
  

Recursive Datatypes and Lists

David Sands
Recap from week 1: Data types



  

Types and constructors

Interpretation:

“Here is a new type Suit. This type has four 
possible values: Spades, Hearts, 
Diamonds and Clubs.”

data Suit = Spades | Hearts | Diamonds | Clubs



  

Types and constructors

This definition introduces five things:

– The type Suit

– The constructors
Spades :: Suit
Hearts :: Suit
Diamonds :: Suit
Clubs :: Suit

data Suit = Spades | Hearts | Diamonds | Clubs



  

Types and constructors

Interpretation:

“Here is a new type Rank. Values of this 
type have five possible possible forms: 
Numeric n, Jack, Queen, King or Ace, 
where n is a value of type Integer”

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: ???
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: Integer → Rank
Jack :: ???
Queen :: ???
King :: ???
Ace :: ???

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

This definition introduces six things:

– The type Rank

– The constructors
Numeric :: Integer → Rank
Jack :: Rank
Queen :: Rank
King :: Rank
Ace :: Rank

data Rank = Numeric Integer | Jack | Queen | King | Ace



  

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

Type

Constructor

Type



  

Types and constructors

Interpretation:

“Here is a new type Card. Values of this 
type have the form Card r s, where r and s 
are values of type Rank and Suit 
respectively.”

data Card = Card Rank Suit



  

Types and constructors

This definition introduces two things:

– The type Card

– The constructor
Card :: ???

data Card = Card Rank Suit



  

Types and constructors

This definition introduces two things:

– The type Card

– The constructor
Card :: Rank → Suit → Card

data Card = Card Rank Suit



  

Types and constructors

data Card = Card Rank Suit

Type

Constructor

Type
Type



  

Built-in lists

data [a] = []  |  (:) a [a]

Constructors:

[] :: [a]

(:) :: a → [a] → [a]

Not a legal definition,

but the built-in lists are

conceptually defined

like this



  

Some list operations

• From the Data.List module (also in the 
Prelude):

reverse :: [a] -> [a]

  -- reverse a list

 

take :: Int -> [a] -> [a]

  -- (take n) picks the first n elements

 

(++) :: [a] -> [a] -> [a]

  -- append a list after another

 

replicate :: Int -> a -> [a]

  -- make a list by replicating an element

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/base-4.8.1.0/Prelude.html


  

Some list operations

*Main> reverse [1,2,3]

[3,2,1]

*Main> take 4 [1..10]

[1,2,3,4]

*Main> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

*Main> replicate 5 2

[2,2,2,2,2]



  

Strings are lists of characters

type String = [Char]

Prelude> 'g' : "apa"
"gapa"

Prelude> "flyg" ++ "plan"
"flygplan"

Prelude> ['A','p','a']
"Apa"

Type synonym 

definition



  

More on Types

• Functions can have “general” types:

– polymorphism

– reverse :: [a] → [a]

– (:) :: a → [a] → [a]

• Sometimes, these types can be restricted

– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)



  

Do’s and Don’ts

isBig :: Integer → Bool

isBig n | n > 9999  = True

            | otherwise = False

isBig :: Integer → Bool

isBig n = n > 9999

guards and 

boolean results



  

Do’s and Don’ts

resultIsSmall :: Integer → Bool

resultIsSmall n = isSmall (f n) == True

resultIsSmall :: Integer → Bool

resultIsSmall n = isSmall (f n)

comparison 

with a boolean 

constant



  

Do’s and Don’ts

resultIsBig :: Integer → Bool

resultIsBig n = isSmall (f n) == False

resultIsBig :: Integer → Bool

resultIsBig n = not (isSmall (f n))

comparison 

with a boolean 

constant



  

Do’s and Don’ts

fun1 :: [Integer] → Bool

fun1 []        = False

fun1 (x:xs) = length (x:xs) == 10 

fun1 :: [Integer] → Bool

fun1 xs = length xs == 10

repeated code

necessary case 

distinction?

Do not make 

unnecessary case 

distinctions



  

Do’s and Don’ts

fun2 :: [Integer] → Integer

fun2 [x]      = calc x

fun2 (x:xs) = calc x + fun2 xs 

fun2 :: [Integer] → Integer

fun2 []        = 0

fun2 (x:xs) = calc x + fun2 xs

repeated code

right base 

case ?

Make the base 

case as simple as 

possible


	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43

