Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson

2019-03-04

- Closure properties for context-free languages.
- ► Some algorithms for context-free languages.
- Some undecidable problems.

Closure properties

A language L over the alphabet Σ is *context-free* if there exists a context-free grammar G, with alphabet Σ , for which L(G) = L.

- Every regular language is context-free.
- Exercise: Prove this.

Assume that

 $\blacktriangleright\ \Sigma_1$ and Σ_2 are alphabets and

$$\blacktriangleright \ F \in \Sigma_1 \to \wp(\Sigma_2^*).$$

The function F maps symbols to languages. It can be lifted to strings and languages:

$$\begin{split} F &\in \Sigma_1^* \to \wp(\Sigma_2^*) & F \in \wp(\Sigma_1^*) \to \wp(\Sigma_2^*) \\ F(\varepsilon) &= \{ \varepsilon \} & F(L) = \bigcup_{w \in L} F(w) \\ F(aw) &= F(a)F(w) & w \in L \end{split}$$

What is $F(\{ 01 \}^*)$ when $F(0) = \{ a \}$ and $F(1) = \{ b, c \}$?

1.
$$\{a, b, c\}^*$$

2. $\{abc\}^*$
3. $\{ab, ac\}^*$
4. $\{ac, bc\}^*$
5. $\{a\}^*\{b, c\}$
6. $\{a, b\}^*\{c\}$
7. $\{a\}^*\{bc\}^*$
8. $\{ab\}^*\{c\}^*$

lf

 $\blacktriangleright\ \Sigma_1$ and Σ_2 are alphabets,

•
$$L \subseteq \Sigma_1^*$$
 is context-free,

•
$$F \in \Sigma_1 \to \wp(\Sigma_2^*)$$
, and

• F(a) is context-free for every $a \in \Sigma_1$, then F(L) is context free

then F(L) is context-free.

Idea:

 Replace each terminal a in a grammar for L with the start symbol of a grammar for F(a).

- If L_1 and L_2 are context-free, then $L_1 \cup L_2$ is context-free.
- Substitute L_i for i in $\{1, 2\}$.

- ► If L₁ and L₂ are context-free, then L₁L₂ is context-free.
- Substitute L_i for i in $\{12\}$.

- If L is context-free,
 then L* is context-free.
- Substitute L for 1 in $\{1\}^*$.

Closure under Kleene plus

- ► If L is context-free, then L⁺ is context-free.
- Substitute L for 1 in $\{1\}^+$.

Homomorphisms

Assume that

 $\blacktriangleright\ \Sigma_1$ and Σ_2 are alphabets and

$$\blacktriangleright h \in \Sigma_1 \to \Sigma_2^*.$$

The function h maps symbols to strings. It can be lifted to strings and languages:

$$\begin{split} h &\in \Sigma_1^* \to \Sigma_2^* & h \in \wp(\Sigma_1^*) \to \wp(\Sigma_2^*) \\ h(\varepsilon) &= \varepsilon & h(L) = \{ \ h(w) \mid w \in L \ \} \\ h(aw) &= h(a)h(w) \end{split}$$

The function $h \in \Sigma_1^* \to \Sigma_2^*$ is a *string homomorphism*.

Closure under homomorphism

- If $L \subseteq \Sigma_1^*$ is context-free, then h(L) is context-free.
- Apply the substitution $F(a) = \{ h(a) \}$ to L.

Prove that $\{01^n23^n45^n6 \mid n \in \mathbb{N}\}$ is not a context-free language over $\{0, 1, 2, 3, 4, 5, 6\}.$

You may use the fact that $\{ 0^n 1^n 2^n \mid n \in \mathbb{N} \}$ is not a context-free language over $\{ 0, 1, 2 \}$.

- If L₁ and L₂ are context-free, then L₁ ∩ L₂ is *not* necessarily context-free.
- If L₁ and L₂ are context-free, then L₁ \ L₂ is not necessarily context-free.
- If L is a context-free language over Σ, then <u>L</u> = Σ^{*} \ L is *not* necessarily context-free.

- If L is context-free and R is regular, then $L \cap R$ is context-free.
- If L is context-free and R is regular, then $L \setminus R$ is context-free.

If Σ is an alphabet, $R \subseteq \Sigma^*$ is regular and $L \subseteq \Sigma^*$ is context-free, what can we say about $R \setminus L$?

- 1. It is always regular.
- 2. It is not necessarily regular, but always context-free.
- 3. It is not necessarily context-free.

Some algorithms

For any context-free language L, given as a context-free grammar $G=(N,\Sigma,P,S)$, we can decide if $L=\emptyset$:

- A symbol X ∈ N ∪ Σ is generating if X ⇒^{*} w for some w ∈ Σ^{*}.
- $L = \emptyset$ if and only if S is not generating.

Computing the generating symbols

The set of generating symbols can be computed (perhaps inefficiently) in the following way:

• Let the function $step \in \wp(N \cup \Sigma) \to \wp(N \cup \Sigma)$ be defined by

$$step(\Gamma) = \left\{ \left. A \right| \begin{array}{l} A \to \alpha \in P, \\ \text{every symbol in } \alpha \text{ is in } \Gamma \end{array} \right\}$$

- Initialise Γ to Σ .
- Repeat until $step(\Gamma) \subseteq \Gamma$:
 - Set Γ to $\Gamma \cup step(\Gamma)$.
- Return Γ.

For any context-free language L, given as a context-free grammar $G=(N,\Sigma,P,S)$, we can decide if $\varepsilon\in L$:

- A nonterminal $A \in N$ is *nullable* if $A \Rightarrow^* \varepsilon$.
- We have $\varepsilon \in L$ if and only if S is nullable.

Computing the nullable nonterminals

The set of nullable nonterminals can be computed (perhaps inefficiently) in the following way:

• Let the function $step \in \wp(N) \to \wp(N)$ be defined by

$$step(E) = \left\{ \begin{array}{c} A \mid A \to \alpha \in P, \\ \text{every symbol in } \alpha \text{ is a} \\ \text{nonterminal in } E \end{array} \right\}$$

- Initialise E to \emptyset .
- Repeat until $step(E) \subseteq E$:
 - Set E to $E \cup step(E)$.
- Return E.

Let (N, Σ, P, S) be a context-free grammar in Chomsky normal form and a a terminal in Σ .

Fill in the missing pieces so that the following algorithm computes the set $\{ A \in N \mid w \in \Sigma^*, A \Rightarrow^* aw \}.$

- Let the function $step \in \wp(N) \rightarrow \wp(N)$ be defined by step(F) = ???.
- Initialise F to ???.
- ▶ Repeat until step(F) ⊆ F:
 ▶ Set F to F ∪ step(F).
- Return F.

For any context-free language L, given as a context-free grammar G, and for any nonempty string $w \in \Sigma^*$, we can decide if $w \in L$.

- ► Convert G to a grammar G' = (N, Σ, P, S) in Chomsky normal form.
- Build a CYK table T for G' and w:
 - Let w_i denote the *i*-th symbol in w (counting from 1).

$$\begin{array}{l} \bullet \ T_{i,j} \text{ is defined for} \\ i,j\in\{1,...,|w|\} \text{ satisfying } i\leq j. \\ \bullet \ T_{i,j}=\big\{ \ A\in N \ \big| \ A\Rightarrow^* w_i...w_j \ \big\}. \\ \text{Check if } S\in T_{1,|w|}. \end{array}$$

The CYK algorithm

The table can be computed in the following way:

First set

$$T_{i,i} = \{ A \mid A \rightarrow w_i \in P \}$$
 for each $i \in \{1, ..., |w|\}$. Then set

Then set

$$T_{i,j} = \left\{ \begin{array}{l} A \mid k \in \left\{ \begin{array}{l} i, ..., j-1 \end{array} \right\}, \\ B \in T_{i,k}, C \in T_{k+1,j}, \\ A \to BC \in P \end{array} \right\}$$

for all $i, j \in \{1, ..., |w|\}$ satisfying j - i + 1 = 2.

• Repeat the previous step for j - i + 1 = 3, 4 and so on up to |w|.

An example of dynamic programming.

Consider the following CYK table:

$$\begin{cases} S \\ \emptyset & \{T \\ \emptyset & \{S \} & \emptyset \\ \{T,Z \} & \{U,O \} & \{U,O \} & \{T,Z \} \\ \hline 0 & 1 & 1 & 0 \\ \end{cases}$$

Construct a parse tree for the string 0110, given the information that at least the following productions exist in the grammar: $S \rightarrow ZT, S \rightarrow OU, T \rightarrow SZ$.

- A potential problem:
 The size of G' can be quadratic in the size of G.
- A variant of the algorithm that does not use the UNIT transformation can be devised:
 - Time complexity: $O(|G||w|^3)$.
 - Space complexity: $O(|G||w|^2)$.

See Lange and Leiß.

Some undecidable problems

The following things cannot, in general, be determined (using, say, a Turing machine):

- If a context-free grammar is ambiguous.
- If a context-free language, given by a context-free grammar, is *inherently* ambiguous.
- ▶ If L(G₁) = L(G₂) for two context-free grammars G₁ and G₂.

• ...

If you want to know more about why certain problems are undecidable, then you might be interested in the course *Computability* (formerly known as "Models of computation").

- Closure properties for context-free languages.
- ► Some algorithms for context-free languages.
- Some undecidable problems.

- Pushdown automata.
- Turing machines.
- ▶ Deadline for the next quiz: 2019-03-07, 10:00.
- Deadline for the sixth assignment: 2019-03-10, 23:59.