Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove

2019-01-29

Deterministic finite automata.

- One can define subsets of (say) Σ^* inductively.
- For instance, for $L \subseteq \Sigma^*$ we can define $L^* \subseteq \Sigma^*$ inductively:

$$\frac{u \in L \quad v \in L^*}{uv \in L^*}$$

Note that there are no constructors.

What about recursion?

$$\begin{split} f \in L^* \to Bool \\ f(\varepsilon) = false \\ f(uv) = not(f(v)) \end{split}$$

• If $\varepsilon \in L$, do we have

$$f(\varepsilon) = f(\varepsilon \varepsilon) = \operatorname{not}(f(\varepsilon))?$$

Another example:

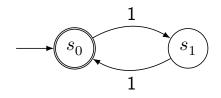
$$\begin{split} &f\in L^*\to\mathbb{N}\\ &f(\varepsilon)=0\\ &f(uv)=|v| \end{split}$$

- ▶ If $L = \{ 1, 11 \}$, do we have $f(11) = |\varepsilon| = 0$ or f(11) = |1| = 1?
- Recursion of this kind can make sense if, say, every string matches exactly one left-hand side, in exactly one way, and the recursive calls are made on strictly shorter lists.

Induction works (assuming "proof irrelevance"). P(ε) ∧ (∀u ∈ L, v ∈ L*. P(v) ⇒ P(uv)) ⇒ ∀w ∈ L*. P(w).

DFAs

Recall from the first lecture:



- A DFA specifies a language.
- In this case the language $\{ 11 \}^* = \{ \varepsilon, 11, 1111, \dots \}.$

A DFA can be given by a 5-tuple (Q,Σ,δ,q_0,F) :

- ► A finite set of states (Q).
- An alphabet (Σ).
- A transition function ($\delta \in Q \times \Sigma \to Q$).
- A start state $(q_0 \in Q)$.
- A set of accepting states ($F \subseteq Q$).

Which of the following 5-tuples can be seen as DFAs?

1.
$$(\mathbb{N}, \{0, 1\}, \delta, 0, \{13\})$$
,
where $\delta(n, m) = n + m$.

2.
$$(\{ 0, 1 \}, \emptyset, \delta, 0, \{ 1 \})$$
, where $\delta(n, _) = n$.

$$\begin{array}{l} \text{3.} \ (\{ \, q_0, q_1 \, \} \,, \{ \, 0, 1 \, \} \,, \delta, q_0, \{ \, 1 \, \}), \\ \text{where } \delta(\underline{\ }, \underline{\ }) = q_0. \end{array}$$

$$\begin{array}{l} \text{4. } (\{ \, q_0, q_1 \, \} \, , \{ \, 0, 1 \, \} \, , \delta, q_0, \{ \, q_0 \, \}) \text{,} \\ \text{ where } \delta(\underline{\ }, \underline{\ }) = 0. \end{array}$$

Semantics

The language of a DFA

The language L(A) of a DFA $A=(Q,\Sigma,\delta,q_0,F)$ is defined in the following way:

 A transition function for strings is defined by recursion:

$$\begin{split} &\hat{\delta} \in Q \times \Sigma^* \to Q \\ &\hat{\delta}(q,\varepsilon) = q \\ &\hat{\delta}(q,aw) = \hat{\delta}(\delta(q,a),w) \end{split}$$

 $\bullet \ \, {\rm The \ language \ is \ } \Big\{ \ w \in \Sigma^* \ \Big| \ \widehat{\delta}(q_0,w) \in F \ \Big\}.$

Which strings are members of the language of $(\{s_0, s_1, s_2, s_3\}, \{a, b\}, \delta, s_0, \{s_0\})$? Here δ is defined in the following way:

$$\begin{split} \delta(s_0,a) &= s_1 \qquad \delta(s_0,b) = s_2 \\ \delta(s_1,a) &= s_0 \qquad \delta(s_2,b) = s_0 \\ \delta(\underline{\ , \ }) &= s_3 \qquad \text{(In all other cases.)} \end{split}$$

1. *ε*.

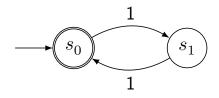
2. *aab*.

3. *aba*.

aabbaa.
 abbaab.
 bbaaaa.

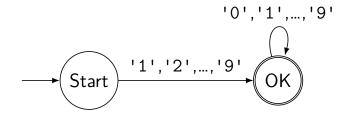
Transition diagrams

Transition diagrams



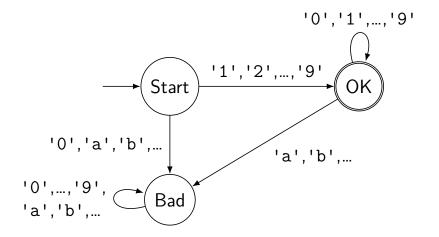
- One node per state.
- ► An arrow "from nowhere" to the start state.
- Double circles for accepting states.
- For every transition δ(s₁, a) = s₂, an arrow marked with a from s₁ to s₂.
 - Multiple arrows can be combined.

Diagrams with "missing transitions":



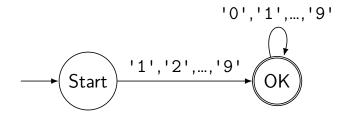
A variant

Every missing transition goes to a new state (that is not accepting):



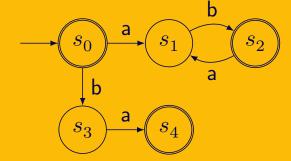
A variant

Note that diagrams with missing transitions do not define the alphabet unambiguously:



The alphabet must be a (finite) superset of $\{ 0', 1', ..., 9' \}$, but which one?

Which strings are members of the language of the DFA defined by the following transition diagram? The alphabet is $\{a, b\}$.



ε.
 aa.
 ab.

4. ba.
 5. abab.
 6. baba.

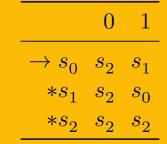
Transition tables

Transition tables

	0	1
$\rightarrow *s_0$	s_2	s_1
s_1	s_2	s_0
s_2	s_2	s_2

- States: Left column.
- Alphabet: Upper row.
- Start state: Arrow.
- Accepting states: Stars.
- Transition function: Table.

Which strings are members of the language of the DFA defined by the following transition table?



ε.
 0.
 1.

4. 11.
 5. 111.
 6. 1010.

Constructions

Given a DFA $A=(Q,\Sigma,\delta,q_0,F)$ we can construct a DFA \overline{A} that satisfies the following property:

$$L(\overline{A}) = \overline{L(A)} = \Sigma^* \smallsetminus L(A).$$

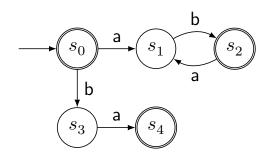
Construction:

 $(Q,\Sigma,\delta,q_0,Q\smallsetminus F).$

We accept if the original automaton doesn't.

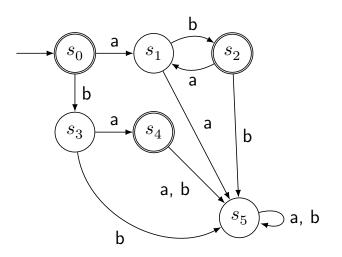
Complement

A =



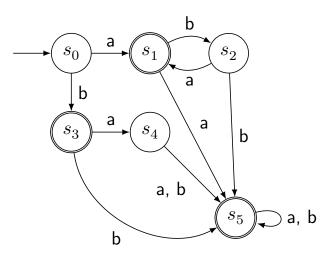
Complement

A =



Complement

 $\overline{A} =$



Product

Given two DFAs $A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ and $A_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ with the same alphabet we can construct a DFA $A_1\otimes A_2$ that satisfies the following property:

$$L(A_1\otimes A_2)=L(A_1)\cap L(A_2).$$

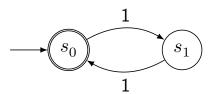
Construction:

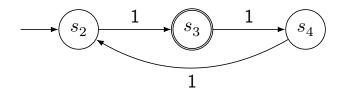
$$\begin{split} &(Q_1\times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1\times F_2)\text{, where} \\ &\delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a)). \end{split}$$

We basically run the two automatons in parallel and accept if both accept.

Product

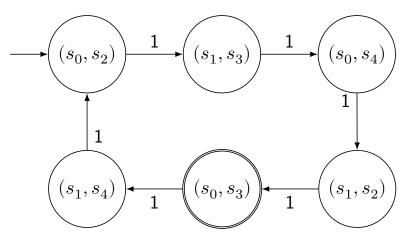
 $\{ 2n \mid n \in \mathbb{N} \} \cap \{ 1 + 3n \mid n \in \mathbb{N} \}$ (in unary notation, with ε standing for 0):





Product

 $\{4+6n \mid n \in \mathbb{N}\}:$



We can also construct a DFA $A_1 \oplus A_2$ that satisfies the following property:

$$L(A_1\oplus A_2)=L(A_1)\cup L(A_2).$$

The construction is basically that of $A_1 \otimes A_2$, but with a different set of accepting states. Which one?

Regular languages

- A language M ⊆ Σ* is regular if there is some DFA A with alphabet Σ such that L(A) = M.
- Note that if M and N are regular, then $M \cap N$, $M \cup N$ and \overline{M} are also regular.

Today

- ► 5-tuples.
- Semantics.
- Transition diagrams.
- Transition tables.
- Constructions.
- Regular languages.

Today, right after the exercise session, in EL42.You decide what you want to work on.

- Nondeterministic finite automata (NFAs).
- The subset construction (turns NFAs into DFAs).
- Deadline for the next quiz: 2019-01-31, 10:00.
- Deadline for the first assignment: 2019-02-03, 23:59.