Nils Anders Danielsson

2019-02-07

» Regular expressions.

» Translation from finite automata to
regular expressions.

» If there is time: Brzozowski derivatives.

Syntax of
regular
expressions

Syntax

The set RE(X) of regular expressions over the
alphabet X can be defined inductively in the
following way:

empty € RE(X) nil € RE(Y)
a€ e, ey € RE(Y)
sym(a) € RE(X) seq(eq, e,) € RE(Y)
e1,ey € RE(X) e € RE(Y)

alt(e;,e5) € RE(Y) star(e) € RE(Y)

Syntax

Typically we use the following concrete syntax:

) € RE(Y) e € RE(Y)

a € e1, e, € RE(X)
a € REY) eiey € RE(Y)
e1,ey € RE(Y) e € RE(Y)
€1 + €9 € RE(E) e* c RE(E)

(Sometimes e, |e, instead of e; + e,.)

» What if, say, € € X7
» Does ¢ stand for sym(e) or nil?
» One option: Require that 0,e,+,* ¢ 3.

Syntax

» What does 01 + 2 mean,
alt(seq(sym(0),sym(1)),sym(2)) or
seq(sym(1), alt(sym(1),sym(2)))?

» Sequencing “binds tighter” than alternation, so
it means alt(seq(sym(0),sym(1)),sym(2)).

» Parentheses can be used to get the other
meaning: 0(1 + 2).

» The Kleene star operator binds tighter than
sequencing, so 01* means 0(1*), not (01)*.

Syntax

v

What does 0 + 1 4+ 2 mean,

04+ (14+2)or (0+1)+427

The latter two expressions denote the same
language, so the choice is not very important.

One option (taken by the book):
Make the operator left associative,
i.e. choose (0+ 1)+ 2.

Similarly 012 means (01)2.

v

v

v

An abbreviation:
» ¢ means ee*.

» This operator binds as tightly as the Kleene
star operator.

Which of the following statements are
correct?

01 + 23 means (01) + (23).
01 + 23* means ((01) + (23))*.
0+ 1*2 4 3* means ((0 + 1)*

0+ 1*2 4+ 3* means (0 + ((1
012*34 means ((((01)(2%))3)4

(24 3)%).

)
")2)) +(3%).
)-

el = ke e =

Semantics

L(0) =10
L(e)={¢e}

L(a) ={a}

L(ejey) = L(ey)L(es)

Which of the following statements are
correct?

1. abcabe € L(abc*).

2. xyyxxy € L(z(y + x)*y).
3. € € L(0").

4. 110 € L((01 + 10)*).

5. e € L((e +10)7).

6. 11100 € L((1(0 +¢))).

Translating FAs
to regular
expressions, |

Consider the following e-NFA over { a, b, c }:

Method one

Switch to an equivalent e-NFA:

(I found this trick in slides due to Klaus Sutner.)

Turn edge labels into regular expressions:

Eliminate non-accepting states distinct from the
start state:

Method one

Eliminate non-accepting states distinct from the
start state:

Method one

Eliminate non-accepting states distinct from the
start state:

Eliminate non-accepting states distinct from the
start state:

Eliminate non-accepting states distinct from the
start state:

Method one

Eliminate non-accepting states distinct from the
start state:

It is fine to simplify expressions.

Eliminate non-accepting states distinct from the
start state:

Eliminate non-accepting states distinct from the
start state:

Eliminate non-accepting states distinct from the
start state:

b+ ac* (a + (a+ (a+b)b)c*(a+ 5))

. € @ €+ ac*

Eliminate non-accepting states distinct from the
start state:

b+ ac* (a + (a+ (a+b)b)c*(a+ 5))

. € @ €+ ac*

Eliminate non-accepting states distinct from the
start state:

<b + ac* (a + (a+ (a+b)b)c*(a+ s))) *(s + ac*)

—(

Done.

Translating FAs
to regular
expressions, |

Method two

One form of Arden’s lemma:
» Let A, B C X* for some alphabet .

» Consider the equation X = AX U B, where
X is restricted to be a subset of >.*.

» The equation has the solution X = A*B.

» This solution is the least one
(for every other solution Y we have A*B C Y).

» If ¢ & A, then this solution is unique.

Consider the following e-NFA again:

We can turn this e-NFA into a set of equations.

e, =c+ce; + (a+b)ey + aes + aey

We can turn this e-NFA into a set of equations.

62 — b63

We can turn this e-NFA into a set of equations.

es =ces+ (a+¢)ey

We can turn this e-NFA into a set of equations.

es = €+ bey + aey

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, =c+ce; + (a+b)ey + aes + aey
ey = bey

es =ces+ (a+¢)ey

es =€+ bey + aey

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, =ce; + (e + (a+b)ey + aes + aey)
ey = beg

e3 =ceg+ (a+e)ey

ey =bey + (€ + aey)

Eliminate e,.

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e =ceq + (e + (a+b)bes + aes + aey)
es =ces+ (a+¢)ey
e, =bey + (e + aey)

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, = ceq + (z—: + (a+ (a+b)b)es + ae4>

es = ces+ (a+¢)ey
e, = bey + (e + ae;)

Eliminate e;.

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, = ceq + (z—: + (a+ (a+b)b)es + ae4>

es = c*(a+¢€)ey
e, = bey + (e + ae;)

Eliminate e;.

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, =ce; + <E + (a4 (a+b)b)c*(a+¢e)ey + ae4)
64 = b€4 + (5 + a61>

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, = ce; + (a—: + (a + (a+ (a+b)b)c*(a+ 5—:)>e4>
e, = bey + (e + ae;)

Eliminate ;.

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, = c* (6 + (a + (a+ (a+b)b)c*(a+ 6))64)
e, =bey + (e + aey)

Eliminate e;.

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

64:b64+5+

ac* (5 + (a + (a+ (a+b)b)c*(a+ 6)>e4>

Solve the final equation.

Method two

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

e, = <b + ac* (a + (a+ (a+b)b)c*(a+ 6)))64 +
(€ + ac*)

Solve the final equation.

Goal: Find the least solution for e,.
(Note that e, corresponds to the start state.)

€4 =

(b + ac* (a + (a+ (a+b)b)c*(a + 8)))*(8 + ac*)

Method two

v

Why the least solution?
Consider the following e-NFA:

—Oer

The corresponding equation: e = ce.

v

v

v

This equation has infinitely many solutions.

v

The least solution gives the right answer:

e=c*) =10

Brzozowski
derivatives

Derivatives

The Brzozowski derivative of a language L C »*
with respect to a symbol a € >::

0,(L)y={we¥ |awe L}
The derivative with respect to a string w € X*:

d.(L)=1L
Oaw(L) = 0,,(9,(L))

1. 0.
2. {
3. {
44

2
Olwe {01}
weigﬁ =10we{01} }.
(NS

Which properties are valid? (All symbols,
strings and languages are assumed to be
restricted to the same alphabet,

S =1{0,1})

weL<sawed,(L).

aw € L < wed,(L).
weL<seed,(L).
eeL<ewed,(L).
0,(L)={veX|uwelL}.
0, (L)={ve¥ |vuel}.
0,(L*)=0,(L)L".

L

Derivatives

» We can check if w € L by checking if
e € 0,(L).

» For regular expressions e it is straightforward to
compute a regular expression J,,(e) satisfying
L(9,,(e)) = 0, (L(e)).

» It is also easy to check if a regular expression e
is nullable, i.e. whether € € L(e).

Derivatives

» Is the regular expression nullable?

nullable € RE(YX) — Bool

nullable(0) = false

nullable(e) = true

nullable(a) = false

nullable(e ey) = nullable(ey) N nullable(e,)
nullable(eq + e5) = nullable(ey) V nullable(e,)
nullable(e*) = true

» We have nullable(e) = true iff ¢ € L(e).

Derivatives

For a € X:
d, € RE(Y) — RE(Y)

d,() = 0,(e1)eq + 0,(ey), if ey is nullable
T 0,(eq)es, otherwise

Derivatives

» Why is the final clause 0,(e*) = 0,(e)e*
correct?

» The relevant case of the inductive proof of
correctness:

—~
w
<
—t
>
I
=
o
c
o
(=
<
@
>
<
o
(@)
—t
>
M
28
n
—

» One can include intersection and complement:

e1,ey € RE(X) e € RE(Y)
e, Ne, € RE(Y) ¢ RE(Y)

» Exercise: Adapt nullable and 0.

Today

v

Syntax of regular expressions.

v

Semantics of regular expressions.

v

Two methods for translating
finite automata to regular expressions.

Brzozowski derivatives?

v

» | will not be here.

» Thomas Sewell will take care of all the
scheduled teaching.

» Contact Thomas if you have any urgent
questions.

Next lecture

» Translation from regular expressions to
finite automata.

» Regular expression equivalences.
» The pumping lemma for regular languages.
» Some closure properties for regular languages.

» Deadline for the next quiz: 2019-02-12, 10:00.
» Now you get two attempts.

» Deadline for the second assignment:
2019-02-10, 23:59.

	Syntax of regular expressions
	Semantics
	Translating FAs to regular expressions, I
	Translating FAs to regular expressions, II
	Brzozowski derivatives
	Conclusion

