{- This is alist of selected functions fromthe
standard Haskel | nodul es: Prelude Data. Li st
Dat a. Maybe Dat a. Char Control . Monad -}

-- * Standard type cl asses

class Show a where show :: a -> String

class Read a where read :: String -> a
class Eq a where

(=), (/=)

class Eq a => Ord a where
(), (=3, (>3, (») a->a -> Boo
mex, nmn > a->a->a

a ->a -> Boo

class (Eq a, Show a) => Num a where

(v, (=), (%) s a->a->a
negat e ia->a
abs, signum rra->a

from nt eger Integer -> a

class (Numa, Od a) => Real a where
t oRat i onal 1 a-> Rationa

class (Real a, Enuma) => Integral a where

quot, rem ra->a->a
div, nod i a->a->a
t ol nt eger a -> Integer

class Numa => Fractional a where

(1) :ra->a->a

fronRat i onal Rational -> a
class (Fractional a) => Floating a where

exp, log, sqrt a->a

sin, cos, tan ra->a

class (Real a, Fractional a) => Real Frac a where
truncate, round :: (Integral b) =>a ->b
ceiling, floor (Integral b) =>a ->b

-- * Nurerical functions

even, odd Integral a => a -> Boo
even n =n‘rem 2 ==
odd = not . even

-- * Mnadic functions
sequence Monad m=>[ma] -> m[a]
sequence = foldr ntons (return [])
where ntons p g = do x <- p
Xs <- @
return (Xx:xs)

sequence_ Monad m=> [ma] -> m{()
sequence_ xs = do sequence Xs

return ()
liftM Monad m=> (a ->b) ->ma ->mb
liftMf ml = do x1 <- ml

return (f x1)

-- * Functi
id x

const
const x _

()
f.9

flip
flipf xvy

(%)

f $x

-- * Functi
data Bool =

(&&), (11)
True && x
Fal se && _
True || _
False || x

not

not True
not Fal se
-- * Functi
data Maybe

i sJust, i sNo
i sJust (Jus
i sJust Noth

i sNot hi ng

fromust
fromjust (J

maybeToli st
maybeToli st
maybeToLi st

|'i st ToMaybe
|'i st ToMaybe
|'i st ToMaybe

cat Maybes
cat Maybes |
-- * Functi
fst

fst (x,y)
snd

snd (x,Yy)

swap
swap (a,b)

curry :: (
curry f x vy

uncurry :
uncurry f p

ons on functions
a->a
=X

a->b->a
=X

(b->c¢) ->(a->b) ->a->c
\' x ->f (g x)

:: (a->b->c¢c) ->b->a->c
=fyx

ons on Bools
Fal se | True

Bool -> Bool -> Boo
X
Fal se
True
X

Bool -> Boo

= Fal se

= True

ons on Maybe
a = Nothing | Just a

t hi ng Maybe a -> Boo
t a) = True
ing = Fal se
= not . isJust
Maybe a -> a
ust a) = a
Maybe a -> [a]
Not hi ng = []
(Just a) = [a]
[a] -> Maybe a
[1 = Not hing
(a:)) = Just a
:: [Maybe a] -> [a]
s =[x | Just x <- I|s]

ons on pairs

(a,b) -> a
= X
(a,b) ->b
=y
© (a,b) -> (b, a)
= (b, a)
(a, b) ->¢c) ->a->b ->c
= f(xy

(a->b->c) ->((a, b) ->c)
= f (fst p) (snd p)

-- * Functions on lists

map :: (a ->Db)

->

mp f xs = [f x|

(++) 2 [a] -> [

a]

[a] -> [b]
X <- Xxs]
-> [a]

xs ++ ys = foldr (:) ys xs

filter

concat :: [[a
concat Xxss =

->

X <- XS, p

[a]

11
foldr (++) [] xss

(a -> Bool) ->[a] -> [a]
filter pxs = [x

x]

-> [b]

(1+)) O

-> a

->[a] ->b
f z xs)
->[b] ->a

Z X) XS

(a->a) ->a->[a]

fo(f x)

= X: XS

concatMap :: (a -> [b]) -> [a]
concatMap f = concat . map f
head, | ast [a] -> a
head (x:_) = X

last [x] = X

last (_:xs) = last xs
tail, init [a] ->[a]
tail (_:xs) = XS

init [x] =[]

init (x:xs) =X : init xs
nul | [a] -> Boo
null [] = True

null (_:)) = Fal se

I ength [a] -> Int

I ength = foldr (const
rn [a] -> Int
(x:_) 't o = X

(_:xs) !'l'n =xs !l (n-1)
fol dr : (a->b->b) ->b
foldr f z [] = z

foldr f z (x:xs) = f x (foldr
fol dl (a->b->a) ->a
foldl f z [] = z

foldl f z (x:xs) = foldl f (f
iterate

iterate f x = X : iterate
r epeat a->[a]
repeat x = XS where xs
replicate Int ->a ->[a]

replicate n x

cycle
cycle []
cycle xs

tails
tails xs

take n (rep

[a] ->[a]
error "Prel
xs' where Xx

[a] ->[[a]
Xs : case X

[

eat Xx)

ude. cycle: enpty list"
S’ = XS ++ XS

]

s of

->[]

xs' -> tails xs

take, drop .
take n _ | n<=0
take _ []
take n (x:xs)

t ->[a] -> [a]

o n
X ———

take (n-1) xs

drop n xs | n<=0

drop _ []
drop n (_:xs)

drop (n-1) xs

splitAt o Int ->[a] -> ([a],[a])
splitAt n xs (take n xs, drop n xs)

takeWile, dropWile :: (a -> Bool) ->[a] ->[4a]

takeWiile p [] = []

takeWile p (x:xs)
| p x = x : takeWile p xs
| otherwise = []

dropWiile p []
dropWiile p xs@x: xs’)

[]

| p x = dropWile p xs’
| otherwise = xs
span :: (a -> Bool) ->[a] -> ([a], [a])

span p as = (takeWiile p as, dropWile p as)

l'ines, words 1o String -> [String]
-- lines "apa\nbepa\ ncepa\ n"

-- == ["apa", "bepa", "cepa"]

-- words "apa bepa\n cepa"

-- == ["apa", "bepa", "cepa"]

unlines, unwords :: [String] -> String
-- unlines ["apa", "bepa", "cepa"]

-- == "apa\ nbepa\ ncepa\ n"

-- unwords ["apa", "bepa", "cepa"]

-- == "apa bepa cepa"

reverse :: [a] ->[a]
reverse = foldl (flip (:)) []
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False
any, all :: (a ->Bool) ->[a] -> Bool
any p = or . map p
all p = and . map p
elem notEl em :: (Eq a) => a ->[a] -> Bool
el em x = any (== x)
not El em x = all (/=Xx)
| ookup 2 (Eq a) =>a ->[(a,b)] -> Maybe b
| ookup key [] = Nothing
| ookup key ((Xx,Y):xys)
| key == x = Just y
| otherwise = |ookup key xys
sum product :: (Numa) =>[a] -> a
sum = foldl (+) O
product = foldl (*) 1

maxi mum mnimum:: (Oda) =>[a] -> a
maxi mum [] = error "Prelude. maxi mum enpty list"
maxi mum (x: xs) = foldl max x xs

mnimm/[] = error "Prelude. m nimum enpty list"
m ni mum (x:xs) = foldl mn x xs

zip t: [a] -> [b] ->[(ab)]
zip = zipWth (,)
zipWth 10 (a->b->c) -> [a]->[b]->[c]

zipWth z (a:as) (b:bs)
= zab: zipWth z as bs
zipWth _ _ _ = []

unzip t [(a,b)] -> ([a],[b])
unzi p =

foldr (\(a,b) ~(_as,bs,) -> (aras,b:bs)) ([1.[1)

nub 10 Eq a =>[a] ->[a]
nub [] =1
nub (x:Xxs) =
X :nub[vy]y<-xs, x/=y]

delete . Ega=>a->[a] ->[4q]
delete y [] =]
delete y (x:xs) =

if x ==y then xs else x : delete y xs
(\\V) it Eqg a=>[a] ->[a] ->[a]
(\\) = foldl (flip delete)
uni on . Eq a=>[a] ->[a] ->[a]
uni on Xxs ys = xs ++ (ys \\ xs)
i ntersect :: Eq a=>[a] ->[a] ->[a]
intersect xs ys =[] x| x < xs, x ‘elem ys]
i ntersperse ra->[a]l ->[a]
-- intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0, 4]
transpose o [[a]]l ->[[a]]
-- transpose [[1,2,3],[4,5,6]]
-- ==[[1,4].[2,5].[3,6]]

partition ;. (a->Bool) ->[a] -> ([a],[a])
partition p xs =
(filter p xs, filter (not . p) xs)

group :t Eq a =>[a] ->[[a]]
group = groupBy (==)

groupBy :: (a ->a -> Bool) ->[a] ->[[a]]

groupBy _ [] = [

groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq X) Xs

sPrefixOf :: Eq a => [a] -> [a] -> Bool

i

i sPrefixOr [] _ = True

i sPrefixOf _ [] = False
isPrefixOF (x:xs) (y:ys) = x ==y

&& isPrefixOf xs ys
isSuffixO :: Eq a =>[a] -> [a] -> Bool
isSuffixOf x y = reverse x

‘isPrefixOFf* reverse y

sort i: (Oda) =>[a] ->[4a]

sort = foldr insert []
insert it (Ord a) =>a->[a] ->[a]

insert x [] = [x]
insert x (y:xs) =
if x <=y then x:y:xs else y:insert x xs

-- * Functions on Char
type String = [Char]

toUpper, tolLower :: Char -> Char
-- toUpper 'a =="A

-- toLower 'Z' =="'z2

digitTolnt :: Char -> Int

-- digitTolnt '8 == 38
intToDigit :: Int -> Char
-- intToDigit 3 =="'3
ord :: Char -> Int

chr :: Int -> Char

-- * Useful functions from Test. Qui ckCheck

arbitrary :: Arbitrary a => Gen a
-- the generator for values of a type
-- in class Arbitrary, used by quickCheck

choose :: Randoma => (a, a) -> Cen a
-- Generates a randomelenent in the given
-- inclusive range.

oneof :: [Gen a] -> CGen a
-- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] -> Gen a
-- Chooses fromlist of generators with
-- wei ghted random di stri bution.

elements :: [a] -> Gen a
-- Cenerates one of the given val ues.

listOf :: Gen a -> Gen [a]
-- Generates a list of random | ength.

vectorOf :: Int -> Gen a -> Gen [a]
-- Generates a list of the given length.

sized :: (Int -> Gen a) -> Gen a
-- construct generators that depend on
-- the size paraneter.

-- * Useful 10 function

putStr, putStrbn :: String -> 10 ()

get Li ne 2 10 String

type FilePath = String

readFil e :: FilePath -> 10 String
witeFile :: FilePath -> String -> 10 ()

