Finite automata theory and formal languages (DIT321, TMV027)

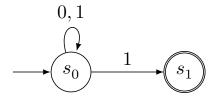
Nils Anders Danielsson, partly based on slides by Ana Bove

Today

- ► Nondeterministic finite automata (NFAs).
- Equivalence of NFAs and DFAs.
- ▶ Perhaps something about how one can model things using finite automata.

- Like DFAs, but multiple transitions may be possible.
- ▶ An NFA can be in multiple states at once.
- ► Can be easier to "program".

Strings over $\{0,1\}$ that end with a one:



When a one is read the NFA "guesses" whether it should stay in s_0 or go to s_1 .

An NFA can be given by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

- ▶ A finite set of states (Q).
- An alphabet (Σ) .
- ▶ A transition function $(\delta \in Q \times \Sigma \to \wp(Q))$.
- ▶ A start state $(q_0 \in Q)$.
- ▶ A set of accepting states $(F \subseteq Q)$.

The language of an NFA

The language L(A) of an NFA $A=(Q,\Sigma,\delta,q_0,F)$ is defined in the following way:

▶ A transition function for strings is defined by recursion:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to \wp(Q) \\ \hat{\delta}(q, \varepsilon) &= \{ \ q \ \} \\ \hat{\delta}(q, aw) &= \bigcup_{r \in \delta(q, a)} \hat{\delta}(r, w) \end{split}$$

▶ The language is

$$\left\{\; w \in \Sigma^* \; \middle|\; \hat{\delta}(q_0,w) \cap F \neq \emptyset \; \right\}.$$

Which of the following propositions are valid?

1.
$$\hat{\delta}(q, a) = \delta(q, a)$$
.

$$\hat{\varsigma}(\cdot, \omega)$$

4. $\hat{\delta}(q, uv) = \bigcup_{r \in \hat{\delta}(q,u)} \hat{\delta}(r,v)$.

2.
$$\hat{\delta}(q, uv) = \hat{\delta}(q, vu)$$
.

2.
$$\delta(q, uv) = \delta(q, vu)$$
.
3. $\hat{\delta}(q, uv) = \bigcup_{r \in \hat{\delta}(q, v)} \hat{\delta}(r, u)$.

Transition diagrams

As for DFAs, but with one change:

For every transition $\delta(q, a) = S$, an arrow marked with a from q to every node in S.

Note:

- ▶ The alphabet is not defined unambiguously.
- No need for special treatment of missing transitions, because $\delta(q,a)$ can be empty.

Transition tables

As for DFAs, but with one change:

► The result of a transition is a set of states instead of a state.

 s_3

1. abba. 4. aaabaaa.

abbaca.
aaabaa.
abbaaaabaaa.
abbaaaabaaa.

NFAs versus

DFAs

NFAs versus DFAs

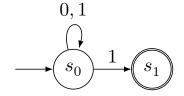
- ▶ Every DFA can be seen as an NFA:
 - $\blacktriangleright \ \, {\rm Turn} \,\, \delta(s_1,a) = s_2 \,\, {\rm into} \,\, \delta(s_1,a) = \{\, s_2\,\}.$
- ► Thus every language that can be defined by a DFA can also be defined by an NFA.
- What about the other direction? Are NFAs more powerful?
- ► No.

Given an NFA $N=(Q,\Sigma,\delta,q_0,F)$ we can define a DFA D with the same alphabet in such a way that L(N)=L(D):

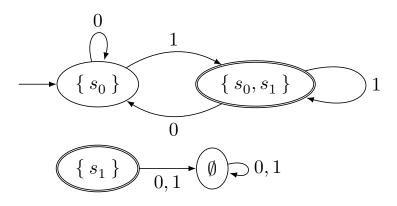
$$\begin{split} D &= \left(\wp(Q), \Sigma, \delta', \left\{\right. q_0 \left.\right\}, \left\{\right. S \subseteq Q \mid S \cap F \neq \emptyset \left.\right\}\right) \\ \delta'(S, a) &= \bigcup_{s \in S} \delta(s, a) \end{split}$$

- ► The DFA keeps track of exactly which states the NFA is in.
- ▶ It accepts if at least one of the NFA states is accepting.

An NFA:

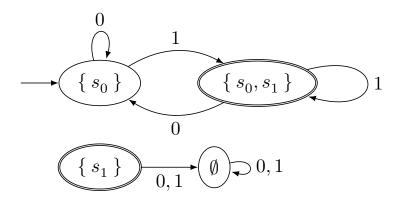


If we apply the subset construction we get the following DFA:

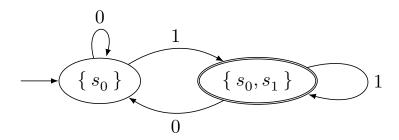


If an NFA has 10 states, and we use the subset construction to build a corresponding DFA, how many states does the DFA have?

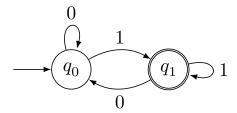
Note that some states cannot be reached from the start state:



The following DFA defines the same language:



One can also rename the states:



- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- ▶ The set $Acc(q) \subseteq Q$ of states that are accessible from $q \in Q$ can be defined in the following way:

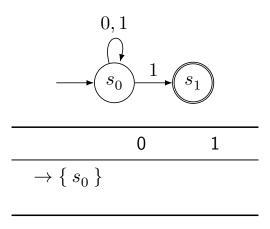
$$\mathit{Acc}(q) = \left\{ \left. \hat{\delta}(q, w) \; \right| \; w \in \Sigma^* \; \right\}$$

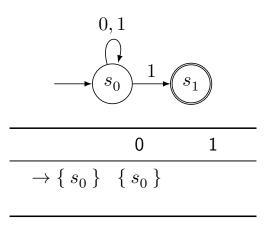
► A possibly smaller DFA:

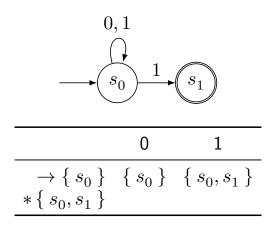
$$\begin{split} A' &= (Acc(q_0), \Sigma, \delta', q_0, F \cap Acc(q_0)) \\ \delta'(q, a) &= \delta(q, a) \end{split}$$

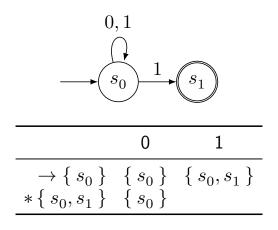
• We have L(A') = L(A).

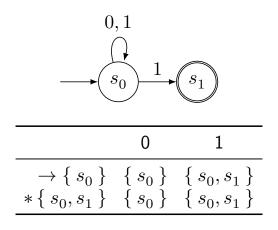
- Note that one does not have to first construct a DFA with 2^{|Q|} states, and then remove inaccessible states.
- One can instead construct the DFA without inaccessible states right away:
 - Start with the start state.
 - Add new states reachable from the start state.
 - Add new states reachable from those states.
 - And so on until there are no more new states.



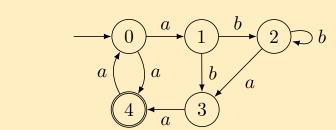








If the subset construction is used to build a DFA corresponding to the following NFA over $\{a, b, c\}$, and inaccessible states are removed, how many



states are there in the resulting DFA?

Recall the subset construction for $N = (Q, \Sigma, \delta, q_0, F)$:

$$\begin{split} D &= \left(\wp(Q), \Sigma, \delta', \left\{\right. q_0 \left.\right\}, \left\{\right. S \subseteq Q \mid S \cap F \neq \emptyset \left.\right\}\right) \\ \delta'(S, a) &= \bigcup_{s \in S} \delta(s, a) \end{split}$$

How would you prove L(N) = L(D)?

$$\begin{split} L(N) &= \left\{ \right. w \in \Sigma^* \mid \widehat{\delta}(q_0, w) \cap F \neq \emptyset \left. \right\} \\ L(D) &= \left\{ \right. w \in \Sigma^* \mid \widehat{\delta'}(\left\{ \right. q_0 \left. \right\}, w) \cap F \neq \emptyset \left. \right\} \end{split}$$

This follows from

$$\forall w \in \Sigma^*. \ \forall q \in Q. \ \widehat{\delta}(q,w) = \widehat{\delta'}(\{\ q\ \}\,,w),$$

which can be proved by induction on the structure of the string, using the following lemma:

$$\forall w \in \Sigma^*. \ \forall S \subseteq Q. \ \widehat{\delta'}(S, w) = \bigcup_{s \in S} \widehat{\delta'}(\{\ s\ \}, w)$$

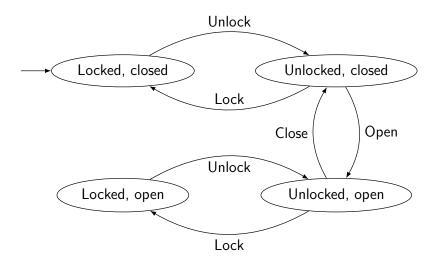
The lemma can also be proved by induction on the structure of a string.

Regular languages

- ▶ Recall that a language $M \subseteq \Sigma^*$ is regular if there is some DFA A with alphabet Σ such that L(A) = M.
- ▶ A language $M \subseteq \Sigma^*$ is also regular if there is some *NFA* A with alphabet Σ such that L(A) = M.

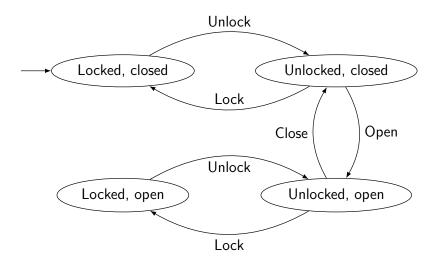
Models

A model of a door



Alphabet: { Lock, Unlock, Open, Close }.

A model of a door



What happens if we try to lock a locked door? Does the system "crash"?

Try to model something as a finite automaton:

- ► The traffic lights of an intersection.
- ► A coin-operated vending machine.
- •

How well does your model work? Does it make sense to model the phenomenon as a finite automaton?

Today

- ► Nondeterministic finite automata (NFAs).
- ▶ The subset construction.
- ► Accessible states.
- ► Models.

Next lecture

Nondeterministic finite automata with ε -transitions.

- ▶ Deadline for the next quiz: 2019-02-04, 10:00.
- ► Deadline for the first assignment: 2019-02-03, 23:59.