Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove
2019-01-24

Today

- Proofs.
- Induction for the natural numbers.
- Inductively defined sets.
- Recursive functions.

Some basic

$$
\begin{aligned}
& \text { proof } \\
& \text { methods }
\end{aligned}
$$

Some basic proof methods

- To prove $p \Rightarrow q$, assume p and prove q.
- To prove $\forall x \in A . P(x)$, assume that we have an $x \in A$ and prove $P(x)$.
- To prove $p \Leftrightarrow q$, prove both $p \Rightarrow q$ and $q \Rightarrow p$.
- To prove $\neg p$, assume p and derive a contradiction.
- To prove p, prove $\neg \neg p$.
- To prove $p \Rightarrow q$, assume $\neg q$ and prove $\neg p$.
(There may be other ways to prove these things.)

Induction

Mathematical induction

For a natural number predicate P we can prove $\forall n \in \mathbb{N} . P(n)$ in the following way:

- Prove $P(0)$.
- For every $n \in \mathbb{N}$, prove that $P(n)$ implies $P(n+1)$.
With a formula:

$$
\begin{aligned}
& P(0) \wedge(\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \quad \forall n \in \mathbb{N} . P(n)
\end{aligned}
$$

Which of the following variants of induction are valid?

$$
\begin{aligned}
& \text { 1. } P(0) \wedge(\forall n \in \mathbb{N} . n \geq 1 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \text { 2. } \\
& \forall n \in \mathbb{N} . n \geq 1 \Rightarrow P(n) . \\
& \\
& \forall n \in \mathbb{N} . n \geq 1) \Rightarrow(\forall n \in \mathbb{N} . n \geq 1 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \text { 3. } \\
& P(1) \wedge P(2) \wedge \\
& \\
& (\forall n \in \mathbb{N} . n \geq 2 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \forall n \in \mathbb{N} . n \geq 1 \Rightarrow P(n) .
\end{aligned}
$$

Counterexamples

- One can sometimes prove that a statement is invalid by using a counterexample.
- Example: The following statement does not hold for $P(n):=n \neq 1$ and $n=1$:

$$
P(0) \wedge(\forall n \in \mathbb{N} . n \geq 1 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow
$$

$$
\forall n \in \mathbb{N} . n \geq 1 \Rightarrow P(n)
$$

The hypotheses hold, but not the conclusion.

Counterexamples

More carefully:

- Let us prove
$\neg(\forall$ natural number predicates $P . P(0) \wedge$

$$
\begin{aligned}
& (\forall n \in \mathbb{N} \cdot n \geq 1 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \forall n \in \mathbb{N} \cdot n \geq 1 \Rightarrow P(n))
\end{aligned}
$$

- We assume
\forall natural number predicates $P . P(0) \wedge$

$$
\begin{aligned}
& (\forall n \in \mathbb{N} \cdot n \geq 1 \wedge P(n) \Rightarrow P(n+1)) \Rightarrow \\
& \forall n \in \mathbb{N} \cdot n \geq 1 \Rightarrow P(n)
\end{aligned}
$$

and derive a contradiction.

Counterexamples

- Let us use the predicate $P(n):=n \neq 1$.
- We have $P(0)$, i.e. $0 \neq 1$.
- We also have
$\forall n \in \mathbb{N}$. $n \geq 1 \wedge P(n) \Rightarrow P(n+1)$, i.e.
$\forall n \in \mathbb{N} . n \geq 1 \wedge n \neq 1 \Rightarrow n+1 \neq 1$.
- Thus we get $\forall n \in \mathbb{N}$. $n \geq 1 \Rightarrow P(n)$.
- Let us use $n=1$.
- We have $1 \geq 1$.
- Thus we get $P(1)$, i.e. $1 \neq 1$.
- This is a contradiction, so we are done.

Complete induction

We can also prove $\forall n \in \mathbb{N} . P(n)$ in the following way:

- Prove $P(0)$.
- For every $n \in \mathbb{N}$, prove that if $P(i)$ holds for every natural number $i \leq n$, then $P(n+1)$ holds.
With a formula:
$P(0) \wedge$
$(\forall n \in \mathbb{N} .(\forall i \in \mathbb{N} . i \leq n \Rightarrow P(i)) \Rightarrow P(n+1)) \Rightarrow$

$$
\forall n \in \mathbb{N} . P(n)
$$

Which of the following variants of complete induction are valid?

1. $(\forall n \in \mathbb{N}$. $(\forall i \in \mathbb{N} . i<n \Rightarrow P(i)) \Rightarrow P(n)) \Rightarrow$ $\forall n \in \mathbb{N} . P(n)$.
2. $P(1) \wedge$
$(\forall n \in \mathbb{N} . n \geq 1 \wedge(\forall i \in \mathbb{N} . i \leq n \Rightarrow P(i)) \Rightarrow$

$$
P(n+1)) \Rightarrow
$$

$\forall n \in \mathbb{N} . P(n)$.

An example

Lemma

Every natural number $n \geq 8$ can be written as a sum of multiples of 3 and 5 .

An example

Proof.

Let $P(n)$ be $n \geq 8 \Rightarrow \exists i, j \in \mathbb{N}$. $n=3 i+5 j$. We prove that $P(n)$ holds for all $n \in \mathbb{N}$ by complete induction on n :

- Base cases $(n=0, \ldots, 7)$: Trivial.
- Base cases $(n=8, n=9, n=10)$: Easy.
- Step case $(n \geq 10$, inductive hypothesis $\forall i \in \mathbb{N} . i \leq n \Rightarrow P(i)$, goal $P(n+1))$:
Because $n-2 \geq 8$ the inductive hypothesis for $n-2$ implies that there are $i, j \in \mathbb{N}$ such that $n-2=3 i+5 j$. Thus we get

$$
1+n=3+(n-2)=3(i+1)+5 j
$$

How detailed should a proof be?

- Depends on the purpose of the proof.
- Who or what do you want to convince?
- Yourself?
- A fellow student?
- An examiner?
- An experienced researcher?
- A computer program (a proof checker)?

Discuss the following proof of
$\forall n \in \mathbb{N}$. $\sum_{i=0}^{n} i=n \frac{n+1}{2}$. Would you like to add/remove/change anything?

By induction on n :

$$
\begin{aligned}
& \text { - } n=0: \sum_{i=0}^{0} i=0=0 \frac{0+1}{2} \\
& \text { - } n=k+1, k \in \mathbb{N} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=0}^{n} i=\sum_{i=0}^{k+1} i=(k+1)+\sum_{i=0}^{k} i= \\
& (k+1)+k \frac{k+1}{2}= \\
& (k+1)\left(1+\frac{k}{2}\right)=(k+1) \frac{k+2}{2} .
\end{aligned}
$$

Inductively defined sets

Inductively defined sets

The natural numbers:

Compare:
data Nat = Zero | Suc Nat

Inductively defined sets

Booleans:
true \in Bool
false \in Bool
Compare:
data Bool = True | False

Inductively defined sets

Finite lists:

$$
\overline{\text { nil } \in \text { List } A} \quad \frac{x \in A \quad x s \in \operatorname{List} A}{\text { cons } x x s \in \operatorname{List} A}
$$

Compare: data List a = Nil | Cons a (List a)

Which of the following expressions are lists of natural numbers (members of List \mathbb{N})?

1. nil.
2. cons nil 5 .
3. cons 5 nil.
4. let $x s=$ cons $5 x s$ in $x s$.

Lists

Alternative notation for lists:

- [] instead of nil.
- x : xs instead of cons $x x s$.
- $[1,2,3]$ instead of cons 1 (cons 2 (cons 3 nil)).

Recursive
functions

Recursive functions

An example:

$$
\begin{aligned}
& \text { length } \in \text { List } A \rightarrow \mathbb{N} \\
& \text { length nil }=\text { zero } \\
& \text { length }(\operatorname{cons} x x s)=\operatorname{suc}(\text { length } x s)
\end{aligned}
$$

Recursive functions

Not well-defined:

$$
\begin{aligned}
b a d \in \operatorname{List} A \rightarrow & \mathbb{N} \\
b a d \text { nil } & =\text { zero } \\
b a d(\text { cons } x x s) & =b a d(\text { cons } x x s)
\end{aligned}
$$

Recursive functions

Another example:

$$
\begin{aligned}
& f \in \text { List } A \rightarrow \text { List } A \\
& f x s=g x s \text { nil } \\
& g \in \text { List } A \rightarrow \text { List } A \rightarrow \text { List } A \\
& g \text { nil } \quad y s=y s \\
& g(\operatorname{cons} x x s) y s=g x s(\text { cons } x y s)
\end{aligned}
$$

What is the result of $f[1,2,3]$?

1. $[1,2,3]$.
2. $[1,3,2]$.
3. $[2,1,3]$.
4. $[2,3,1]$.
5. $[3,1,2]$.
6. $[3,2,1]$.

Recursive functions

reverse \in List $A \rightarrow$ List A
reverse $x s=$ rev-app $x s$ nil
rev-app \in List $A \rightarrow$ List $A \rightarrow$ List A
rev-app nil $\quad y s=y s$
rev-app $(\operatorname{cons} x x s) y s=$ rev-app $x s(\operatorname{cons} x y s)$

Mutual

induction

Mutual induction

- Two mutually defined functions:

$$
\begin{array}{ll}
\text { odd, even } \in \mathbb{N} \rightarrow \text { Bool } \\
\text { odd zero } & =\text { false } \\
\text { odd }(\text { suc } n) & =\text { even } n \\
\text { even zero } & =\text { true } \\
\text { even }(\text { suc } n) & \text { odd } n
\end{array}
$$

- Another function:

$$
\begin{aligned}
& \text { odd } d^{\prime} \in \mathbb{N} \rightarrow \text { Bool } \\
& \text { odd } d^{\prime} \text { zero }=\text { false } \\
& \text { odd } d^{\prime}(\text { suc } n)=\text { not }\left(\text { odd } d^{\prime} n\right)
\end{aligned}
$$

- Can we prove $\forall n \in \mathbb{N}$. odd $n=o d d^{\prime} n$?

Mutual induction

First attempt:

- Let us use mathematical induction.
- Inductive hypothesis:

$$
P n:=o d d n=o d d^{\prime} n
$$

- Base case (P zero):

$$
\begin{array}{ll}
\text { odd zero } & = \\
\text { false } & =
\end{array}
$$

odd' zero

Mutual induction

Step case $(\forall n \in \mathbb{N}$. $P n \Rightarrow P($ suc $n))$:

- Given $n \in \mathbb{N}$, let us assume odd $n=o d d^{\prime} n$:

$$
\begin{array}{ll}
\text { odd }(\operatorname{suc} n) & = \\
\text { even } n & =\{? ? ?\} \\
\operatorname{not}(\text { odd } n) & = \\
\text { odd }(\text { suc } n) .
\end{array}
$$

- Let us generalise the inductive hypothesis:

$$
\begin{aligned}
P n:= & \text { odd } n=\operatorname{odd} d^{\prime} n \wedge \\
& \text { even } n=\operatorname{not}\left(\text { odd }^{\prime} n\right)
\end{aligned}
$$

Mutual induction

Base case (P zero):

- First part:

$$
\begin{aligned}
& \text { odd zero }= \\
& \text { false }= \\
& \text { odd' zero }
\end{aligned}
$$

- Second part:
even zero
true
not false
not (odd d^{\prime} zero)

Mutual induction

Step case $(\forall n \in \mathbb{N} . P n \Rightarrow P($ suc $n))$:

- Given $n \in \mathbb{N}$, let us assume odd $n=o d d^{\prime} n$ and even $n=\operatorname{not}\left(o d d^{\prime} n\right)$.
- First part:

$$
\begin{array}{ll}
\operatorname{odd}(\operatorname{suc} n) & = \\
\text { even } n & =\{\text { By the second } \mathrm{IH} .\} \\
\operatorname{not}\left(\text { odd } d^{\prime} n\right) & = \\
\text { odd }(\operatorname{suc} n)
\end{array}
$$

Mutual induction

Step case $(\forall n \in \mathbb{N} . P n \Rightarrow P($ suc $n))$:

- Given $n \in \mathbb{N}$, let us assume odd $n=o d d^{\prime} n$ and even $n=\operatorname{not}\left(o d d^{\prime} n\right)$.
- Second part:

$$
\begin{array}{ll}
\operatorname{even}(\operatorname{suc} n) & = \\
\operatorname{odd} n & =\{\text { By the first IH. }\} \\
\operatorname{odd^{\prime }} n & = \\
\operatorname{not}\left(\operatorname{not}\left(\operatorname{odd^{\prime }} n\right)\right) & = \\
\operatorname{not}(\text { odd }(\operatorname{suc} n)) &
\end{array}
$$

Discuss how you would prove

$\forall n \in \mathbb{N}$. even $n=$ nots n true.

$$
\begin{aligned}
& \text { nots } \in \mathbb{N} \rightarrow \text { Bool } \rightarrow \text { Bool } \\
& \text { nots zero } \quad b=b \\
& \text { nots }(\text { suc } n) b=\text { nots } n(\text { not } b) \\
& \text { odd, even } \in \mathbb{N} \rightarrow \text { Bool } \\
& \text { odd zero } \quad=\text { false } \\
& \text { odd (suc } n) \\
& \text { e even } n \\
& \text { even zero } \\
& \text { even (suc } n \text {) } \\
& \text { erue } \\
& \text { odd } n
\end{aligned}
$$

Today

- Proofs.
- Proofs by induction.
- Inductively defined sets.
- Recursive functions.

Next lecture

- Structural induction.
- Some concepts from automata theory.
- Deadline for the next quiz: 2019-01-25, 15:00.
- Deadline for the following quiz: 2019-01-28, 17:00.

