Finite automata theory and
 formal languages (DIT321, TMV027)

Nils Anders Danielsson
2019-02-07

Today

- Regular expressions.
- Translation from finite automata to regular expressions.
- If there is time: Brzozowski derivatives.

> Syntax of regular expressions

Syntax

The set $R E(\Sigma)$ of regular expressions over the alphabet Σ can be defined inductively in the following way:

$$
\begin{array}{cc}
\overline{\text { empty } \in R E(\Sigma)} & \overline{\text { nil } \in R E(\Sigma)} \\
\frac{a \in \Sigma}{\operatorname{sym}(a) \in R E(\Sigma)} & \frac{e_{1}, e_{2} \in R E(\Sigma)}{\operatorname{seq}\left(e_{1}, e_{2}\right) \in R E(\Sigma)} \\
\frac{e_{1}, e_{2} \in R E(\Sigma)}{\operatorname{alt}\left(e_{1}, e_{2}\right) \in R E(\Sigma)} & \frac{e \in R E(\Sigma)}{\operatorname{star}(e) \in R E(\Sigma)}
\end{array}
$$

Syntax

Typically we use the following concrete syntax:

$$
\begin{array}{cc}
\overline{\emptyset \in R E(\Sigma)} & \overline{\varepsilon \in R E(\Sigma)} \\
\frac{a \in \Sigma}{a \in R E(\Sigma)} & \frac{e_{1}, e_{2} \in R E(\Sigma)}{e_{1} e_{2} \in R E(\Sigma)} \\
\frac{e_{1}, e_{2} \in R E(\Sigma)}{e_{1}+e_{2} \in R E(\Sigma)} & \frac{e \in R E(\Sigma)}{e^{*} \in R E(\Sigma)}
\end{array}
$$

(Sometimes $e_{1} \mid e_{2}$ instead of $e_{1}+e_{2}$.)

Syntax

- What if, say, $\varepsilon \in \Sigma$?
- Does ε stand for $\operatorname{sym}(\varepsilon)$ or nil?
- One option: Require that $\emptyset, \varepsilon,+,{ }^{*} \notin \Sigma$.

Syntax

- What does $01+2$ mean, alt(seq(sym(0), sym(1)), sym(2)) or seq(sym(1), alt(sym(1), sym(2)))?
- Sequencing "binds tighter" than alternation, so it means alt(seq(sym(0), sym (1)), sym(2)).
- Parentheses can be used to get the other meaning: $0(1+2)$.
- The Kleene star operator binds tighter than sequencing, so 01^{*} means $0\left(1^{*}\right)$, not $(01)^{*}$.

Syntax

- What does $0+1+2$ mean, $0+(1+2)$ or $(0+1)+2$?
- The latter two expressions denote the same language, so the choice is not very important.
- One option (taken by the book): Make the operator left associative, i.e. choose $(0+1)+2$.
- Similarly 012 means (01)2.

Syntax

An abbreviation:

- e^{+}means $e e^{*}$.
- This operator binds as tightly as the Kleene star operator.

Which of the following statements are correct?

1. $01+23$ means $(01)+(23)$.
2. $01+23^{*}$ means $((01)+(23))^{*}$.
3. $0+1^{*} 2+3^{*}$ means $\left((0+1)^{*}\right)\left((2+3)^{*}\right)$.
4. $0+1^{*} 2+3^{*}$ means $\left(0+\left(\left(1^{*}\right) 2\right)\right)+\left(3^{*}\right)$.
5. $012^{*} 34$ means $\left(\left(\left((01)\left(2^{*}\right)\right) 3\right) 4\right)$.

Semantics

Semantics

$$
\begin{aligned}
& L \in R E(\Sigma) \rightarrow \wp\left(\Sigma^{*}\right) \\
& L(\emptyset)=\emptyset \\
& L(\varepsilon)=\{\varepsilon\} \\
& L(a)=\{a\} \\
& L\left(e_{1} e_{2}\right)=L\left(e_{1}\right) L\left(e_{2}\right) \\
& L\left(e_{1}+e_{2}\right)=L\left(e_{1}\right) \cup L\left(e_{2}\right) \\
& L\left(e^{*}\right)=(L(e))^{*}
\end{aligned}
$$

Which of the following statements are correct?

1. $a b c a b c \in L\left(a b c^{*}\right)$.
2. $x y y x x y \in L\left(x(y+x)^{*} y\right)$.
3. $\varepsilon \in L\left(\emptyset^{*}\right)$.
4. $110 \in L\left((\emptyset 1+10)^{*}\right)$.
5. $\varepsilon \in L\left((\varepsilon+10)^{+}\right)$.
6. $11100 \in L\left((1(0+\varepsilon))^{*}\right)$.

Translating FAs

to regular expressions, I

Method one

Consider the following ε-NFA over $\{a, b, c\}$:

Method one

Switch to an equivalent ε-NFA:

(I found this trick in slides due to Klaus Sutner.)

Method one

Turn edge labels into regular expressions:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

It is fine to simplify expressions.

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

Method one

Eliminate non-accepting states distinct from the start state:

$$
b+a c^{*}\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right)
$$

Method one

Eliminate non-accepting states distinct from the start state:

$$
b+a c^{*}\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right)
$$

Method one

Eliminate non-accepting states distinct from the start state:

$$
\left(b+a c^{*}\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right)\right)^{*}\left(\varepsilon+a c^{*}\right)
$$

Done.

Turn the following ε-NFA over $\{a, b, c, d\}$ into a regular expression.

Translating FAs

to regular

expressions, II

Method two

One form of Arden's lemma:

- Let $A, B \subseteq \Sigma^{*}$ for some alphabet Σ.
- Consider the equation $X=A X \cup B$, where X is restricted to be a subset of Σ^{*}.
- The equation has the solution $X=A^{*} B$.
- This solution is the least one (for every other solution Y we have $A^{*} B \subseteq Y$).
- If $\varepsilon \notin A$, then this solution is unique.

Method two

Consider the following ε-NFA again:

Method two

We can turn this ε-NFA into a set of equations.

Method two

We can turn this ε-NFA into a set of equations.

$$
e_{2}=b e_{3}
$$

Method two

We can turn this ε-NFA into a set of equations.

$$
e_{3}=c e_{3}+(a+\varepsilon) e_{4}
$$

Method two

We can turn this ε-NFA into a set of equations.

$$
e_{4}=\varepsilon+b e_{4}+a e_{1}
$$

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=\varepsilon+c e_{1}+(a+b) e_{2}+a e_{3}+a e_{4} \\
& e_{2}=b e_{3} \\
& e_{3}=c e_{3}+(a+\varepsilon) e_{4} \\
& e_{4}=\varepsilon+b e_{4}+a e_{1}
\end{aligned}
$$

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+(a+b) e_{2}+a e_{3}+a e_{4}\right) \\
& e_{2}=b e_{3} \\
& e_{3}=c e_{3}+(a+\varepsilon) e_{4} \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Eliminate e_{2}.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+(a+b) b e_{3}+a e_{3}+a e_{4}\right) \\
& e_{3}=c e_{3}+(a+\varepsilon) e_{4} \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+(a+(a+b) b) e_{3}+a e_{4}\right) \\
& e_{3}=c e_{3}+(a+\varepsilon) e_{4} \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Eliminate e_{3}.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+(a+(a+b) b) e_{3}+a e_{4}\right) \\
& e_{3}=c^{*}(a+\varepsilon) e_{4} \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Eliminate e_{3}.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+(a+(a+b) b) c^{*}(a+\varepsilon) e_{4}+a e_{4}\right) \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c e_{1}+\left(\varepsilon+\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right) e_{4}\right) \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Eliminate e_{1}.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{1}=c^{*}\left(\varepsilon+\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right) e_{4}\right) \\
& e_{4}=b e_{4}+\left(\varepsilon+a e_{1}\right)
\end{aligned}
$$

Eliminate e_{1}.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{4}=b e_{4}+\varepsilon+ \\
& \quad a c^{*}\left(\varepsilon+\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right) e_{4}\right)
\end{aligned}
$$

Solve the final equation.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
e_{4}= & \left(b+a c^{*}\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right)\right) e_{4}+ \\
& \left(\varepsilon+a c^{*}\right)
\end{aligned}
$$

Solve the final equation.

Method two

Goal: Find the least solution for e_{4}.
(Note that e_{4} corresponds to the start state.)

$$
\begin{aligned}
& e_{4}= \\
& \left(b+a c^{*}\left(a+(a+(a+b) b) c^{*}(a+\varepsilon)\right)\right)^{*}\left(\varepsilon+a c^{*}\right)
\end{aligned}
$$

Method two

-Why the least solution?

- Consider the following ε-NFA:

- The corresponding equation: $e=\varepsilon e$.
- This equation has infinitely many solutions.
- The least solution gives the right answer:

$$
e=\varepsilon^{*} \emptyset=\emptyset
$$

Turn the following ε-NFA over $\{a, b\}$ into a regular expression.

Brzozowski derivatives

Derivatives

The Brzozowski derivative of a language $L \subseteq \Sigma^{*}$ with respect to a symbol $a \in \Sigma$:

$$
\partial_{a}(L)=\left\{w \in \Sigma^{*} \mid a w \in L\right\}
$$

The derivative with respect to a string $w \in \Sigma^{*}$:

$$
\begin{aligned}
& \partial_{\varepsilon}(L)=L \\
& \partial_{a w}(L)=\partial_{w}\left(\partial_{a}(L)\right)
\end{aligned}
$$

Which of the following languages are equal to $\partial_{01}\left(\{01\}^{*}\right)$?

1. \emptyset.

2. $\{01\}^{*}$.
3. $\left\{w \in\{0,1\}^{*} \mid 01 w \in\{01\}^{*}\right\}$.
4. $\left\{w \in\{0,1\}^{*} \mid 10 w \in\{01\}^{*}\right\}$.

Which properties are valid? (All symbols, strings and languages are assumed to be restricted to the same alphabet,

$\Sigma=\{0,1\}$.)

1. $w \in L \Leftrightarrow a w \in \partial_{a}(L)$.
2. $a w \in L \Leftrightarrow w \in \partial_{a}(L)$.
3. $w \in L \Leftrightarrow \varepsilon \in \partial_{w}(L)$.
4. $\varepsilon \in L \Leftrightarrow w \in \partial_{w}(L)$.
5. $\partial_{u}(L)=\left\{v \in \Sigma^{*} \mid u v \in L\right\}$.
6. $\partial_{u}(L)=\left\{v \in \Sigma^{*} \mid v u \in L\right\}$.
7. $\partial_{a}\left(L^{*}\right)=\partial_{a}(L) L^{*}$.

Derivatives

- We can check if $w \in L$ by checking if $\varepsilon \in \partial_{w}(L)$.
- For regular expressions e it is straightforward to compute a regular expression $\partial_{w}(e)$ satisfying $L\left(\partial_{w}(e)\right)=\partial_{w}(L(e))$.
- It is also easy to check if a regular expression e is nullable, i.e. whether $\varepsilon \in L(e)$.

Derivatives

- Is the regular expression nullable?

$$
\begin{aligned}
& \text { nullable } \in R E(\Sigma) \rightarrow \text { Bool } \\
& \text { nullable }(\emptyset)=\text { false } \\
& \text { nullable }(\varepsilon)=\text { true } \\
& \text { nullable }(a)=\text { false } \\
& \text { nullable }\left(e_{1} e_{2}\right)=\text { nullable }\left(e_{1}\right) \wedge \operatorname{nullable}\left(e_{2}\right) \\
& \text { nullable }\left(e_{1}+e_{2}\right)=\operatorname{nullable}\left(e_{1}\right) \vee \operatorname{nullable}\left(e_{2}\right) \\
& \text { nullable }\left(e^{*}\right)=\text { true }
\end{aligned}
$$

- We have nullable $(e)=$ true iff $\varepsilon \in L(e)$.

Derivatives

For $a \in \Sigma$:

$$
\begin{aligned}
& \partial_{a} \in R E(\Sigma) \rightarrow R E(\Sigma) \\
& \partial_{a}(\emptyset)=\emptyset \\
& \partial_{a}(\varepsilon)=\emptyset \\
& \partial_{a}(a)=\varepsilon \\
& \partial_{a}(b)=\emptyset, \text { if } a \neq b
\end{aligned} \begin{aligned}
& \partial_{a}\left(e_{1} e_{2}\right)= \begin{cases}\partial_{a}\left(e_{1}\right) e_{2}+\partial_{a}\left(e_{2}\right), & \text { if } e_{1} \text { is nullable } \\
\partial_{a}\left(e_{1}\right) e_{2}, & \text { otherwise }\end{cases} \\
& \partial_{a}\left(e_{1}+e_{2}\right)=\partial_{a}\left(e_{1}\right)+\partial_{a}\left(e_{2}\right) \\
& \partial_{a}\left(e^{*}\right)=\partial_{a}(e) e^{*}
\end{aligned}
$$

Derivatives

- Why is the final clause $\partial_{a}\left(e^{*}\right)=\partial_{a}(e) e^{*}$ correct?
- The relevant case of the inductive proof of correctness:

$$
\begin{aligned}
& L\left(\partial_{a}\left(e^{*}\right)\right)= \\
& L\left(\partial_{a}(e) e^{*}\right)= \\
& L\left(\partial_{a}(e)\right) L\left(e^{*}\right)=\{\text { By the inductive hypothesis. }\} \\
& \partial_{a}(L(e)) L\left(e^{*}\right)= \\
& \partial_{a}(L(e))(L(e))^{*}=\{\text { See a previous quiz. }\} \\
& \partial_{a}\left((L(e))^{*}\right)= \\
& \partial_{a}\left(L\left(e^{*}\right)\right)
\end{aligned}
$$

Derivatives

- One can include intersection and complement:

$$
\frac{e_{1}, e_{2} \in R E(\Sigma)}{e_{1} \cap e_{2} \in R E(\Sigma)} \quad \frac{e \in R E(\Sigma)}{\bar{e} \in R E(\Sigma)}
$$

- Exercise: Adapt nullable and ∂.

Today

- Syntax of regular expressions.
- Semantics of regular expressions.
- Two methods for translating finite automata to regular expressions.
- Brzozowski derivatives?

Next week

- I will not be here.
- Thomas Sewell will take care of all the scheduled teaching.
- Contact Thomas if you have any urgent questions.

Next lecture

- Translation from regular expressions to finite automata.
- Regular expression equivalences.
- The pumping lemma for regular languages.
- Some closure properties for regular languages.
- Deadline for the next quiz: 2019-02-12, 10:00.
- Now you get two attempts.
- Deadline for the second assignment: 2019-02-10, 23:59.

