Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson

2019-03-11

• A summary of the course.

Proofs and induction

Throughout the course we have talked about:

- How to attack a problem.
- How to prove something.

Some examples:

- One way to prove (p ⇒ q) ⇒ r is to assume that you are given a method for proving q given p, and use that to prove r.
- You can prove ¬p by finding a counterexample to p, i.e. showing that p leads to a contradiction.

Induction

- Mathematical induction.
- Complete induction.
- Mutual induction.
- Inductively defined sets:
 - Primitive recursion.
 - Structural induction.
- Inductively defined subsets.

Regular languages

Terminology, notation:

- Alphabets.
- Strings.
- Languages.
- Concatenation.
- Exponentiation.
- Kleene star.

DFAs

- Deterministic.
- ► 5-tuples.
- Transition diagrams.
- Transition tables.
- Transition functions for strings $(\hat{\delta})$.
- The language of a DFA.

States can be:

- Accessible.
- Equivalent to each other.
- Distinguishable from each other.

- Nondeterministic.
- ► 5-tuples.
- Transition diagrams.
- Transition tables.
- Transition functions for strings $(\hat{\delta})$.
- The language of an NFA.

- DFAs can easily be turned into NFAs.
- NFAs can be turned into DFAs:
 - The subset construction.
 - Optimisation: Skip inaccessible states.
 - ▶ Potential problem: Exponential blowup.

- Nondeterministic and with ε -transitions.
- ► 5-tuples.
- Transition diagrams.
- Transition tables.
- ε-closure.
- Transition functions for strings $(\hat{\delta})$.
- The language of an ε -NFA.

- NFAs can easily be turned into ε -NFAs.
- ε -NFAs can be turned into DFAs:
 - The subset construction with ε -closure.
 - Optimisation: Skip inaccessible states.

Regular expressions

- Syntax.
- The language of a regular expression.
- Proving that two regular expressions denote the same language:
 - Using known equalities and equational reasoning.
 - Using known inequalities, inequational reasoning and antisymmetry.
 - By converting to DFAs and proving that the DFAs denote the same language.

Brzozowski derivatives:

• The Brzozowski derivative of a language $L \subseteq \Sigma^*$:

$$\partial_u(L) = \{ \, v \in \Sigma^* \mid uv \in L \, \}$$

- Brzozowski derivatives for regular expressions.
- Is a regular expression nullable?

c-NFAs and regular expressions

Translating regular expressions to equivalent ε -NFAs:

Easy.

Translating ε -NFAs to equivalent regular expressions:

- By eliminating states.
- By using Arden's lemma: The equation X = AX ∪ B has the least solution X = A*B.

Regular languages

- Definition in terms of DFAs, NFAs, ε-NFAs or regular expressions.
- The pumping lemma.
- Closure properties:
 - Union.
 - Concatenation.
 - Kleene star/plus.
 - Intersection (product construction).
 - ► Complement.

Algorithms:

- Conversions between different formats.
- Is the language empty?
- Is a given string a member of the language?
- Are two regular languages equal?
 - Are two states equivalent?
- Minimisation of DFAs.

Context-free languages

4-tuples:

- Nonterminals.
- Terminals.
- Productions.
- Start symbol.

The language of a CFG can be defined in several equivalent ways:

- Derivations.
- Leftmost (rightmost) derivations.
- Recursive inference.
- Parse trees.

The following assignment question seems to have been tricky:

Prove $\forall w \in L(G, S)$. $w \in M$.

Here $M = \{ a^i b^{i+j} \mid i, j \in \mathbb{N} \}$, and G is some (ambiguous) context-free grammar for M with exactly one non-terminal, S.

Context-free grammars

- Ambiguous grammars.
- Associativity.
- Precedence.

Chomsky normal form.BIN, DEL, UNIT, TERM.

- A kind of finite automaton with a single stack.
- ► 7-tuples.
- Instantaneous descriptions.
- Transition relation (\vdash).
- The languages of a PDA P: L(P) and N(P).

Context-free languages

- Definition in terms of CFGs or PDAs, which define the same class of languages.
- The pumping lemma.
- Closure properties:
 - Substitution.
 - Union.
 - Concatenation.
 - Kleene star/plus.
 - Homomorphism.
 - Intersection with a regular language.

Only 49% answered the following quiz question correctly. Try to use closure properties.

Which of the following languages, if any, are context-free?

- 1. $\{uuvv \mid u \in \{0\}^+, v \in \{1\}^+\} \cup \{uvvu \mid u \in \{0\}^+, v \in \{1\}^+\}$
- 2. $\{uuvv \mid u \in \{0\}^+, v \in \{1\}^+\} \cap \{uvvu \mid u \in \{0\}^+, v \in \{1\}^+\}$
- 3. { $ssttuvvu \mid s, u \in \{0\}^+, t, v \in \{1\}^+$ }
- 4. $\{uuvvuvvu \mid u \in \{0\}^+, v \in \{1\}^+\}$
- 5. $\{(uvvu)^n \mid u \in \{0\}^+, v \in \{1\}^+, n \in \mathbb{N}\}$
- 6. $\{(ab)^m c^{2n} (ab)^m \mid m, n \in \mathbb{N}\}$
- 7. $\{uvu \mid u \in \{0,1\}^*, v \in \{2,3\}^*\}$

Algorithms:

- Generating symbols.
- Is the language empty?
- Nullable symbols.
- Is the empty string a member of the language?
- Is a nonempty string a member of the language?
 - The CYK algorithm.

Recursive or recursively enumerable languages

Turing machines

- A kind of simple computer.
- Read/write head, unbounded tape, finite set of states.
- ► 7-tuples.
- Instantaneous descriptions.
- ► Transition relation (⊢).
- The language of a TM.
- Halting.
- Undecidable problems.

- Definition in terms of (halting) TMs, or lambda expressions, or recursive functions, or...
- The Church-Turing thesis.

Recursively enumerable languages

 Definition in terms of TMs, or lambda expressions, or recursive functions, or...

Regular \subsetneq Context-free \subsetneq Recursive \subsetneq Recursively enumerable $\subsetneq \wp(\Sigma^*)$

Discuss what you have learnt in this course.

- What has been most interesting?
- What has been least interesting?
- What would you like to know more about?

- Old exam questions.
- No more quizzes.
- Deadline for the seventh assignment: 2019-03-15, 23:59. (Only one exercise, five points.)