
Finite automata theory and
formal languages

(DIT321, TMV027)

Nils Anders Danielsson

2019-02-25



Today

▶ Some equivalences.
▶ Ambiguity.
▶ Designing grammars.



A bug
▶ Last time I told you that the following

equivalence is valid:

𝛼 ⇒∗ 𝛽 ⇔ 𝛼 ⇒∗
lm 𝛽

▶ However, it is not.
▶ My mistake was to trust the course text book,

which contains a similar error.
▶ Do not trust everything that you read.
▶ The following proposition is valid, trust me:

∀𝛼 ∈ (𝑁 ∪ Σ)∗, 𝑤 ∈ Σ∗.
𝛼 ⇒∗ 𝑤 ⇔ 𝛼 ⇒∗

lm 𝑤



Construct a grammar 𝐺 = (𝑁,Σ, 𝑃 , 𝑆)
and strings 𝛼, 𝛽 ∈ (𝑁 ∪ Σ)∗
such that 𝛼 ⇒∗ 𝛽 but not 𝛼 ⇒∗

lm 𝛽.



Some
equivalences



Some equivalences
With 𝑤 ∈ Σ∗:

..

. ..𝐴 ⇒∗
lm 𝑤

..𝐴 ⇒∗ 𝑤 . ..𝑤 ∈ 𝐿𝑁(𝐺,𝐴)

. ..𝐴 ⇒∗
rm 𝑤

. . ..∃𝑝 ∈ 𝑃𝑁(𝐺,𝐴).
yield(𝑝) = 𝑤



Some equivalences
With 𝑤 ∈ Σ∗:

..

. ..𝐴 ⇒∗
lm 𝑤

..𝐴 ⇒∗ 𝑤 . ..𝑤 ∈ 𝐿𝑁(𝐺,𝐴)

. ..𝐴 ⇒∗
rm 𝑤

. . ..∃𝑝 ∈ 𝑃𝑁(𝐺,𝐴).
yield(𝑝) = 𝑤

.

Easy

.Easy



Some equivalences
With 𝑤 ∈ Σ∗:

..

. ..𝐴 ⇒∗
lm 𝑤

..𝐴 ⇒∗ 𝑤 . ..𝑤 ∈ 𝐿𝑁(𝐺,𝐴)

. ..𝐴 ⇒∗
rm 𝑤

. . ..∃𝑝 ∈ 𝑃𝑁(𝐺,𝐴).
yield(𝑝) = 𝑤

.
Easy



Some equivalences
With 𝑤 ∈ Σ∗:

..

. ..𝐴 ⇒∗
lm 𝑤

..𝐴 ⇒∗ 𝑤 . ..𝑤 ∈ 𝐿𝑁(𝐺,𝐴)

. ..𝐴 ⇒∗
rm 𝑤

. . ..∃𝑝 ∈ 𝑃𝑁(𝐺,𝐴).
yield(𝑝) = 𝑤



Some equivalences
With 𝛼 ∈ (𝑁 ∪ Σ)∗:

..

. ..𝐴 ⇒∗
lm 𝛼

..𝐴 ⇒∗ 𝛼 . ..𝛼 ∈ 𝐿𝑁(𝐺,𝐴)

. ..𝐴 ⇒∗
rm 𝛼

. . ..∃𝑝 ∈ 𝑃𝑁(𝐺,𝐴).
yield(𝑝) = 𝛼



Some equivalences

The property

∀𝛼, 𝛽 ∈ (𝑁 ∪ Σ)∗. 𝛼 ⇒∗ 𝛽 ⇒ 𝛽 ∈ 𝐿∗
𝑁(𝐺, 𝛼)

can be proved by induction on the structure of the
derivation, using the following lemmas:
▶ 𝛼 ∈ 𝐿∗

𝑁(𝐺, 𝛼)
▶ 𝛽 ∈ 𝐿∗

𝑁(𝐺, 𝛼) ∧ 𝛾 ∈ 𝐿∗
𝑁(𝐺, 𝛽) ⇒

𝛾 ∈ 𝐿∗
𝑁(𝐺, 𝛼)

▶ 𝛼 ⇒ 𝛽 ⇒ 𝛽 ∈ 𝐿∗
𝑁(𝐺, 𝛼)



Some equivalences

The property

∀𝛼, 𝛽 ∈ (𝑁 ∪ Σ)∗. 𝛼 ⇒ 𝛽 ⇒ 𝛽 ∈ 𝐿∗
𝑁(𝐺, 𝛼)

can be proved using the following additional
lemmas:
▶ 𝛼 ∈ 𝐿𝑁(𝐺,𝐴) ⇒ 𝛼 ∈ 𝐿∗

𝑁(𝐺,𝐴)
▶ 𝛽 ∈ 𝐿∗

𝑁(𝐺, 𝛼) ∧ 𝛽′ ∈ 𝐿∗
𝑁(𝐺, 𝛼′) ⇒

𝛽𝛽′ ∈ 𝐿∗
𝑁(𝐺, 𝛼𝛼′)



Prove

∀𝛼, 𝛽 ∈ (𝑁 ∪ Σ)∗. 𝛼 ⇒ 𝛽 ⇒ 𝛽 ∈ 𝐿∗
𝑁(𝐺, 𝛼).



Some equivalences

The property

∀𝐴 ∈ 𝑁,𝑤 ∈ Σ∗. 𝑤 ∈ 𝐿𝑁(𝐺,𝐴) ⇒ 𝐴 ⇒∗
lm 𝑤

can be proved by induction on the structure of the
recursive inference, using the following lemmas:
▶ 𝛼 ⇒∗

lm 𝛼′ ⇒ 𝛼𝛽 ⇒∗
lm 𝛼′𝛽

▶ 𝛼 ⇒∗
lm 𝛼′ ⇒ 𝑤𝛼 ⇒∗

lm 𝑤𝛼′

▶ 𝛼 ⇒∗
lm 𝛽 ∧ 𝛽 ⇒∗

lm 𝛾 ⇒ 𝛼 ⇒∗
lm 𝛾



Ambiguity



Ambiguity

A grammar 𝐺 = (𝑁,Σ, 𝑃 , 𝑆) is ambiguous if there
is a string 𝑤 ∈ Σ∗ such that there are two
different…
▶ …parse trees in 𝑃(𝐺, 𝑆) with yield 𝑤.
▶ …leftmost derivations 𝑆 ⇒∗

lm 𝑤.
▶ …rightmost derivations 𝑆 ⇒∗

rm 𝑤.
▶ …derivations of 𝑤 ∈ 𝐿(𝐺, 𝑆).



Ambiguity

Consider the following (underspecified) context-free
grammar over { +,−, ·, /, (, ) } ∪ { 0, 1,…, 9 }:

Expr → Expr Op Expr ∣ Digit ∣ (Expr )
Op →+ ∣ − ∣ · ∣ /
Digit → 0 ∣ 1 ∣ … ∣ 9

How should 7 − 3 − 2 be interpreted?



Ambiguity

A parse tree for 7 − 3 − 2:

..Expr.

Expr

.

Expr

.

Digit

.

7

.

Op

.

−

.

Expr

.

Digit

.

3

.

Op

.

−

.

Expr

.

Digit

.

2



Ambiguity

Another parse tree for 7 − 3 − 2:

..Expr.

Expr

.

Digit

.

7

.

Op

.

−

.

Expr

.

Expr

.

Digit

.

3

.

Op

.

−

.

Expr

.

Digit

.

2



Ambiguity

▶ The values differ: (7 − 3) − 2 = 2, but
7 − (3 − 2) = 6.

▶ If a grammar is used to determine how to
interpret an expression, then it may be unclear
how to interpret an ambiguous string.



For which of the following sets of
productions 𝑃 is ({ 𝑆,𝐴 } , { 0, 1 } , 𝑃 , 𝑆)
an ambiguous grammar?

1. 𝑆 → 𝑆
2. 𝑆 → 𝑆 ∣ 𝜀
3. 𝑆 → 1𝑆1 ∣ 0𝑆0 ∣ 𝜀
4. 𝑆 → 1𝑆1 ∣ 1𝐴1 ∣ 𝜀, 𝐴 → 1𝐴1 ∣ 𝑆
5. 𝑆 → 1𝑆1 ∣ 1𝐴1 ∣ 𝜀, 𝐴 → 0𝑆0



Ambiguity

▶ It is common to interpret 7 − 3 − 2 as
(7 − 3) − 2.

▶ The minus operator is said to
“associate to the left”.

▶ Exponentiation typically associates to the right:
333 = 3(33).



Ambiguity

▶ It is also common to interpret 7 · 3 − 2 as
(7 · 3) − 2, and not 7 · (3 − 2).

▶ The multiplication operator is said to
“bind tighter than” the subtraction operator,
or to have “higher precedence”.



Ambiguity

The following (underspecified) context-free
grammar over { +,−, ·, /, (, ) } ∪ { 0, 1,…, 9 } is
unambiguous:

Expr → Term Add‐op Expr ∣ Term
Term → Term Mul‐op Factor ∣ Factor
Factor → Digit ∣ (Expr )
Add‐op →+ ∣ −
Mul‐op → · ∣ /
Digit → 0 ∣ 1 ∣ … ∣ 9



Use this grammar to parse the following
string. Compute the value of the expression,
using the parse tree to guide the evaluation.

3 · 5 − 3 · 8/4/2 − 6 · 2



Ambiguity

▶ It is undecidable whether a context-free
grammar is ambiguous.

▶ However, several parser generators use
restricted context-free grammars that are
guaranteed to be unambiguous.

▶ If such a tool complains about a “conflict”,
then the problem might be that the grammar is
ambiguous.



Suggest some replacement for ??? that
ensures that 3 ^ 3 ^ 3 is a valid string that
is interpreted as 3 ^ (3 ^ 3). The start
symbol is E0.

E0 → E0 Add‐op E1 ∣ E1
E1 → E1 Mul‐op E2 ∣ E2
E2 → ???
E3 → Digit ∣ (E0 )
Add‐op →+ ∣ −
Mul‐op → · ∣ /
Digit → 0 ∣ 1 ∣ … ∣ 9



Ambiguity

▶ There are context-free languages
for which there are no
unambiguous context-free grammars.

▶ Such languages are called
inherently ambiguous.

▶ See the book for an example.



Designing
grammars



Define a grammar for some simple (context-free)
language, perhaps a tiny programming language.
Try to make the grammar unambiguous.



Designing grammars

If you want to know more about the use of
grammars in the specification and implementation
of programming languages you might be interested
in the course Programming language technology.



Today

▶ Some equivalences.
▶ Ambiguity.
▶ Designing grammars.



Next lecture

▶ Something about normal forms.
▶ The pumping lemma for context-free

languages.

▶ Deadline for the next quiz: 2019-02-28, 10:00.
▶ Deadline for the fifth assignment:

2019-03-03, 23:59.


	Some equivalences
	Ambiguity
	Designing grammars
	Conclusion

