Finite automata theory and
 formal languages (DIT321, TMV027)

Nils Anders Danielsson
2019-02-04

Today

- NFAs with ε-transitions.
- Exponential blowup.

$\varepsilon-$ NFAs

$\varepsilon-$ NFAs

- Like NFAs, but with ε-transitions:

The automaton can "spontaneously" make a transition from one state to another.

- Can be used to convert regular expressions to finite automata.

$\varepsilon-$ NFAs

Strings over $\{0,1\}$ that start and end with a one, or that contain two consecutive ones:

ε-NFAs

An ε-NFA can be given by a 5 -tuple
$\left(Q, \Sigma, \delta, q_{0}, F\right)$:

- A finite set of states (Q).
- An alphabet (Σ with $\varepsilon \notin \Sigma$).
- A transition function

$$
(\delta \in Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \wp(Q)) .
$$

- A start state $\left(q_{0} \in Q\right)$.
- A set of accepting states $(F \subseteq Q)$.

Transition diagrams

As for NFAs, but arrows can be labelled with ε.

Transition tables

As for NFAs, but with one column for ε.

$$
\varepsilon \text {-closure }
$$

ε-closure

Given an ε-NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ one can, for each state $q \in Q$, define the ε-closure of q (a subset of Q) inductively in the following way:

$$
\begin{gathered}
\overline{q \in \varepsilon-\operatorname{closure}(q)} \\
\frac{q^{\prime} \in \varepsilon-\operatorname{closure}(q) \quad q^{\prime \prime} \in \delta\left(q^{\prime}, \varepsilon\right)}{q^{\prime \prime} \in \varepsilon-\operatorname{closure}(q)}
\end{gathered}
$$

Some notation

The ε-closure of a set $S \subseteq Q$:

$$
\varepsilon-\operatorname{closure}(S)=\bigcup_{s \in S} \varepsilon-\operatorname{closure}(s)
$$

Transition functions applied to a set $S \subseteq Q$:

$$
\begin{aligned}
& \delta(S, a)=\bigcup_{s \in S} \delta(s, a) \\
& \hat{\delta}(S, a)=\bigcup_{s \in S} \hat{\delta}(s, a)
\end{aligned}
$$

Computing the ε-closure

The ε-closure of q can be computed in the following way:

- Initialise C to $\{q\}$.
- Repeat until $\delta(C, \varepsilon) \subseteq C$:
- Set C to $C \cup \delta(C, \varepsilon)$.
- Return C.

Which of the following propositions hold for the following ε-NFA over $\{0,1\}$?

1. $q_{0} \in \varepsilon-\operatorname{closure}\left(q_{0}\right)$.
2. $q_{5} \in \varepsilon$ - $\operatorname{closure}\left(q_{0}\right)$.
3. ε-closure $\left(q_{4}\right) \subseteq$ ε-closure $\left(q_{0}\right)$.
4. $q_{6} \in \varepsilon$ - $\operatorname{closure}\left(q_{0}\right)$.
5. $q_{3} \in \varepsilon$-closure $\left(q_{1}\right)$.
6. ε-closure $\left(q_{4}\right) \subseteq$ ε-closure $\left(q_{5}\right)$.

Semantics

The language of an ε-NFA

The language $L(A)$ of an ε-NFA
$A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is defined in the following way:

- A transition function for strings is defined by recursion:

$$
\begin{aligned}
& \hat{\delta} \in Q \times \Sigma^{*} \rightarrow \wp(Q) \\
& \hat{\delta}(q, \varepsilon)=\varepsilon-\operatorname{closure}(q) \\
& \hat{\delta}(q, a w)=\hat{\delta}(\delta(\varepsilon-\operatorname{closure}(q), a), w)
\end{aligned}
$$

- The language is

$$
\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \emptyset\right\}
$$

Which strings are members of the language of the following ε-NFA over $\{a, b, c\}$?

1. $a b b a$.
2. abbaca.
3. aqaba.
4. aaabaaa.
5. aaaabaa.
6. abbaaaabaa.

Which of the following propositions are valid?

1. $\varepsilon-\operatorname{closure}(\varepsilon-\operatorname{closure}(q))=\varepsilon-\operatorname{closure}(q)$.
2. $\hat{\delta}(q, w)=\hat{\delta}(\varepsilon-\operatorname{closure}(q), w)$.
3. $\hat{\delta}(\delta(\varepsilon-\operatorname{closure}(q), a), w)=$
$\hat{\delta}(\varepsilon-\operatorname{closure}(\delta(q, a)), w)$.

Constructions

Subset construction

Given an ε-NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we can define a DFA D with the same alphabet in such a way that $L(N)=L(D):$

$$
\begin{aligned}
& D=\left(\wp(Q), \Sigma, \delta^{\prime}, \varepsilon-\operatorname{closure}\left(q_{0}\right), F^{\prime}\right) \\
& \delta^{\prime}(S, a)=\varepsilon-\operatorname{closure}(\delta(S, a)) \\
& F^{\prime}=\{S \subseteq Q \mid S \cap F \neq \emptyset\}
\end{aligned}
$$

Every accessible state S is ε-closed
(i.e. $S=\varepsilon$-closure (S)).

If the subset construction is used to build a DFA corresponding to the following ε-NFA over $\{a, b\}$, and inaccessible states are removed, how many states are there in the resulting DFA?

Regular languages

- Recall that a language $M \subseteq \Sigma^{*}$ is regular if there is some DFA (or NFA) A with alphabet Σ such that $L(A)=M$.
- For alphabets Σ with $\varepsilon \notin \Sigma$ a language $M \subseteq \Sigma^{*}$ is also regular if and only if there is some ε-NFA A with alphabet Σ such that $L(A)=M$.

Union

Recall:

- One can use ε-NFAs to convert regular expressions to finite automata.

Union

Given two ε-NFAs A_{1} and A_{2} with the same alphabet we can construct an ε-NFA $A_{1} \oplus A_{2}$ that satisfies the following property:

$$
L\left(A_{1} \oplus A_{2}\right)=L\left(A_{1}\right) \cup L\left(A_{2}\right)
$$

Construction:

- The transitions go to the start states.
- States are renamed if the state sets overlap.

Can one do something similar for NFAs by "merging" the start states?

Given two NFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$ satisfying $Q_{1} \cap Q_{2}=\emptyset$ and $q_{0} \notin Q_{1} \cup Q_{2}$, is the language of the NFA

$$
\begin{aligned}
& \left(f\left(Q_{1} \cup Q_{2}\right), \Sigma, f \circ \delta, q_{0}, f\left(F_{1} \cup F_{2}\right)\right), \text { where } \\
& f(S)=\left(S \backslash\left\{q_{01}, q_{02}\right\}\right) \cup\left\{q_{0} \mid q_{01} \in S \vee q_{02} \in S\right\}, \\
& \delta(s, a)= \begin{cases}\delta_{1}\left(q_{01}, a\right) \cup \delta_{2}\left(q_{02}, a\right), & \text { if } s=q_{0}, \\
\delta_{1}(s, a), & \text { if } s \in Q_{1}, \\
\delta_{2}(s, a), & \text { if } s \in Q_{2}\end{cases}
\end{aligned}
$$

equal to $L\left(A_{1}\right) \cup L\left(A_{2}\right)$?

1. Yes, always.
2. No, never.
3. No, not always, but sometimes.

Exponential blowup

Exponential blowup

Consider the following family of languages:

$$
\begin{aligned}
& A \in \mathbb{N} \rightarrow \wp\left(\{0,1\}^{*}\right) \\
& A(n)=\left\{u 1 v\left|u, v \in\{0,1\}^{*},|v|=n\right\}\right.
\end{aligned}
$$

Exponential blowup

The family:

$$
A(n)=\left\{u 1 v\left|u, v \in\{0,1\}^{*},|v|=n\right\}\right.
$$

For every $n \in \mathbb{N}$ the NFAs for $A(n)$ with the least number of states have at most $n+2$ states:

Exponential blowup

Furthermore one can prove:

- For every $n \in \mathbb{N}$ the DFAs for $A(n)$ with the least number of states have at least 2^{n+1} states.

A key part of the proof in the course text book uses the pigeonhole principle:

- A DFA over $\{0,1\}$ with less than 2^{k} states has to end up in the same state for at least two distinct k-bit strings.

Exponential blowup

Thus it might be inefficient to check if a string belongs to a language represented by an NFA (or ε-NFA) by using the following method:

- Translate the NFA to a corresponding DFA.
- Use the DFA to check if the string belongs to the language.

Exponential blowup

- This method is used in practice by some tools.
- It seems to work fine in many practical cases.
- Exercise (optional):

Make such a tool "blow up" by giving it a short piece of carefully crafted input.

Today

- ε-NFAs.
- ε-closure.
- Semantics.
- Constructions.
- Exponential blowup.

Next lecture

- Regular expressions.
- Translation from finite automata to regular expressions.
- Deadline for the next quiz: 2019-02-07, 10:00.
- Deadline for the second assignment: 2019-02-10, 23:59.

