
Finite automata theory and
formal languages

(DIT321, TMV027)

Nils Anders Danielsson

2019-03-11

Today

▶ A summary of the course.

Proofs and
induction

Proofs

Throughout the course we have talked about:
▶ How to attack a problem.
▶ How to prove something.

Proofs

Some examples:
▶ One way to prove (𝑝 ⇒ 𝑞) ⇒ 𝑟 is to assume

that you are given a method for proving 𝑞
given 𝑝, and use that to prove 𝑟.

▶ You can prove ¬𝑝 by finding a counterexample
to 𝑝, i.e. showing that 𝑝 leads to a
contradiction.

Induction

▶ Mathematical induction.
▶ Complete induction.
▶ Mutual induction.
▶ Inductively defined sets:

▶ Primitive recursion.
▶ Structural induction.

▶ Inductively defined subsets.

Regular
languages

Automata

Terminology, notation:
▶ Alphabets.
▶ Strings.
▶ Languages.
▶ Concatenation.
▶ Exponentiation.
▶ Kleene star.
▶ …

DFAs

▶ Deterministic.
▶ 5-tuples.
▶ Transition diagrams.
▶ Transition tables.
▶ Transition functions for strings (̂𝛿).
▶ The language of a DFA.

DFAs

States can be:
▶ Accessible.
▶ Equivalent to each other.
▶ Distinguishable from each other.

NFAs

▶ Nondeterministic.
▶ 5-tuples.
▶ Transition diagrams.
▶ Transition tables.
▶ Transition functions for strings (̂𝛿).
▶ The language of an NFA.

DFAs and NFAs

▶ DFAs can easily be turned into NFAs.
▶ NFAs can be turned into DFAs:

▶ The subset construction.
▶ Optimisation: Skip inaccessible states.
▶ Potential problem: Exponential blowup.

𝜀-NFAs

▶ Nondeterministic and with 𝜀-transitions.
▶ 5-tuples.
▶ Transition diagrams.
▶ Transition tables.
▶ 𝜀-closure.
▶ Transition functions for strings (̂𝛿).
▶ The language of an 𝜀-NFA.

DFAs, NFAs and 𝜀-NFAs

▶ NFAs can easily be turned into 𝜀-NFAs.
▶ 𝜀-NFAs can be turned into DFAs:

▶ The subset construction with 𝜀-closure.
▶ Optimisation: Skip inaccessible states.

Regular expressions

▶ Syntax.
▶ The language of a regular expression.
▶ Proving that two regular expressions denote

the same language:
▶ Using known equalities and equational

reasoning.
▶ Using known inequalities, inequational

reasoning and antisymmetry.
▶ By converting to DFAs and proving that

the DFAs denote the same language.

Regular expressions

Brzozowski derivatives:
▶ The Brzozowski derivative of a language

𝐿 ⊆ Σ∗:

𝜕𝑢(𝐿) = { 𝑣 ∈ Σ∗ | 𝑢𝑣 ∈ 𝐿 }

▶ Brzozowski derivatives for regular expressions.
▶ Is a regular expression nullable?

𝜀-NFAs and regular expressions

Translating regular expressions to equivalent
𝜀-NFAs:
▶ Easy.

Translating 𝜀-NFAs to equivalent regular
expressions:
▶ By eliminating states.
▶ By using Arden’s lemma:

The equation 𝑋 = 𝐴𝑋 ∪ 𝐵 has
the least solution 𝑋 = 𝐴∗𝐵.

Regular languages

▶ Definition in terms of DFAs, NFAs, 𝜀-NFAs or
regular expressions.

▶ The pumping lemma.
▶ Closure properties:

▶ Union.
▶ Concatenation.
▶ Kleene star/plus.
▶ Intersection (product construction).
▶ Complement.

Regular languages

Algorithms:
▶ Conversions between different formats.
▶ Is the language empty?
▶ Is a given string a member of the language?
▶ Are two regular languages equal?

▶ Are two states equivalent?
▶ Minimisation of DFAs.

Context-free
languages

Context-free grammars

4-tuples:
▶ Nonterminals.
▶ Terminals.
▶ Productions.
▶ Start symbol.

Context-free grammars

The language of a CFG can be defined in several
equivalent ways:
▶ Derivations.
▶ Leftmost (rightmost) derivations.
▶ Recursive inference.
▶ Parse trees.

The following assignment question seems to have
been tricky:

Prove ∀𝑤 ∈ 𝐿(𝐺, 𝑆). 𝑤 ∈ 𝑀 .
Here 𝑀 = { 𝑎𝑖𝑏𝑖+𝑗 ∣ 𝑖, 𝑗 ∈ ℕ }, and 𝐺 is some
(ambiguous) context-free grammar for 𝑀 with
exactly one non-terminal, 𝑆.

Context-free grammars

▶ Ambiguous grammars.
▶ Associativity.
▶ Precedence.

Context-free grammars

▶ Chomsky normal form.
▶ Bin, Del, Unit, Term.

Pushdown automata

▶ A kind of finite automaton with a single stack.
▶ 7-tuples.
▶ Instantaneous descriptions.
▶ Transition relation (⊢).
▶ The languages of a PDA 𝑃 : 𝐿(𝑃) and 𝑁(𝑃).

Context-free languages

▶ Definition in terms of CFGs or PDAs,
which define the same class of languages.

▶ The pumping lemma.
▶ Closure properties:

▶ Substitution.
▶ Union.
▶ Concatenation.
▶ Kleene star/plus.
▶ Homomorphism.
▶ Intersection with a regular language.

Only 49% answered the following quiz question
correctly. Try to use closure properties.
Which of the following languages, if any, are
context-free?

1. {𝑢𝑢𝑣𝑣 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+} ∪
{𝑢𝑣𝑣𝑢 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+}

2. {𝑢𝑢𝑣𝑣 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+} ∩
{𝑢𝑣𝑣𝑢 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+}

3. {𝑠𝑠𝑡𝑡𝑢𝑣𝑣𝑢 | 𝑠, 𝑢 ∈ {0}+, 𝑡, 𝑣 ∈ {1}+}
4. {𝑢𝑢𝑣𝑣𝑢𝑣𝑣𝑢 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+}
5. {(𝑢𝑣𝑣𝑢)𝑛 | 𝑢 ∈ {0}+, 𝑣 ∈ {1}+, 𝑛 ∈ ℕ}
6. {(𝑎𝑏)𝑚𝑐2𝑛(𝑎𝑏)𝑚 | 𝑚, 𝑛 ∈ ℕ}
7. {𝑢𝑣𝑢 | 𝑢 ∈ {0, 1}∗, 𝑣 ∈ {2, 3}∗}

Context-free languages

Algorithms:
▶ Generating symbols.
▶ Is the language empty?
▶ Nullable symbols.
▶ Is the empty string a member of the language?
▶ Is a nonempty string a member of

the language?
▶ The CYK algorithm.

Recursive or
recursively
enumerable
languages

Turing machines

▶ A kind of simple computer.
▶ Read/write head, unbounded tape,

finite set of states.
▶ 7-tuples.
▶ Instantaneous descriptions.
▶ Transition relation (⊢).
▶ The language of a TM.
▶ Halting.
▶ Undecidable problems.

Recursive languages

▶ Definition in terms of (halting) TMs, or
lambda expressions, or recursive functions, or…

▶ The Church-Turing thesis.

Recursively enumerable languages

▶ Definition in terms of TMs, or lambda
expressions, or recursive functions, or…

Regular ⊊ Context-free ⊊
Recursive ⊊ Recursively enumerable ⊊ ℘(Σ∗)

Discuss what you have learnt in this course.
▶ What has been most interesting?
▶ What has been least interesting?
▶ What would you like to know more about?
▶ …

Next lecture

▶ Old exam questions.

▶ No more quizzes.
▶ Deadline for the seventh assignment:

2019-03-15, 23:59.
(Only one exercise, five points.)

	Proofs and induction
	Regular languages
	Context-free languages
	Recursive or recursively enumerable languages
	Conclusion

