝑞1. 𝑞𝑛−1. 𝑞𝑛..

0, 1

. 1. 0, 1. …. 0, 1

Exponential blowup

Furthermore one can prove:
▶ For every 𝑛 ∈ ℕ the DFAs for 𝐴(𝑛) with the

least number of states have at least 2𝑛+1

states.
A key part of the proof in the course text book uses
the pigeonhole principle:
▶ A DFA over { 0, 1 } with less than 2𝑘 states

has to end up in the same state for at least two
distinct 𝑘-bit strings.

Exponential blowup

Thus it might be inefficient to check if a string
belongs to a language represented by an NFA (or
𝜀-NFA) by using the following method:
▶ Translate the NFA to a corresponding DFA.
▶ Use the DFA to check if the string belongs to

the language.

Exponential blowup

▶ This method is used in practice by some tools.
▶ It seems to work fine in many practical cases.
▶ Exercise (optional):

Make such a tool “blow up” by giving it a short
piece of carefully crafted input.

Today

▶ 𝜀-NFAs.
▶ 𝜀-closure.
▶ Semantics.
▶ Constructions.
▶ Exponential blowup.

Next lecture

▶ Regular expressions.
▶ Translation from finite automata to regular

expressions.

▶ Deadline for the next quiz: 2019-02-07, 10:00.
▶ Deadline for the second assignment:

2019-02-10, 23:59.

	ε-NFAs
	ε-closure
	Semantics
	Constructions
	Exponential blowup
	Conclusion

