Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove
2019-01-29

Today

Deterministic finite automata.

Inductively defined subsets

Inductively defined subsets

- One can define subsets of (say) Σ^{*} inductively.
- For instance, for $L \subseteq \Sigma^{*}$ we can define $L^{*} \subseteq \Sigma^{*}$ inductively:

$$
\frac{u \in L \quad v \in L^{*}}{u v \in L^{*}}
$$

- Note that there are no constructors.

Inductively defined subsets

- What about recursion?

$$
\begin{aligned}
& f \in L^{*} \rightarrow \text { Bool } \\
& f(\varepsilon)=\text { false } \\
& f(u v)=\operatorname{not}(f(v))
\end{aligned}
$$

- If $\varepsilon \in L$, do we have

$$
f(\varepsilon)=f(\varepsilon \varepsilon)=\operatorname{not}(f(\varepsilon)) ?
$$

Inductively defined subsets

- Another example:

$$
\begin{aligned}
& f \in L^{*} \rightarrow \mathbb{N} \\
& f(\varepsilon)=0 \\
& f(u v)=|v|
\end{aligned}
$$

- If $L=\{1,11\}$, do we have $f(11)=|\varepsilon|=0$ or $f(11)=|1|=1$?
- Recursion of this kind can make sense if, say, every string matches exactly one left-hand side, in exactly one way, and the recursive calls are made on strictly shorter lists.

Inductively defined subsets

- Induction works
(assuming "proof irrelevance").

$$
\begin{aligned}
- & P(\varepsilon) \wedge\left(\forall u \in L, v \in L^{*} . P(v) \Rightarrow P(u v)\right) \Rightarrow \\
& \forall w \in L^{*} . P(w) .
\end{aligned}
$$

DFAs

Recall from the first lecture:

- A DFA specifies a language.
- In this case the language
$\{11\}^{*}=\{\varepsilon, 11,1111, \ldots\}$.

DFAs

A DFA can be given by a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$:

- A finite set of states (Q).
- An alphabet (Σ).
- A transition function $(\delta \in Q \times \Sigma \rightarrow Q)$.
- A start state $\left(q_{0} \in Q\right)$.
- A set of accepting states $(F \subseteq Q)$.

Which of the following 5-tuples can be seen as DFAs?

1. $(\mathbb{N},\{0,1\}, \delta, 0,\{13\})$,
where $\delta(n, m)=n+m$.
2. $(\{0,1\}, \emptyset, \delta, 0,\{1\})$, where $\delta\left(n, _\right)=n$.
3. $\left(\left\{q_{0}, q_{1}\right\},\{0,1\}, \delta, q_{0},\{1\}\right)$,
where $\delta(-,-)=q_{0}$.
4. $\left(\left\{q_{0}, q_{1}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)$, where $\delta\left(_, _\right)=0$.

Semantics

The language of a DFA

The language $L(A)$ of a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is defined in the following way:

- A transition function for strings is defined by recursion:

$$
\begin{aligned}
& \hat{\delta} \in Q \times \Sigma^{*} \rightarrow Q \\
& \hat{\delta}(q, \varepsilon)=q \\
& \hat{\delta}(q, a w)=\hat{\delta}(\delta(q, a), w)
\end{aligned}
$$

- The language is $\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \in F\right\}$.

Which strings are members of the language of $\left(\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\},\{a, b\}, \delta, s_{0},\left\{s_{0}\right\}\right)$? Here δ is defined in the following way:

$$
\begin{array}{ll}
\delta\left(s_{0}, a\right)=s_{1} & \delta\left(s_{0}, b\right)=s_{2} \\
\delta\left(s_{1}, a\right)=s_{0} & \delta\left(s_{2}, b\right)=s_{0} \\
\delta\left(_,-\right)=s_{3} & (\text { In all other cases. })
\end{array}
$$

1. ε.
2. $a a b$.
3. $a b a$.
4. abba.
5. abbaab.
6. bbaaaa.

Transition
 diagrams

Transition diagrams

- One node per state.
- An arrow "from nowhere" to the start state.
- Double circles for accepting states.
- For every transition $\delta\left(s_{1}, a\right)=s_{2}$, an arrow marked with a from s_{1} to s_{2}.
- Multiple arrows can be combined.

A variant

Diagrams with "missing transitions":

A variant

Every missing transition goes to a new state (that is not accepting):

A variant

Note that diagrams with missing transitions do not define the alphabet unambiguously:

The alphabet must be a (finite) superset of \{'0', '1',..,$' 9 '\}$, but which one?

Which strings are members of the language of the DFA defined by the following transition diagram? The alphabet is $\{a, b\}$.

1. ε.
2. $a a$.
3. $a b$.
4. $b a$.
5. $a b a b$.
6. $b a b a$.

Transition

tables

Transition tables

	0	1
$\rightarrow * s_{0}$	s_{2}	s_{1}
s_{1}	s_{2}	s_{0}
s_{2}	s_{2}	s_{2}

- States: Left column.
- Alphabet: Upper row.
- Start state: Arrow.
- Accepting states: Stars.
- Transition function: Table.

Which strings are members of the language of the DFA defined by the following transition table?

1. ε.
2. 11.
1. 0 .
2. 111.
1. 1 .
2. 1010 .

Constructions

Complement

Given a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we can construct a DFA \bar{A} that satisfies the following property:

$$
L(\bar{A})=\overline{L(A)}=\Sigma^{*} \backslash L(A)
$$

Construction:

$$
\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)
$$

We accept if the original automaton doesn't.

Complement

$A=$

Complement

$A=$

Complement

$\bar{A}=$

Product

Given two DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$ with the same alphabet we can construct a DFA $A_{1} \otimes A_{2}$ that satisfies the following property:

$$
L\left(A_{1} \otimes A_{2}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)
$$

Construction:

$$
\begin{aligned}
& \left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{01}, q_{02}\right), F_{1} \times F_{2}\right), \text { where } \\
& \delta\left(\left(s_{1}, s_{2}\right), a\right)=\left(\delta_{1}\left(s_{1}, a\right), \delta_{2}\left(s_{2}, a\right)\right)
\end{aligned}
$$

We basically run the two automatons in parallel and accept if both accept.

Product

$\{2 n \mid n \in \mathbb{N}\} \cap\{1+3 n \mid n \in \mathbb{N}\}$
(in unary notation, with ε standing for 0):

Product

$\{4+6 n \mid n \in \mathbb{N}\}:$

We can also construct a DFA $A_{1} \oplus A_{2}$ that satisfies the following property:

$$
L\left(A_{1} \oplus A_{2}\right)=L\left(A_{1}\right) \cup L\left(A_{2}\right)
$$

The construction is basically that of $A_{1} \otimes A_{2}$, but with a different set of accepting states. Which one?

$$
\begin{array}{ll}
\text { 1. } F_{1} \cup F_{2} . & \text { 4. } F_{1} \times Q_{2} \cup Q_{1} \times F_{2} . \\
\text { 2. } F_{1} \cap F_{2} . & \text { 5. } F_{1} \times Q_{2} \cap Q_{1} \times F_{2} . \\
\text { 3. } Q_{1} \times Q_{2} . &
\end{array}
$$

$$
\begin{gathered}
\text { Regular } \\
\text { languages }
\end{gathered}
$$

Regular languages

- A language $M \subseteq \Sigma^{*}$ is regular if there is some DFA A with alphabet Σ such that $L(A)=M$.
- Note that if M and N are regular, then $M \cap N, M \cup N$ and \bar{M} are also regular.

Today

- 5-tuples.
- Semantics.
- Transition diagrams.
- Transition tables.
- Constructions.
- Regular languages.

Consultation time

- Today, right after the exercise session, in EL42.
- You decide what you want to work on.

Next lecture

- Nondeterministic finite automata (NFAs).
- The subset construction (turns NFAs into DFAs).
- Deadline for the next quiz: 2019-01-31, 10:00.
- Deadline for the first assignment: 2019-02-03, 23:59.

