Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove
2019-01-21-22

Regular expressions

- Used in text editors:

$$
\begin{aligned}
& \text { M-x replace-regexp RET } \\
& \left.\quad \operatorname{add}\left(\backslash([\wedge,] * \backslash), \backslash\left(\left[{ }^{\wedge}\right)\right] * \backslash\right)\right) \text { RET } \\
& \quad \backslash 1+\backslash 2 \text { RET }
\end{aligned}
$$

- Used to describe the lexical syntax of programming languages.

Finite automata

- Used to implement regular expression engines.
- Used to specify or model systems.
- One kind of finite automaton is used in the specification of TCP.
- Equivalent to regular expressions.

Finite automata

Finite automata

Accepts strings of ones of even length:

- The states are a kind of memory.
- Finite number of states \Rightarrow finite memory.

Regular expressions

- A regular expression for strings of ones of even length: (11)*.
- A regular expression for some keywords: while \mid for \mid if \mid else.
- A regular expression for positive natural number literals (of a certain form): [1-9][0-9]*.

Finite automata

Accepts positive natural number literals:

Conversions

- We will see how to convert regular expressions to and from finite automata.
- In fact, we will discuss several kinds of finite automata, and conversions between the different kinds.

Context-free grammars

- More general than regular expressions.
- Used to describe the syntax of programming languages.
- Used by parser generators. (Often restricted.)

Context-free grammars

Expr $::=$ Number

$$
\begin{aligned}
& \text { | Expr Op Expr } \\
& \text { | '('Expr ')' } \\
& \text { Op ::='+'|'-'|'*'|'/' }
\end{aligned}
$$

Turing machines

- A model of what it means to "compute":
- Unbounded memory: an infinite tape of cells.
- A read/write head that can move along the tape.
- Rules for what the head should do.
- Equivalent to a number of other models of computation.

Proofs

- Used to make it more likely that arguments are correct.
- Used to make arguments more convincing.

Induction

- Inductively defined sets.
- An example:

The natural numbers $(\mathbb{N}=\{0,1,2, \ldots\})$.

- Regular induction for \mathbb{N}.
- Complete (strong, course of values) induction for \mathbb{N}.
- Structural induction for inductively defined sets.

General information

See the course web pages.

I want feedback

- This is the first time I am giving this course.
- I expect that some things will not work perfectly.
- If you find that something does not work as well as it could, please tell me (or the student representatives) as soon as possible.

> Repetition
> (?) of some
> classical
> logic

Propositions

- A proposition is, roughly speaking, some statement that is true or false.
- $2=3$.
- The program let $x=x$ in x terminates with the value 9 .
- $P=N P$.
- If $P=N P$, then $2=3$.
- It may not always be known what the truth value (T or \perp) of a proposition is.

Some logical connectives

- And: \wedge.
- Or: V.
- Not: \neg.
- Implies: \Rightarrow.
- If and only if (iff): \Leftrightarrow.

Some logical connectives

Truth tables for these connectives:

Note that $p \Rightarrow q$ is true if p is false.

Which of the following truth tables are correct for the proposition $(p \vee q) \Rightarrow p$?

Respond at https://pingo.coactum.de/, using a code that I provide.

Validity

- A proposition is valid, or a tautology, if it is satisfied for all assignments of truth values to its variables.
- Examples:
- $p \Rightarrow p$.
- $p \vee \neg p$.

Logical equivalence

- Two propositions p and q are logically equivalent if they have the same truth tables, i.e. if $p \Leftrightarrow q$ is valid.
- Examples:
- $\neg \neg p \Leftrightarrow p$.
- $(p \Leftrightarrow q) \Leftrightarrow(p \Rightarrow q) \wedge(q \Rightarrow p)$.
- $p \wedge q \Leftrightarrow q \wedge p$.
- $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$.
- $p \wedge(p \vee q) \Leftrightarrow p$.

Which of the following propositions are valid?

$$
\begin{aligned}
& \text { 1. }(p \Rightarrow q) \Leftrightarrow \neg p \vee q \text {. } \\
& \text { 2. }(p \Rightarrow q) \Leftrightarrow p \vee \neg q . \\
& \text { 3. } \neg(p \wedge q) \Leftrightarrow \neg p \wedge \neg q \text {. } \\
& \text { 4. } \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg \text {. } \\
& \text { 5. }((p \Rightarrow p) \Rightarrow q) \Rightarrow p . \\
& \text { 6. } \quad(p \Rightarrow q) \Rightarrow p) \Rightarrow p .
\end{aligned}
$$

Predicates

A predicate is, roughly speaking, a function to propositions.

- $P(n)=$ " n is a prime number".
- $Q(a, b)="(a+b)^{2}=a^{2}+2 a b+b^{2}$ ".

Quantifiers

Quantifiers:

- For all: \forall.
- $\forall x . x=x$.
- $\forall a, b \in \mathbb{R} .(a+b)^{2}=a^{2}+2 a b+b^{2}$.
- There exists: \exists.
- $\exists n \in \mathbb{N} . n=2 n$.

Which of the following propositions, involving predicate variables, are valid?

$$
\begin{aligned}
& \text { 1. }(\neg \forall n \in \mathbb{N} . P(n)) \Leftrightarrow(\forall n \in \mathbb{N} . \neg P(n)) \text {. } \\
& \text { 2. }(\neg \forall n \in \mathbb{N} . P(n)) \Leftrightarrow(\exists n \in \mathbb{N} . \neg P(n)) \text {. } \\
& \text { 3. }(\forall m \in \mathbb{N} . \exists n \in \mathbb{N} \cdot P(m, n)) \Leftrightarrow \\
& (\exists n \in \mathbb{N} . \forall m \in \mathbb{N} . P(m, n)) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Repetition } \\
& (?) \text { of some } \\
& \text { set theory }
\end{aligned}
$$

Sets

- A set is, roughly speaking, a collection of elements.
- Some notation for defining sets:
- $\{0,1,2,4,8\}$.
- $\{n \in \mathbb{N} \mid n>2\}$.
- $\left\{2^{n} \mid n \in \mathbb{N}\right\}$.

Members, subsets

- Membership: \in.

$$
\begin{aligned}
& 4 \in\left\{2^{n} \mid n \in \mathbb{N}\right\} \\
& -2 \notin\{n \in \mathbb{N} \mid n>2\} .
\end{aligned}
$$

- Two sets are equal if they have the same elements: $(A=B) \Leftrightarrow(\forall x . x \in A \Leftrightarrow x \in B)$.
- Subset relation:

$$
\begin{aligned}
&(A \subseteq B) \Leftrightarrow(\forall x . x \in A \Rightarrow x \in B) \\
& \bullet\left\{2^{n} \mid n \in \mathbb{N}\right\} \subseteq \mathbb{N} . \\
& \bullet\{0,1,2,4,8\} \nsubseteq\{n \in \mathbb{N} \mid n>2\} .
\end{aligned}
$$

An aside

- Unrestricted naive set theory can be inconsistent.
- Russell's paradox:
- Define $S=\{X \mid X \notin X\}$, where X ranges over all sets.
- We have $S \in S \Leftrightarrow S \notin S!?$
- One can fix this problem by imposing rules that ensure that S is not a set.

Set operations

- The empty set: \emptyset.
- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- Cartesian product:

$$
A \times B=\{(x, y) \mid x \in A \wedge y \in B\}
$$

- Set difference:

$$
A \backslash B=A-B=\{x \in A \mid x \notin B\} .
$$

- Complement: $\bar{A}=U \backslash A$
(if U is fixed in advance and $A \subseteq U$).
- Power set: $\wp(S)=2^{S}=\{A \mid A \subseteq S\}$.

Which of the following propositions are valid? Variables range over sets. U is non-empty.

1. $\overline{A \cap B}=\bar{A} \cap \bar{B}$.
2. $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
3. $\emptyset=\{\emptyset\}$.
4. $A \in \wp(A)$.
5. $A \cup(B \cap C)=(A \cup B) \cap C$.
6. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Relations

- A binary relation R on A is a subset of $A^{2}=A \times A: R \subseteq A^{2}$.
- Notation: $x R y$ means the same as $(x, y) \in R$.
- Can be generalised from $A \times A$ to $A \times B \times C \times \cdots$.

Properties of binary relations

- Reflexive: $\forall x \in A . x R x$.
- Symmetric: $\forall x, y \in A . x R y \Rightarrow y R x$.
- Transitive: $\forall x, y, z \in A . x R y \wedge y R z \Rightarrow x R z$.
- Antisymmetric:

$$
\forall x, y \in A . x R y \wedge y R x \Rightarrow x=y
$$

Partial orders

A partial order is reflexive, antisymmetric and transitive.

- \leq for \mathbb{N}.
- Not $<$.

Which of the following sets are partial orders on $\{0,1\}$?

1. $\{(0,0)\}$.
2. $\{(0,0),(1,1)\}$.
3. $\{(0,0),(0,1),(1,1)\}$.
4. $\{(0,0),(0,1),(1,0)\}$.

Equivalence relations

An equivalence relation is reflexive, symmetric and transitive.

- $\{(n, n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N}^{2}$.
- $\operatorname{Not}\{(n, n) \mid n \in \mathbb{N}\} \subseteq \mathbb{R}^{2}$.

Which of the following sets are equivalence relations on $\{0,1\}$?

1. $\{(0,0)\}$.
2. $\{(0,0),(1,1)\}$.
3. $\{(0,0),(0,1),(1,0)\}$.
4. $\{(0,0),(0,1),(1,0),(1,1)\}$.

Partitions

A partition of the set A is a set $P \subseteq \wp(A)$ satisfying the following properties:

- Every element is non-empty: $\forall B \in P . B \neq \emptyset$.
- The elements cover $A: \bigcup_{B \in P} B=A$.
- The elements are mutually disjoint:

$$
\forall B, C \in P . B \neq C \Rightarrow B \cap C=\emptyset
$$

Equivalence classes

- The equivalence classes of an equivalence relation R on $A:[x]_{R}=\{y \in A \mid x R y\}$.
- Note that $\forall x, y \in A .[x]_{R}=[y]_{R} \Leftrightarrow x R y$.
- The equivalence classes $\left\{[x]_{R} \mid x \in A\right\}$ partition A.
- The quotient set $A / R=\left\{[x]_{R} \mid x \in A\right\}$.

Quotients

Some examples:

- $\mathbb{Z}=\mathbb{N}^{2} / \sim_{\mathbb{Z}}$,
where
$\left(m_{1}, n_{1}\right) \sim_{\mathbb{Z}}\left(m_{2}, n_{2}\right) \Leftrightarrow m_{1}+n_{2}=m_{2}+n_{1}$.
- $\mathbb{Q}=\{(m, n) \mid m \in \mathbb{Z}, n \in \mathbb{N} \backslash\{0\}\} / \sim_{\mathbb{Q}}$, where

$$
\left(m_{1}, n_{1}\right) \sim_{\mathbb{Q}}\left(m_{2}, n_{2}\right) \Leftrightarrow m_{1} n_{2}=m_{2} n_{1} .
$$

Which of the following propositions are true?

1. $[(2,5)]_{\sim_{z}}=[(0,3)]_{\sim_{\bar{z}}}$.
2. $[(2,5)]_{\sim_{z}}=[(3,0)]_{\sim_{z}}$.
3. $[(2,5)]_{\sim_{\Omega}}=[(4,10)]_{\sim_{Q}}$.
4. $[(2,5)]_{\sim_{Q}}=[(10,4)]_{\sim_{Q}}$.

More properties of relations

For $R \subseteq A \times B$:

- Total (left-total): $\forall x \in A . \exists y \in B . x R y$.
- Functional/deterministic:

$$
\forall x \in A . \forall y, z \in B . x R y \wedge x R z \Rightarrow y=z
$$

Functions

- The set of functions from the set A to the set B is denoted by $A \rightarrow B$.
- It is sometimes defined as the set of total and functional relations $f \subseteq A \times B$.
- Notation: $f(x)=y$ means $(x, y) \in f$.
- If the requirement of totality is dropped, then we get the set of partial functions, $A \rightharpoonup B$.
- The domain is A, and the codomain B.
- The image is $\{y \in B \mid x \in A, f(x)=y\}$.

Which of the following relations on $\{a, b\}$ are functions?

1. $\}$.
2. $\{(a, a)\}$.
3. $\{(a, a),(a, b)\}$.
4. $\{(a, a),(b, a)\}$.
5. $\{(a, a),(b, a),(b, b)\}$.

Identity, composition

- The identity function $i d$ on a set A is defined by $i d(x)=x$.
- For functions $f \in B \rightarrow C$ and $g \in A \rightarrow B$ the composition $f \circ g \in A \rightarrow C$ is defined by $(f \circ g)(x)=f(g(x))$.

Injections

The function $f \in A \rightarrow B$ is injective if $\forall x, y \in A . f(x)=f(y) \Rightarrow x=y$.

- Every input is mapped to a unique output.
- Means that A is "no larger than" B.
- Holds if f has a left inverse $g \in B \rightarrow A$:

$$
g \circ f=i d
$$

Surjections

The function $f \in A \rightarrow B$ is surjective if
$\forall y \in B . \exists x \in A . f(x)=y$.

- The function "targets" every element in the codomain.
- Means that A is "no smaller than" B.
- Holds if f has a right inverse $g \in B \rightarrow A$:

$$
f \circ g=i d
$$

Bijections

The function $f \in A \rightarrow B$ is bijective if it is both injective and surjective.

- Means that A and B have the same "size".
- Holds if and only if f has a left and right inverse $g \in B \rightarrow A$.

Which of the following functions are injective? Surjective?

- $f \in \mathbb{N} \rightarrow \mathbb{N}, f(n)=n+1$.
- $g \in \mathbb{Z} \rightarrow \mathbb{Z}, g(i)=i+1$.
- $h \in \mathbb{N} \rightarrow$ Bool, $h(n)= \begin{cases}\text { true, } & \text { if } n \text { is even, } \\ \text { false, } & \text { otherwise. }\end{cases}$

The pigeonhole principle

- If there are n pigeonholes, and $m>n$ pigeons in these pigeonholes, then at least one pigeonhole must contain more than one pigeon.
- If $f \in\{k \in \mathbb{N} \mid k<m\} \rightarrow\{k \in \mathbb{N} \mid k<n\}$ for $m, n \in \mathbb{N}$, and $m>n$, then f is not injective.

Next lecture

- Proofs.
- Induction for the natural numbers.
- Inductively defined sets.
- Recursive functions.

Deadline for the first quiz: 2019-01-23, 15:00.

