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Today

▶ Proofs.
▶ Induction for the natural numbers.
▶ Inductively defined sets.
▶ Recursive functions.



Some basic
proof

methods



Some basic proof methods

▶ To prove 𝑝 ⇒ 𝑞, assume 𝑝 and prove 𝑞.
▶ To prove ∀𝑥 ∈ 𝐴. 𝑃(𝑥), assume that we have

an 𝑥 ∈ 𝐴 and prove 𝑃(𝑥).
▶ To prove 𝑝 ⇔ 𝑞, prove both 𝑝 ⇒ 𝑞 and 𝑞 ⇒ 𝑝.
▶ To prove ¬𝑝, assume 𝑝 and derive a

contradiction.
▶ To prove 𝑝, prove ¬¬𝑝.
▶ To prove 𝑝 ⇒ 𝑞, assume ¬𝑞 and prove ¬𝑝.

(There may be other ways to prove these things.)



Induction



Mathematical induction

For a natural number predicate 𝑃 we can prove
∀𝑛 ∈ ℕ. 𝑃 (𝑛) in the following way:
▶ Prove 𝑃(0).
▶ For every 𝑛 ∈ ℕ, prove that

𝑃(𝑛) implies 𝑃(𝑛 + 1).
With a formula:

𝑃(0) ∧ (∀𝑛 ∈ ℕ. 𝑃 (𝑛) ⇒ 𝑃(𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑃 (𝑛)



Which of the following variants of induction
are valid?

1. 𝑃(0)∧(∀𝑛 ∈ ℕ. 𝑛 ≥ 1∧𝑃(𝑛) ⇒ 𝑃(𝑛+1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛).

2. 𝑃(1)∧(∀𝑛 ∈ ℕ. 𝑛 ≥ 1∧𝑃(𝑛) ⇒ 𝑃(𝑛+1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛).

3. 𝑃(1) ∧ 𝑃(2) ∧
(∀𝑛 ∈ ℕ. 𝑛 ≥ 2 ∧ 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛).



Counterexamples

▶ One can sometimes prove that a statement is
invalid by using a counterexample.

▶ Example: The following statement does not
hold for 𝑃(𝑛) ≔ 𝑛 ≠ 1 and 𝑛 = 1:

𝑃(0) ∧ (∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ 𝑃(𝑛) ⇒ 𝑃 (𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛)

The hypotheses hold, but not the conclusion.



Counterexamples
More carefully:
▶ Let us prove

¬(∀ natural number predicates 𝑃 . 𝑃 (0) ∧
(∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ 𝑃(𝑛) ⇒ 𝑃 (𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛)).

▶ We assume

∀ natural number predicates 𝑃 . 𝑃(0) ∧
(∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ 𝑃(𝑛) ⇒ 𝑃 (𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛),

and derive a contradiction.



Counterexamples

▶ Let us use the predicate 𝑃(𝑛) ≔ 𝑛 ≠ 1.
▶ We have 𝑃(0), i.e. 0 ≠ 1.
▶ We also have

∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ 𝑃 (𝑛) ⇒ 𝑃(𝑛 + 1), i.e.
∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ 𝑛 ≠ 1 ⇒ 𝑛 + 1 ≠ 1.

▶ Thus we get ∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ⇒ 𝑃(𝑛).
▶ Let us use 𝑛 = 1.
▶ We have 1 ≥ 1.
▶ Thus we get 𝑃(1), i.e. 1 ≠ 1.
▶ This is a contradiction, so we are done.



Complete induction
We can also prove ∀𝑛 ∈ ℕ. 𝑃 (𝑛) in the following
way:
▶ Prove 𝑃(0).
▶ For every 𝑛 ∈ ℕ, prove that if 𝑃(𝑖) holds for

every natural number 𝑖 ≤ 𝑛, then 𝑃(𝑛 + 1)
holds.

With a formula:

𝑃(0) ∧
(∀𝑛 ∈ ℕ. (∀𝑖 ∈ ℕ. 𝑖 ≤ 𝑛 ⇒ 𝑃(𝑖)) ⇒ 𝑃 (𝑛 + 1)) ⇒

∀𝑛 ∈ ℕ. 𝑃 (𝑛)



Which of the following variants of complete
induction are valid?

1. (∀𝑛 ∈ ℕ. (∀𝑖 ∈ ℕ. 𝑖 < 𝑛 ⇒ 𝑃(𝑖)) ⇒ 𝑃(𝑛)) ⇒
∀𝑛 ∈ ℕ. 𝑃(𝑛).

2. 𝑃(1) ∧
(∀𝑛 ∈ ℕ. 𝑛 ≥ 1 ∧ (∀𝑖 ∈ ℕ. 𝑖 ≤ 𝑛 ⇒ 𝑃(𝑖)) ⇒

𝑃(𝑛 + 1)) ⇒
∀𝑛 ∈ ℕ. 𝑃(𝑛).



An example

Lemma
Every natural number 𝑛 ≥ 8 can be written as a
sum of multiples of 3 and 5.



An example
Proof.
Let 𝑃(𝑛) be 𝑛 ≥ 8 ⇒ ∃𝑖, 𝑗 ∈ ℕ. 𝑛 = 3𝑖 + 5𝑗. We
prove that 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by complete
induction on 𝑛:
▶ Base cases (𝑛 = 0, …, 7): Trivial.
▶ Base cases (𝑛 = 8, 𝑛 = 9, 𝑛 = 10): Easy.
▶ Step case (𝑛 ≥ 10, inductive hypothesis

∀𝑖 ∈ ℕ.𝑖 ≤ 𝑛 ⇒ 𝑃 (𝑖), goal 𝑃(𝑛 + 1)):
Because 𝑛 − 2 ≥ 8 the inductive hypothesis for
𝑛 − 2 implies that there are 𝑖, 𝑗 ∈ ℕ such that
𝑛 − 2 = 3𝑖 + 5𝑗. Thus we get
1 + 𝑛 = 3 + (𝑛 − 2) = 3(𝑖 + 1) + 5𝑗.



Proofs



How detailed should a proof be?

▶ Depends on the purpose of the proof.
▶ Who or what do you want to convince?

▶ Yourself?
▶ A fellow student?
▶ An examiner?
▶ An experienced researcher?
▶ A computer program (a proof checker)?



Discuss the following proof of
∀𝑛 ∈ ℕ. ∑𝑛

𝑖=0 𝑖 = 𝑛𝑛+1
2 . Would you like to

add/remove/change anything?
By induction on 𝑛:
▶ 𝑛 = 0: ∑0

𝑖=0 𝑖 = 0 = 00+1
2 .

▶ 𝑛 = 𝑘 + 1, 𝑘 ∈ ℕ:
𝑛

∑
𝑖=0

𝑖 =
𝑘+1
∑
𝑖=0

𝑖 = (𝑘 + 1) +
𝑘

∑
𝑖=0

𝑖 =

(𝑘 + 1) + 𝑘𝑘 + 1
2 =

(𝑘 + 1) (1 + 𝑘
2) = (𝑘 + 1)𝑘 + 2

2 .



Inductively
defined sets



Inductively defined sets

The natural numbers:

zero ∈ ℕ
n ∈ ℕ

suc n ∈ ℕ

Compare:
data Nat = Zero | Suc Nat



Inductively defined sets

Booleans:

true ∈ Bool false ∈ Bool

Compare:
data Bool = True | False



Inductively defined sets

Finite lists:

nil ∈ List A
x ∈ A xs ∈ List A

cons x xs ∈ List A

Compare:
data List a = Nil | Cons a (List a)



Which of the following expressions are lists of
natural numbers (members of List ℕ)?

1. nil.
2. cons nil 5.
3. cons 5 nil.
4. let xs = cons 5 xs in xs.



Lists

Alternative notation for lists:
▶ [ ] instead of nil.
▶ x ∶ xs instead of cons x xs.
▶ [1, 2, 3] instead of cons 1 (cons 2 (cons 3 nil)).



Recursive
functions



Recursive functions

An example:

length ∈ List A → ℕ
length nil = zero
length (cons x xs) = suc (length xs)



Recursive functions

Not well-defined:

bad ∈ List A → ℕ
bad nil = zero
bad (cons x xs) = bad (cons x xs)



Recursive functions

Another example:

f ∈ List A → List A
f xs = g xs nil
g ∈ List A → List A → List A
g nil ys = ys
g (cons x xs) ys = g xs (cons x ys)



What is the result of f [1, 2, 3]?
1. [1, 2, 3].
2. [1, 3, 2].
3. [2, 1, 3].
4. [2, 3, 1].
5. [3, 1, 2].
6. [3, 2, 1].



Recursive functions

reverse ∈ List A → List A
reverse xs = rev‐app xs nil
rev‐app ∈ List A → List A → List A
rev‐app nil ys = ys
rev‐app (cons x xs) ys = rev‐app xs (cons x ys)



Mutual
induction



Mutual induction
▶ Two mutually defined functions:

odd, even ∈ ℕ → Bool
odd zero = false
odd (suc n) = even n
even zero = true
even (suc n) = odd n

▶ Another function:
odd′ ∈ ℕ → Bool
odd′ zero = false
odd′ (suc n) = not (odd′ n)

▶ Can we prove ∀n ∈ ℕ. odd n = odd′ n?



Mutual induction
First attempt:
▶ Let us use mathematical induction.
▶ Inductive hypothesis:

P n ≔ odd n = odd′ n

▶ Base case (P zero):

odd zero =
false =
odd′ zero



Mutual induction
Step case (∀n ∈ ℕ. P n ⇒ P (suc n)):
▶ Given n ∈ ℕ, let us assume odd n = odd′ n:

odd (suc n) =
even n = {???}
not (odd′ n) =
odd′ (suc n).

▶ Let us generalise the inductive hypothesis:

P n ≔ odd n = odd′ n ∧
even n = not (odd′ n)



Mutual induction
Base case (P zero):
▶ First part:

odd zero =
false =
odd′ zero

▶ Second part:

even zero =
true =
not false =
not (odd′ zero)



Mutual induction

Step case (∀n ∈ ℕ. P n ⇒ P (suc n)):
▶ Given n ∈ ℕ, let us assume odd n = odd′ n

and even n = not (odd′ n).
▶ First part:

odd (suc n) =
even n = {By the second IH.}
not (odd′ n) =
odd′ (suc n)



Mutual induction

Step case (∀n ∈ ℕ. P n ⇒ P (suc n)):
▶ Given n ∈ ℕ, let us assume odd n = odd′ n

and even n = not (odd′ n).
▶ Second part:

even (suc n) =
odd n = {By the first IH.}
odd′ n =
not (not (odd′ n)) =
not (odd′ (suc n))



Discuss how you would prove
∀n ∈ ℕ. even n = nots n true.

nots ∈ ℕ → Bool → Bool
nots zero b = b
nots (suc n) b = nots n (not b)
odd, even ∈ ℕ → Bool
odd zero = false
odd (suc n) = even n
even zero = true
even (suc n) = odd n



Today

▶ Proofs.
▶ Proofs by induction.
▶ Inductively defined sets.
▶ Recursive functions.



Next lecture

▶ Structural induction.
▶ Some concepts from automata theory.

▶ Deadline for the next quiz: 2019-01-25, 15:00.
▶ Deadline for the following quiz: 2019-01-28,

17:00.
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