Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove

2019-01-21-22

Regular expressions

Used in text editors:

```
M-x replace-regexp RET
  add(\([^,]*\), \([^)]*\)) RET
  \1 + \2 RET
```

Used to describe the lexical syntax of programming languages.

- ▶ Used to implement regular expression engines.
- Used to specify or model systems.
 - ▶ One kind of finite automaton is used in the specification of TCP.
- ▶ Equivalent to regular expressions.

Accepts strings of ones of even length:

- ▶ The states are a kind of memory.
- ▶ Finite number of states ⇒ finite memory.

Regular expressions

- ► A regular expression for strings of ones of even length: (11)*.
- ▶ A regular expression for some keywords: while | for | if | else.
- ► A regular expression for positive natural number literals (of a certain form): [1–9][0–9]*.

Accepts positive natural number literals:

Conversions

- ▶ We will see how to convert regular expressions to and from finite automata.
- ▶ In fact, we will discuss several kinds of finite automata, and conversions between the different kinds.

Context-free grammars

- ▶ More general than regular expressions.
- ▶ Used to describe the syntax of programming languages.
- Used by parser generators. (Often restricted.)

Context-free grammars

```
Expr ::= Number
\mid Expr Op Expr
\mid '('Expr')'
Op ::= '+' \mid '-' \mid '*' \mid '/'
```

Turing machines

- ▶ A model of what it means to "compute":
 - Unbounded memory: an infinite tape of cells.
 - ► A read/write head that can move along the tape.
 - ▶ Rules for what the head should do.
- Equivalent to a number of other models of computation.

Proofs

- Used to make it more likely that arguments are correct.
- ▶ Used to make arguments more convincing.

Induction

- ▶ Inductively defined sets.
 - An example: The natural numbers ($\mathbb{N} = \{0, 1, 2, ...\}$).
- ▶ Regular induction for \mathbb{N} .
- ▶ Complete (strong, course of values) induction for \mathbb{N} .
- Structural induction for inductively defined sets.

General information

See the course web pages.

I want feedback

- ▶ This is the first time I am giving this course.
- I expect that some things will not work perfectly.
- ▶ If you find that something does not work as well as it could, please tell me (or the student representatives) as soon as possible.

Repetition (?) of some

classical

logic

Propositions

- ► A proposition is, roughly speaking, some statement that is true or false.
 - ▶ 2 = 3.
 - ▶ The program let x = x in x terminates with the value 9.
 - ightharpoonup P = NP.
 - ▶ If P = NP, then 2 = 3.
- ▶ It may not always be known what the truth value $(\top \text{ or } \bot)$ of a proposition is.

Some logical connectives

- ► And: ∧.
- ▶ Or: ∨.
- ▶ Not: ¬.
- ▶ Implies: \Rightarrow .
- ▶ If and only if (iff): \Leftrightarrow .

Some logical connectives

Truth tables for these connectives:

p	q	$p \wedge q$	$p \lor q$	$\neg p$	$p \Rightarrow q$	$p \Leftrightarrow q$
Т	Т	T	T	\perp	Т	Т
T	\perp	\perp	T	\perp	\perp	\perp
\perp	Τ	\perp	T	T	Τ	\perp
\perp	\perp	\perp	\perp	Τ	Т	T

Note that $p \Rightarrow q$ is true if p is false.

Which of the following truth tables are correct for the proposition $(p \lor q) \Rightarrow p$?

	_ <i>p</i>	q	$(p \lor q) \Rightarrow p$		<i>p</i>	q	$(p \lor q) \Rightarrow p$
	Т	Т	Т		Т	Т	Т
A:	Т	\perp	\perp	B:	Т	\perp	Т
	\perp	Т			\perp	T	\perp
	\perp	\perp	\perp		\perp	\perp	上
	p	q	$(p \vee q) \Rightarrow p$		p	q	$(p \lor q) \Rightarrow p$
	$\frac{p}{\top}$		$\frac{(p \lor q) \Rightarrow p}{\top}$			$\frac{q}{\top}$	$\frac{(p \lor q) \Rightarrow p}{\top}$
C:		Т	$ \begin{array}{c} (p \lor q) \Rightarrow p \\ \hline \top \\ \top \end{array} $	D:		Т	$ \begin{array}{c} (p \lor q) \Rightarrow p \\ \hline \top \\ \top \end{array} $
C:	T	Т	<u> </u>	D:	T	Т	$ \begin{array}{c} (p \lor q) \Rightarrow p \\ \hline \\ \top \\ \top \\ \top \end{array} $

Respond at https://pingo.coactum.de/, using a code that I provide.

Validity

- ▶ A proposition is *valid*, or a *tautology*, if it is satisfied for all assignments of truth values to its variables.
- ► Examples:
 - $ightharpoonup p \Rightarrow p$.
 - $ightharpoonup p \lor \neg p$.

Logical equivalence

- ▶ Two propositions p and q are logically equivalent if they have the same truth tables, i.e. if $p \Leftrightarrow q$ is valid.
- ► Examples:
 - $ightharpoonup \neg \neg p \Leftrightarrow p.$
 - $(p \Leftrightarrow q) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p).$

 - $p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r).$

Which of the following propositions are valid?

- 1. $(p \Rightarrow q) \Leftrightarrow \neg p \lor q$.
- 2. $(p \Rightarrow q) \Leftrightarrow p \vee \neg q$.
- 3. $\neg (p \land q) \Leftrightarrow \neg p \land \neg q$.
- $3. \neg (p \land q) \Leftrightarrow \neg p \land \neg q.$
- 4. $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$. 5. $((p \Rightarrow p) \Rightarrow q) \Rightarrow p$.
- 6. $((p \Rightarrow p) \Rightarrow q) \Rightarrow p$. 6. $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$.

Predicates

A predicate is, roughly speaking, a function to propositions.

- P(n) = "n is a prime number".
- $Q(a,b) = "(a+b)^2 = a^2 + 2ab + b^2"$.

Quantifiers

Quantifiers:

- ► For all: ∀.
 - $\blacktriangleright \ \forall x. \ x = x.$
 - $\forall a, b \in \mathbb{R}. \ (a+b)^2 = a^2 + 2ab + b^2.$
- ► There exists: ∃.
 - $ightharpoonup \exists n \in \mathbb{N}. \ n = 2n.$

Which of the following propositions, involving predicate variables, are valid?

1.
$$(\neg \forall n \in \mathbb{N}. \ P(n)) \Leftrightarrow (\forall n \in \mathbb{N}. \ \neg P(n)).$$

- 2. $(\neg \forall n \in \mathbb{N}. P(n)) \Leftrightarrow (\exists n \in \mathbb{N}. \neg P(n)).$
- 3. $(\forall m \in \mathbb{N}. \exists n \in \mathbb{N}. P(m,n)) \Leftrightarrow$ $(\exists n \in \mathbb{N}. \ \forall m \in \mathbb{N}. \ P(m,n)).$

Repetition (?) of some set theory

Sets

- ► A *set* is, roughly speaking, a collection of elements.
- ▶ Some notation for defining sets:
 - ► { 0, 1, 2, 4, 8 }.
 - $\blacktriangleright \{ n \in \mathbb{N} \mid n > 2 \}.$
 - $\blacktriangleright \{ 2^n \mid n \in \mathbb{N} \}.$

Members, subsets

- ▶ Membership: ∈.
 - $\bullet \ 4 \in \{ \ 2^n \mid n \in \mathbb{N} \ \}.$
 - $\blacktriangleright \ 2 \notin \{ \ n \in \mathbb{N} \mid n > 2 \ \}.$
- ▶ Two sets are equal if they have the same elements: $(A = B) \Leftrightarrow (\forall x. \ x \in A \Leftrightarrow x \in B)$.
- ► Subset relation:

$$(A \subseteq B) \Leftrightarrow (\forall x. \ x \in A \Rightarrow x \in B).$$

- $\blacktriangleright \{ 2^n \mid n \in \mathbb{N} \} \subseteq \mathbb{N}.$
- ▶ $\{0,1,2,4,8\} \nsubseteq \{n \in \mathbb{N} \mid n > 2\}.$

An aside

- Unrestricted naive set theory can be inconsistent
- ► Russell's paradox:
 - ▶ Define $S = \{ X \mid X \notin X \}$, where X ranges over all sets.
 - ▶ We have $S \in S \Leftrightarrow S \notin S$!?
 - ▶ One can fix this problem by imposing rules that ensure that *S* is not a set.

Set operations

- ▶ The empty set: \emptyset .
- ▶ Union: $A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- ▶ Intersection: $A \cap B = \{ x \mid x \in A \land x \in B \}.$
- ► Cartesian product:

$$A \times B = \{ (x, y) \mid x \in A \land y \in B \}.$$

► Set difference:

$$A \setminus B = A - B = \{ x \in A \mid x \notin B \}.$$

- ▶ Complement: $\overline{A} = U \setminus A$ (if U is fixed in advance and $A \subseteq U$).
- ▶ Power set: $\wp(S) = 2^S = \{ A \mid A \subseteq S \}.$

Which of the following propositions are valid? Variables range over sets. U is non-empty.

1.
$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$
.

2.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
.

5. $A \cup (B \cap C) = (A \cup B) \cap C$.

6. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

$$2. A \cap D = A \cup D.$$

3.
$$\emptyset = \{\emptyset\}.$$

3.
$$\emptyset = \{\emptyset\}$$
.
4. $A \in \wp(A)$.

Relations

- ▶ A binary relation R on A is a subset of $A^2 = A \times A$: $R \subseteq A^2$.
- ▶ Notation: xRy means the same as $(x,y) \in R$.
- ▶ Can be generalised from $A \times A$ to $A \times B \times C \times \cdots$.

Properties of binary relations

- ▶ Reflexive: $\forall x \in A$. xRx.
- ▶ Symmetric: $\forall x, y \in A. \ xRy \Rightarrow yRx.$
- ▶ Transitive: $\forall x, y, z \in A$. $xRy \land yRz \Rightarrow xRz$.
- Antisymmetric:
 - $\forall x, y \in A. \ xRy \land yRx \Rightarrow x = y.$

Partial orders

A *partial order* is reflexive, antisymmetric and transitive.

- ▶ \leq for \mathbb{N} .
- ▶ Not <.

```
Which of the following sets are partial orders on \{0,1\}?
```

```
on { 0, 1 }?

1. { (0,0) }.
```

2. $\{(0,0),(1,1)\}.$

3. { (0,0), (0,1), (1,1) }. 4. { (0,0), (0,1), (1,0) }.

Equivalence relations

An equivalence relation is reflexive, symmetric and transitive.

- $\blacktriangleright \{ (n,n) \mid n \in \mathbb{N} \} \subseteq \mathbb{N}^2.$
- ▶ Not $\{(n,n) \mid n \in \mathbb{N}\}\subseteq \mathbb{R}^2$.

```
Which of the following sets are equivalence
relations on \{0,1\}?
```

- 1. $\{(0,0)\}.$
- 2. $\{(0,0),(1,1)\}.$

4. $\{(0,0),(0,1),(1,0),(1,1)\}.$

- 3. $\{(0,0),(0,1),(1,0)\}.$

Partitions

A partition of the set A is a set $P \subseteq \wp(A)$ satisfying the following properties:

- ▶ Every element is non-empty: $\forall B \in P. \ B \neq \emptyset$.
- ▶ The elements cover A: $\bigcup_{B \in P} B = A$.
- ▶ The elements are mutually disjoint: $\forall B, C \in P. \ B \neq C \Rightarrow B \cap C = \emptyset.$

Equivalence classes

- ▶ The equivalence classes of an equivalence relation R on A: $[x]_R = \{ y \in A \mid xRy \}$.
- ▶ Note that $\forall x, y \in A$. $[x]_R = [y]_R \Leftrightarrow xRy$.
- ▶ The equivalence classes $\{ [x]_R \mid x \in A \}$ partition A.
- ▶ The quotient set $A/R = \{ [x]_R \mid x \in A \}.$

Quotients

Some examples:

- $\begin{array}{l} \blacktriangleright \ \mathbb{Z} = \mathbb{N}^2/\sim_{\mathbb{Z}},\\ \text{where}\\ (m_1,n_1)\sim_{\mathbb{Z}}(m_2,n_2) \Leftrightarrow m_1+n_2=m_2+n_1. \end{array}$
- $\begin{array}{l} \blacktriangleright \ \mathbb{Q} = \left\{ \; (m,n) \; | \; m \in \mathbb{Z}, n \in \mathbb{N} \setminus \left\{ \; 0 \; \right\} \; \right\} / \sim_{\mathbb{Q}}, \\ \text{where} \\ (m_1,n_1) \sim_{\mathbb{Q}} (m_2,n_2) \Leftrightarrow m_1 n_2 = m_2 n_1. \end{array}$

Which of the following propositions are true?

1.
$$[(2,5)]_{\sim_{\pi}} = [(0,3)]_{\sim_{\pi}}$$
.

2.
$$[(2,5)]_{\sim_{\pi}} = [(3,0)]_{\sim_{\pi}}$$
.

$$2. \ [(2,5)]_{\sim_{\mathbb{Z}}} = [(3,0)]_{\sim_{\mathbb{Z}}}$$

3. $[(2,5)]_{\sim_{\Omega}} = [(4,10)]_{\sim_{\Omega}}$.

4. $[(2,5)]_{\sim_0} = [(10,4)]_{\sim_0}$.

More properties of relations

For $R \subseteq A \times B$:

- ▶ Total (left-total): $\forall x \in A$. $\exists y \in B$. xRy.
- ► Functional/deterministic:

$$\forall x \in A. \ \forall y, z \in B. \ xRy \land xRz \Rightarrow y = z.$$

Functions

- ▶ The set of *functions* from the set A to the set B is denoted by $A \rightarrow B$.
- ▶ It is sometimes defined as the set of total and functional relations $f \subseteq A \times B$.
- ▶ Notation: f(x) = y means $(x, y) \in f$.
- ▶ If the requirement of totality is dropped, then we get the set of *partial* functions, $A \rightarrow B$.
- ▶ The *domain* is A, and the *codomain* B.
- ▶ The *image* is $\{ y \in B \mid x \in A, f(x) = y \}$.

```
Which of the following relations on \{a, b\} are functions?
```

- 1. { }.
- 2. $\{(a,a)\}.$
 - 3. $\{(a,a),(a,b)\}.$
- 4. $\{(a,a),(b,a)\}.$ 5. $\{(a,a),(b,a),(b,b)\}.$

Identity, composition

- ▶ The *identity function* id on a set A is defined by id(x) = x.
- ▶ For functions $f \in B \to C$ and $g \in A \to B$ the composition $f \circ g \in A \to C$ is defined by $(f \circ g)(x) = f(g(x)).$

Injections

The function $f \in A \to B$ is *injective* if $\forall x, y \in A$. $f(x) = f(y) \Rightarrow x = y$.

- Every input is mapped to a unique output.
- ▶ Means that *A* is "no larger than" *B*.
- ▶ Holds if f has a left inverse $g \in B \to A$: $g \circ f = id$.

Surjections

The function $f \in A \to B$ is *surjective* if $\forall y \in B. \ \exists x \in A. \ f(x) = y.$

- ► The function "targets" every element in the codomain.
- ▶ Means that A is "no smaller than" B.
- ▶ Holds if f has a right inverse $g \in B \to A$: $f \circ g = id$.

Bijections

The function $f \in A \to B$ is bijective if it is both injective and surjective.

- ▶ Means that A and B have the same "size".
- ▶ Holds if and only if f has a left and right inverse $g \in B \rightarrow A$.

Which of the following functions are injective? Surjective?

$$f \in \mathbb{N} \setminus \mathbb{N} \mid f(n) = n + 1$$

$$f \in \mathbb{N} \to \mathbb{N}, \ f(n) = n + 1.$$

$$a \in \mathbb{Z} \to \mathbb{Z} \ a(i) = i + 1.$$

▶
$$g \in \mathbb{Z} \to \mathbb{Z}$$
, $g(i) = i + 1$.

▶ $h \in \mathbb{N} \to Bool$, $h(n) = \begin{cases} true, & \text{if } n \text{ is even,} \\ false, & \text{otherwise.} \end{cases}$

The pigeonhole principle

- ▶ If there are n pigeonholes, and m > n pigeons in these pigeonholes, then at least one pigeonhole must contain more than one pigeon.
- ▶ If $f \in \{ k \in \mathbb{N} \mid k < m \} \rightarrow \{ k \in \mathbb{N} \mid k < n \}$ for $m, n \in \mathbb{N}$, and m > n, then f is not injective.

Next lecture

- Proofs.
- ▶ Induction for the natural numbers.
- ► Inductively defined sets.
- ▶ Recursive functions.

Deadline for the first quiz: 2019-01-23, 15:00.