Nils Anders Danielsson,
partly based on slides by Ana Bove

2019-01-24

Proofs.
Induction for the natural numbers.
Inductively defined sets.

vV v v Vv

Recursive functions.

Some basic
proof
methods

Some basic proof methods

» To prove p = ¢, assume p and prove q.

» To prove Vx € A. P(x), assume that we have
an x € A and prove P(x).

» To prove p < q, prove both p = ¢ and ¢ = p.

» To prove —p, assume p and derive a
contradiction.

» To prove p, prove ——p.
» To prove p = ¢, assume —q and prove —p.

(There may be other ways to prove these things.)

Induction

Mathematical induction

For a natural number predicate P we can prove
Vn € N. P(n) in the following way:

» Prove P(0).
» For every n € N, prove that
P(n) implies P(n + 1).
With a formula:

PO)A(VneN. P(n) = P(n+1)) =
vVn e N. P(n)

Which of the following variants of induction
are valid?

1. PO)A(VneN.n>1AP(n) = P(n+1)) =
VneN.n>1= P(n).

2. PA(VneN.n>1AP(n) = P(n+1)) =
VneN.n>1= P(n).

3. P(1) A P(2) A
(VneN.n>2AP(n)=Pn+1)) =
VneN.n>1= P(n).

Counterexamples

» One can sometimes prove that a statement is
invalid by using a counterexample.

» Example: The following statement does not
hold for P(n):=n+#1and n = 1:

PO)AN(VneN.n>1APn)=Pn+1)) =
VneN.n>1= P(n)

The hypotheses hold, but not the conclusion.

Counterexamples

More carefully:
» Let us prove

—(V natural number predicates P. P(0) A
(VneN.n>1APn)=Pn+1)) =
VneN.n>1= P(n)).

» We assume

V natural number predicates P. P(0) A
(VneN.n>1AP(n)=Pn+1)) =
VneN.n>1= P(n),

and derive a contradiction.

Counterexamples

> Let us use the predicate P(n):=n # 1.
» We have P(0), i.e. 0 # 1.

» We also have
VneN.n>1AP(n)= P(n+1),ie.
VneN.n>1An#1=n+1+#1

Thus we get Vn e N. n > 1= P(n).
Let ususe n = 1.

We have 1 > 1.

Thus we get P(1), ie. 1# 1.

This is a contradiction, so we are done.

vV v v v VY

Complete induction

We can also prove ¥n € N. P(n) in the following
way:
» Prove P(0).

> For every n € N, prove that if P(i) holds for

every natural number i < n, then P(n + 1)
holds.

With a formula:

P(0) A
(VneN. (VieN.i<n= P(i)) = Pn+1)) =
vn € N. P(n)

Which of the following variants of complete
induction are valid?

1. (VrneN. (VieN.i<n= P(i)) = P(n)) =
Vn € N. P(n).
2. P(1) A
(VneN.n>1A(VieN. i<n= P(i)) =
Pn+1)) =
Vn € N. P(n).

Every natural number n > 8 can be written as a
sum of multiples of 3 and 5.

An example

Proof.

Let P(n) ben>8=3i,j € N. n=3i+5j. We
prove that P(n) holds for all n € N by complete
induction on n;:
> Base cases (n =0,...,7): Trivial.
» Base cases (n =8, n =9, n = 10): Easy.
> Step case (n > 10, inductive hypothesis
Vi e N.i <n= P(i), goal P(n+1)):
Because n — 2 > 8 the inductive hypothesis for
n — 2 implies that there are 7, 5 € N such that
n—2 =31+ 5j. Thus we get
l+n=34+(n—2)=3>G+1)+5j.]

Proofs

How detailed should a proof be?

» Depends on the purpose of the proof.
» Who or what do you want to convince?
> Yourself?
A fellow student?
An examiner?
An experienced researcher?
A computer program (a proof checker)?

v

v vy

Discuss the following proof of
Vn € N. 2?2075 = ntL. Would you like to
add /remove/change anything?

By induction on n:
> n=0: Y i=0=0%L
»n=%k+1, keN:

k+1 k
ZZ—Z’L— (k+1)+ Zi:
i=0
(k+)+kk%:

(k+1) <1+§):(k+1)¥.

Inductively
defined sets

The natural numbers:
neN

zero € N suc ne N

Compare:
data Nat = Zero | Suc Nat

Booleans:

true € Bool false € Bool

Compare:
data Bool = True | False

Finite lists:
re A xs € List A
nil € List A cons zzs € List A
Compare:

data List a = Nil | Cons a (List a)

Which of the following expressions are lists of
natural numbers (members of List N)?

nil.
cons nil 5.
cons 5 nil.

= =

let s = cons 5 zs in xs.

Alternative notation for lists:
» [] instead of nil.
» z:xs instead of cons z xs.
» [1,2,3] instead of cons 1 (cons 2 (cons 3 nil)).

Recursive
functions

An example:

length € List A — N
length nil = zero
length (cons x zs) = suc (length xs)

Not well-defined:

bad € List A — N
bad nil = zero
bad (cons z xs) = bad (cons z xs)

Another example:

fe List A— List A

fxs= g xsnil

g€ List A— List A— List A

g nil ys = ys

g (cons z xs) ys = g xs (cons x ys)

— o — o/ —

[T N Y | S

reverse € List A — List A
reverse xs = rev-app xs nil

rev-app € List A — List A — List A
rev-app nil Ys = ys
rev-app (cons zs) ys = rev-app xs (cons z ys)

Mutual
iInduction

Mutual induction

» Two mutually defined functions:

odd, even € N — Bool

odd zero = false
odd (suc n) = even n
even zero = true

even (suc n) = odd n
» Another function:

odd € N — Bool
odd zero = false
odd’ (suc n) = not (odd n)

» Can we prove Vn € N. odd n = odd n?

Mutual induction

First attempt:
» Let us use mathematical induction.
» Inductive hypothesis:

Pn:=oddn=odd n
> Base case (P zero):

odd zero =
false =
odd zero

Mutual induction

Step case (VneN. Pn=- P (suc n)):
» Given n €N, let us assume odd n = odd' n:

odd (suc n) =

even n = {777}
not (odd' n) =

odd’ (suc n).

» Let us generalise the inductive hypothesis:

Pn:=oddn= odd nN
even n = not (odd n)

Base case (P zero):
» First part:

odd zero
false =
odd zero

» Second part:

even zero =
true

not false

not (odd zero)

Mutual induction

Step case (VneN. Pn=- P (suc n)):

» Given n €N, let us assume odd n = odd' n
and even n = not (odd' n).

» First part:

odd (suc n)
even n = {By the second IH.}
not (odd’ n)
odd’ (suc n)

Mutual induction

Step case (VneN. Pn= P (sucn)):
» Given n €N, let us assume odd n = odd n
and even n = not (odd' n).

» Second part:

even (suc n)
odd n = {By the first IH.}
odd n

not (not (odd n))
not (odd’ (suc n))

Discuss how you would prove
Vn € N. even n = nots n true.

nots € N — Bool — Bool
notszero b=1>
nots (suc n) b = nots n (not b)

odd, even € N — Bool

odd zero = false
odd (suc n) = evenn
even zero = true

even (suc n) = odd n

Proofs.
Proofs by induction.
Inductively defined sets.

vV v v Vv

Recursive functions.

Next lecture

v

Structural induction.

v

Some concepts from automata theory.

v

Deadline for the next quiz: 2019-01-25, 15:00.

Deadline for the following quiz: 2019-01-28,
17:00.

v

	Some basic proof methods
	Induction
	Proofs
	Inductively defined sets
	Recursive functions
	Mutual induction
	Conclusion

