Nils Anders Danielsson,
partly based on slides by Ana Bove

2019-01-31



Today

» Nondeterministic finite automata (NFAs).
» Equivalence of NFAs and DFAs.

» Perhaps something about how one can model
things using finite automata.



NFAs



» Like DFAs, but multiple transitions
may be possible.

» An NFA can be in multiple states at once.
» Can be easier to “program”.



Strings over { 0,1 } that end with a one:

0,1

—()—
When a one is read the NFA “guesses” whether it
should stay in s, or go to s;.



NFAs

An NFA can be given by a 5-tuple (Q, X, 9, qy, F):
A finite set of states (Q).

An alphabet (X).

A transition function (§ € Q@ X ¥ — p(Q)).
A start state (¢, € Q).

A set of accepting states (F' C Q).

vV v v v Vv



The language of an NFA

The language L(A) of an NFA A = (Q, X%, 0, qy, F)
is defined in the following way:

» A transition function for strings is defined
by recursion:

5€Qx = p(Q)

oge)={a}
og.aw) = | d(rw)
r€é(q,a)

» The language is

{wEZ* 5(q0,w)ﬂF#@}.




Which of the following propositions are valid?

1. 0(q,a) = 8(q, a)

2. 6(g, wv) = d(g, vu)

3. 5(% ’U/U) - Ur€§<q v) 5(7“, U’)
4. §(q,uv) = Ureé(q,u) d(r,v)



Transition diagrams

As for DFAs, but with one change:

» For every transition d(q,a) =S, an arrow
marked with a from ¢ to every node in S.

Note:
» The alphabet is not defined unambiguously.

» No need for special treatment of missing
transitions, because d(q, a) can be empty.



As for DFAs, but with one change:

» The result of a transition is a set of states
instead of a state.



1. abba. 4. aaabaaa.

2. abbaca. 5. aaaabaa.

3. aaabaa. 6. abbaaaabaaa.



NFAs versus
DFASs



NFAs versus DFAs

» Every DFA can be seen as an NFA:
» Turn §(sy,a) = sy into 0(sy,a) = { s, }.
» Thus every language that can be defined by a
DFA can also be defined by an NFA.

What about the other direction?
Are NFAs more powerful?

» No.

v



Subset construction

Given an NFA N = (Q, X, 4, qy, F') we can define a
DFA D with the same alphabet in such a way that
L(N)= L(D):

D= (p(@),%,0,{q},{SCQ|SNF+0})
6 (S,a) = U d(s,a)

ses

» The DFA keeps track of exactly which states
the NFA is in.

» |t accepts if at least one of the NFA states is
accepting.



An NFA:

0,1

®



Subset construction

If we apply the subset construction we get the
following DFA:

0
1
() Clany
0



If an NFA has 10 states, and we use the subset
construction to build a corresponding DFA, how
many states does the DFA have?



Accessible states

Note that some states cannot be reached from the
start state:

0
1
() Clany
0



The following DFA defines the same language:



One can also rename the states:



Accessible states

> Let A= (Q,%,6,q,, F) be a DFA.

» The set Ace(q) C Q of states that are
accessible from g € () can be defined in the
following way:

Acc(q { d(q,w ‘ we X* }
» A possibly smaller DFA:

A/ = (ACC<q0)7 z)75/7q07F1 N ACC(qO))
0’ (q,a) = d(q,a)

» We have L(A") = L(A).



Subset construction

» Note that one does not have to first construct
a DFA with 29! states, and then remove
inaccessible states.

» One can instead construct the DFA without
inaccessible states right away:

>
>

Start with the start state.

Add new states reachable from the start
state.

Add new states reachable from those
states.

And so on until there are no more new
states.



0,1

®

— {50}




50

—{s0} {50}




50

0 1
—{s0} {s0} {5051}

*{30781}




50

0 1

—{s0} {s0} {8051}
«{ 50,81} {50}




50

0 1

—{s0} {s0} {8051}
x{spys1} {s0} {5081}




If the subset construction is used to build a DFA
corresponding to the following NFA over { a,b,c },
and inaccessible states are removed, how many
states are there in the resulting DFA?




Subset construction

Recall the subset construction for

N: <Q7E757QO7F):
D= (p(Q),%,0,{q},{SCQISNF+#0})
6 (S,a) = U i(s,a)

sesS

How would you prove L(N) = L(D)?

S(qo,w)ﬂF#w}
0({a},w)NF+0}

L(N)={wex
L(D)={wex




Subset construction

This follows from

Vw e T Vg € Q. 6(qw) =8 ({q},w),

which can be proved by induction on the structure
of the string, using the following lemma:

Vwe X VS CQ.(S,w) =i ({s},w
seS

The lemma can also be proved by induction on the
structure of a string.



Regular languages

» Recall that a language M C Y* is regular if
there is some DFA A with alphabet 3 such
that L(A) = M.

» A language M C X* is also regular if there is
some NFA A with alphabet X such that
L(A)= M.



Models



A model of a door

Unlock

Locked, closed Unlocked, closed

Open

Unlocked, open

Unlock

Locked, open

Lock

Alphabet: { Lock, Unlock, Open, Close }.



A model of a door

Unlock

Locked, closed Unlocked, closed

Open

Unlocked, open

Unlock

Locked, open

Lock

What happens if we try to lock a locked door? Does
the system “crash”?



Try to model something as a finite automaton:

» The traffic lights of an intersection.

» A coin-operated vending machine.

>
How well does your model work? Does it make sense
to model the phenomenon as a finite automaton?



Nondeterministic finite automata (NFAs).
The subset construction.

Accessible states.
Models.

vV v v Vv



Next lecture

Nondeterministic finite automata with e-transitions.

» Deadline for the next quiz: 2019-02-04, 10:00.

» Deadline for the first assignment:
2019-02-03, 23:59.



	NFAs
	NFAs versus DFAs
	Models
	Conclusion

