
  

Recursive Datatypes and Lists

David Sands
Recap from week 1: Data types



  

Types and constructors

Interpretation:

“Here is a new type Suit. This type has four 
possible values: Spades, Hearts, 
Diamonds and Clubs.”

data Suit = Spades | Hearts | Diamonds | Clubs



  

Types and constructors

This definition introduces five things:

– The type Suit

– The constructors
Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

data Suit = Spades | Hearts | Diamonds | Clubs



  

Types and constructors

Interpretation:

“Here is a new type Rank. Values of this 
type have five possible possible forms: 
Numeric n, Jack, Queen, King or Ace, 
where n is a value of type Integer”

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: ???
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: Integer → Rank
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: Integer → Rank
Jack :: Rank
Queen :: Rank
King :: Rank
Ace :: Rank

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

Type

Constructor

Type



  

Types and constructors

Interpretation:

“Here is a new type Card. Values of this 
type have the form Card r s, where r and s 
are values of type Rank and Suit 
respectively.”

data Card = Card Rank Suit



  

Types and constructors

This definition introduces two things:

– The type Card

– The constructor
Card :: ???

data Card = Card Rank Suit



  

Types and constructors

This definition introduces two things:

– The type Card

– The constructor
Card :: Rank → Suit → Card

data Card = Card Rank Suit



  

Types and constructors

data Card = Card Rank Suit

Type

Constructor

Type
Type



  

Built-in lists

data [a] = []  |  (:) a [a]

Constructors:

[] :: [a]

(:) :: a → [a] → [a]

Not a legal definition,

but the built-in lists are

conceptually defined

like this



  

Some list operations

• From the Data.List module (also in the 
Prelude):

reverse :: [a] -> [a]

  -- reverse a list

 

take :: Int -> [a] -> [a]

  -- (take n) picks the first n elements

 

(++) :: [a] -> [a] -> [a]

  -- append a list after another

 

replicate :: Int -> a -> [a]

  -- make a list by replicating an element

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/base-4.8.1.0/Prelude.html


  

Some list operations

*Main> reverse [1,2,3]

[3,2,1]

*Main> take 4 [1..10]

[1,2,3,4]

*Main> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

*Main> replicate 5 2

[2,2,2,2,2]



  

Strings are lists of characters

type String = [Char]

Prelude> 'g' : "apa"
"gapa"

Prelude> "flyg" ++ "plan"
"flygplan"

Prelude> ['A','p','a']
"Apa"

Type synonym 

definition



  

More on Types

• Functions can have “general” types:

– polymorphism

– reverse :: [a] → [a]

– (:) :: a → [a] → [a]

• Sometimes, these types can be restricted

– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)



  

Do’s and Don’ts

isBig :: Integer → Bool

isBig n | n > 9999  = True

            | otherwise = False

isBig :: Integer → Bool

isBig n = n > 9999

guards and 

boolean results



  

Do’s and Don’ts

resultIsSmall :: Integer → Bool

resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer → Bool

resultIsSmall n = isSmall (f n)

comparison 

with a boolean 

constant



  

Do’s and Don’ts

resultIsBig :: Integer → Bool

resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer → Bool

resultIsBig n = not (isSmall (f n))

comparison 

with a boolean 

constant



  

Do’s and Don’ts

fun1 :: [Integer] → Bool

fun1 []        = False

fun1 (x:xs) = length (x:xs) == 10 

fun1 :: [Integer] → Bool

fun1 xs = length xs == 10

repeated code

necessary case 

distinction?

Do not make 

unnecessary case 

distinctions



  

Do’s and Don’ts

fun2 :: [Integer] → Integer

fun2 [x]      = calc x

fun2 (x:xs) = calc x + fun2 xs 

fun2 :: [Integer] → Integer

fun2 []        = 0

fun2 (x:xs) = calc x + fun2 xs

repeated code

right base 

case ?

Make the base 

case as simple as 

possible
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