
Finite automata theory and
formal languages

(DIT321, TMV027)

Nils Anders Danielsson

2019-03-04

Today

▶ Closure properties for context-free languages.
▶ Some algorithms for context-free languages.
▶ Some undecidable problems.

Closure
properties

Context-free languages

A language 𝐿 over the alphabet Σ is context-free
if there exists a context-free grammar 𝐺,
with alphabet Σ, for which 𝐿(𝐺) = 𝐿.

Context-free languages

▶ Every regular language is context-free.
▶ Exercise: Prove this.

Substitutions

Assume that
▶ Σ1 and Σ2 are alphabets and
▶ 𝐹 ∈ Σ1 → ℘(Σ∗

2).
The function 𝐹 maps symbols to languages.
It can be lifted to strings and languages:

𝐹 ∈ Σ∗
1 → ℘(Σ∗

2)
𝐹(𝜀) = { 𝜀 }
𝐹(𝑎𝑤) = 𝐹(𝑎)𝐹(𝑤)

𝐹 ∈ ℘(Σ∗
1) → ℘(Σ∗

2)
𝐹(𝐿) = ⋃

𝑤∈𝐿
𝐹(𝑤)

What is 𝐹({ 01 }∗) when
𝐹(0) = { 𝑎 } and 𝐹(1) = { 𝑏, 𝑐 }?

1. { 𝑎, 𝑏, 𝑐 }∗

2. { 𝑎𝑏𝑐 }∗

3. { 𝑎𝑏, 𝑎𝑐 }∗

4. { 𝑎𝑐, 𝑏𝑐 }∗

5. { 𝑎 }∗ { 𝑏, 𝑐 }∗

6. { 𝑎, 𝑏 }∗ { 𝑐 }∗

7. { 𝑎 }∗ { 𝑏𝑐 }∗

8. { 𝑎𝑏 }∗ { 𝑐 }∗

Closure under substitutions

If
▶ Σ1 and Σ2 are alphabets,
▶ 𝐿 ⊆ Σ∗

1 is context-free,
▶ 𝐹 ∈ Σ1 → ℘(Σ∗

2), and
▶ 𝐹(𝑎) is context-free for every 𝑎 ∈ Σ1,

then 𝐹(𝐿) is context-free.

Closure under substitutions

Idea:
▶ Replace each terminal 𝑎 in a grammar for 𝐿

with the start symbol of a grammar for 𝐹(𝑎).

Closure under union

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∪ 𝐿2 is context-free.

▶ Substitute 𝐿𝑖 for 𝑖 in { 1, 2 }.

Closure under concatenation

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1𝐿2 is context-free.

▶ Substitute 𝐿𝑖 for 𝑖 in { 12 }.

Closure under Kleene star

▶ If 𝐿 is context-free,
then 𝐿∗ is context-free.

▶ Substitute 𝐿 for 1 in { 1 }∗.

Closure under Kleene plus

▶ If 𝐿 is context-free,
then 𝐿+ is context-free.

▶ Substitute 𝐿 for 1 in { 1 }+.

Homomorphisms
Assume that
▶ Σ1 and Σ2 are alphabets and
▶ ℎ ∈ Σ1 → Σ∗

2.
The function ℎ maps symbols to strings.
It can be lifted to strings and languages:

ℎ ∈ Σ∗
1 → Σ∗

2
ℎ(𝜀) = 𝜀
ℎ(𝑎𝑤) = ℎ(𝑎)ℎ(𝑤)

ℎ ∈ ℘(Σ∗
1) → ℘(Σ∗

2)
ℎ(𝐿) = { ℎ(𝑤) | 𝑤 ∈ 𝐿 }

The function ℎ ∈ Σ∗
1 → Σ∗

2 is a
string homomorphism.

Closure under homomorphism

▶ If 𝐿 ⊆ Σ∗
1 is context-free,

then ℎ(𝐿) is context-free.
▶ Apply the substitution 𝐹(𝑎) = { ℎ(𝑎) } to 𝐿.

Prove that { 01𝑛23𝑛45𝑛6 | 𝑛 ∈ ℕ } is not a
context-free language over
{ 0, 1, 2, 3, 4, 5, 6 }.
You may use the fact that { 0𝑛1𝑛2𝑛 | 𝑛 ∈ ℕ } is
not a context-free language over { 0, 1, 2 }.

Closure under intersection

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∩ 𝐿2 is not necessarily context-free.

▶ If 𝐿1 and 𝐿2 are context-free,
then 𝐿1 ∖ 𝐿2 is not necessarily context-free.

▶ If 𝐿 is a context-free language over Σ,
then 𝐿 = Σ∗ ∖ 𝐿 is not necessarily context-free.

Closure under intersection

▶ If 𝐿 is context-free and 𝑅 is regular,
then 𝐿 ∩ 𝑅 is context-free.

▶ If 𝐿 is context-free and 𝑅 is regular,
then 𝐿 ∖ 𝑅 is context-free.

If Σ is an alphabet, 𝑅 ⊆ Σ∗ is regular and
𝐿 ⊆ Σ∗ is context-free, what can we say
about 𝑅 ∖ 𝐿?

1. It is always regular.
2. It is not necessarily regular,

but always context-free.
3. It is not necessarily context-free.

Some
algorithms

Testing emptiness

For any context-free language 𝐿,
given as a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can decide if 𝐿 = ∅:
▶ A symbol 𝑋 ∈ 𝑁 ∪ Σ is generating

if 𝑋 ⇒∗ 𝑤 for some 𝑤 ∈ Σ∗.
▶ 𝐿 = ∅ if and only if 𝑆 is not generating.

Computing the generating symbols

The set of generating symbols can be computed
(perhaps inefficiently) in the following way:
▶ Let the function step ∈ ℘(𝑁 ∪ Σ) → ℘(𝑁 ∪ Σ)

be defined by

step(Γ) = { 𝐴 ∣ 𝐴 → 𝛼 ∈ 𝑃 ,
every symbol in 𝛼 is in Γ } .

▶ Initialise Γ to Σ.
▶ Repeat until step(Γ) ⊆ Γ:

▶ Set Γ to Γ ∪ step(Γ).
▶ Return Γ.

Testing if the empty string is a member

For any context-free language 𝐿,
given as a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can decide if 𝜀 ∈ 𝐿:
▶ A nonterminal 𝐴 ∈ 𝑁 is nullable if 𝐴 ⇒∗ 𝜀.
▶ We have 𝜀 ∈ 𝐿 if and only if 𝑆 is nullable.

Computing the nullable nonterminals
The set of nullable nonterminals can be computed
(perhaps inefficiently) in the following way:
▶ Let the function step ∈ ℘(𝑁) → ℘(𝑁)

be defined by

step(𝐸) = { 𝐴 ∣
𝐴 → 𝛼 ∈ 𝑃 ,
every symbol in 𝛼 is a
nonterminal in 𝐸

} .

▶ Initialise 𝐸 to ∅.
▶ Repeat until step(𝐸) ⊆ 𝐸:

▶ Set 𝐸 to 𝐸 ∪ step(𝐸).
▶ Return 𝐸.

Let (𝑁, Σ, 𝑃 , 𝑆) be a context-free grammar in
Chomsky normal form and 𝑎 a terminal in Σ.

Fill in the missing pieces so that the
following algorithm computes the set
{ 𝐴 ∈ 𝑁 | 𝑤 ∈ Σ∗, 𝐴 ⇒∗ 𝑎𝑤 }.

▶ Let the function step ∈ ℘(𝑁) → ℘(𝑁) be
defined by step(𝐹) = ???.

▶ Initialise 𝐹 to ???.
▶ Repeat until step(𝐹) ⊆ 𝐹 :

▶ Set 𝐹 to 𝐹 ∪ step(𝐹).
▶ Return 𝐹 .

The CYK algorithm

For any context-free language 𝐿,
given as a context-free grammar 𝐺,
and for any nonempty string 𝑤 ∈ Σ∗,
we can decide if 𝑤 ∈ 𝐿.

The CYK algorithm

▶ Convert 𝐺 to a grammar 𝐺′ = (𝑁, Σ, 𝑃 , 𝑆)
in Chomsky normal form.

▶ Build a CYK table 𝑇 for 𝐺′ and 𝑤:
▶ Let 𝑤𝑖 denote the 𝑖-th symbol in 𝑤

(counting from 1).
▶ 𝑇𝑖,𝑗 is defined for

𝑖, 𝑗 ∈ {1, …, |𝑤|} satisfying 𝑖 ≤ 𝑗.
▶ 𝑇𝑖,𝑗 = { 𝐴 ∈ 𝑁 ∣ 𝐴 ⇒∗ 𝑤𝑖…𝑤𝑗 }.

▶ Check if 𝑆 ∈ 𝑇1,|𝑤|.

The CYK algorithm
The table can be computed in the following way:
▶ First set

𝑇𝑖,𝑖 = { 𝐴 | 𝐴 → 𝑤𝑖 ∈ 𝑃 }
for each 𝑖 ∈ {1, …, |𝑤|}.

▶ Then set

𝑇𝑖,𝑗 = { 𝐴 ∣
𝑘 ∈ { 𝑖, …, 𝑗 − 1 } ,
𝐵 ∈ 𝑇𝑖,𝑘, 𝐶 ∈ 𝑇𝑘+1,𝑗,
𝐴 → 𝐵𝐶 ∈ 𝑃

}

for all 𝑖, 𝑗 ∈ {1, …, |𝑤|} satisfying
𝑗 − 𝑖 + 1 = 2.

▶ Repeat the previous step for 𝑗 − 𝑖 + 1 = 3,
4 and so on up to |𝑤|.

The CYK algorithm

An example of dynamic programming.

Consider the following CYK table:

{ 𝑆 }
∅ { 𝑇 }
∅ { 𝑆 } ∅

{ 𝑇 , 𝑍 } { 𝑈, 𝑂 } { 𝑈, 𝑂 } { 𝑇 , 𝑍 }
0 1 1 0

Construct a parse tree for the string 0110,
given the information that at least the following
productions exist in the grammar:
𝑆 → 𝑍𝑇 , 𝑆 → 𝑂𝑈 , 𝑇 → 𝑆𝑍.

The CYK algorithm

▶ A potential problem:
The size of 𝐺′ can be quadratic
in the size of 𝐺.

▶ A variant of the algorithm that does not use
the Unit transformation can be devised:
▶ Time complexity: 𝑂(|𝐺||𝑤|3).
▶ Space complexity: 𝑂(|𝐺||𝑤|2).

See Lange and Leiß.

Some
undecidable

problems

Some undecidable problems

The following things cannot, in general,
be determined (using, say, a Turing machine):
▶ If a context-free grammar is ambiguous.
▶ If a context-free language, given by a

context-free grammar, is inherently ambiguous.
▶ If 𝐿(𝐺1) = 𝐿(𝐺2) for two

context-free grammars 𝐺1 and 𝐺2.
▶ …

Some undecidable problems

If you want to know more about why certain
problems are undecidable, then you might be
interested in the course Computability
(formerly known as “Models of computation”).

Today

▶ Closure properties for context-free languages.
▶ Some algorithms for context-free languages.
▶ Some undecidable problems.

Next lecture

▶ Pushdown automata.
▶ Turing machines.

▶ Deadline for the next quiz: 2019-03-07, 10:00.
▶ Deadline for the sixth assignment:

2019-03-10, 23:59.

	Closure properties
	Some algorithms
	Some undecidable problems
	Conclusion

