Lecture 3 - 4 - 5;
Semaphores

© K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

Wednesday 22 Jan 2020, Friday 24 Jan 2020 and Monday 27 Jan 2020

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020



Invariants

"Closed circuit" Two players, Make and Prevent, move in turns on a finite
rectangular grid of dots. A move links previously unlinked
horizontally or vertically neighbouring dots by a dotted line
(Make) or a solid line (Prevent). Make wins by making a
closed circuit. Prevent wins when the grid is exhausted
without a circuit. Is there a winning strategy for either?

Hoare's example From "An Axiomatic Basis for Computer Programming
(CACM, 1969)"
Floyd "Assigning Meanings to Programs" (Symposium on Applied
Mathematics, 1967)

Turing Award Wikipedia page
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Process states, showing who causes the transitions
The picture as seen by process p.
schedule?

run?
uspend?

wait!

blocked

Convention, borrowed from Hoare's CSP, is ! for speech and ? for hearing.

The run? action is by the parent process (who creates p).

exit! and wait! are the only actions taken p itself.

The signal? action is taken by a process other than p.

schedule? and suspend? are actions taken by the invisible scheduler.

No process can tell whether p is ready or running.
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Definition of general semaphore

semaphore is a type or class, with atomic methods wait and signal.

Data: A pair (int V, set L), where Vis the number of tokens
available, (each representing a shared resource) and L is the
set of processes blocked on the semaphore.

Typically, V' is initialised to the total number of tokens, and
L to the empty set, 0.
Method wait: if V> 0 then V/--
else {L:=LUp; //where pis the process doing the wait
block p}  //when p is unblocked, it completes wait
//by simply exiting the method.
Method signal: if L = () then V4++
else {L := L-g;  //where ¢ is an arbitrary process in L
make g ready}
Writers often drop L, as though the semaphore is just V. But the blocking
and unblocking of processes is associated with wait and signal.
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Semaphore invariants

Let semaphore S be initialised to (k, ), where k > 0. Then the following
are invariant:

Q@ 5V>0

Q@ S.V + #wait(S) = k+ #signal(S)
Proof by induction on number of semaphore instructions. (Other
instructions do not affect S.V).

@ Base: True at initialisation.
Step: signal(S) can only increase 5.V
wait(S) decrements it by 1 only if S.V> 0.

@ Base: True at initialisation; no sem actions yet.
Step: wait decrements S.V/ only if it goes through. Otherwise neither
5.V nor #wait(S) change.
signal always goes through. It increments either 5./ or #wait(S) by
unblocking a process blocked on S.
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Definition of binary semaphore

A binary semaphore is like a general semaphore, except that V/ can only be
0 or 1. Method wait is as for general semaphore, but signal changes.
Data: A pair (bool V, set L), where /=0 (resp. 1) means the
shared resource is (un)available.
Typically, Vis initialised to 1 (available), and L to .
Method wait: if V= 1 then V:= 0

else {L:=LUp, //where pisthe process doing the wait
block p}

Method signal: if V= 1 then undefined!
else {if L = ( then V:= 1

else {L := L-g; //where g is an arbitrary process in L
make ¢ ready}
}

The semaphore invariants hold for binary semaphores too.
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CS problem for two processes, with semaphores

Reminder: we require that the program satisfy
e mutex property: if pis at p3 (abbr. "p3"), then - q3

@ deadlock free: p2 A g2 — p and q will not both be stuck waiting
(i.e., p or q will progress to CS)

@ starvation free: p2 — p will progress to CS

binary sem S := (1, 0)
process p process q
while true { while true {
pl: NCS; ql: NCS;
p2: wait(S); //entry protocol | q2: wait(S); //entry protocol
p3: CS; q3: CS;
p4: signal(S); //exit protocol | qé4: signal(S); //exit protocol
ti }
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Abbreviated CS program with binary semaphore

We remove the uninteresting commands to reduce the number of states
we have to reason about, giving

binary sem S := (1,0)
process p process
while true { while true {
p2: wait(S); //entry protocol | q2: wait(S); //entry protocol
p4: signal(S); //exit protocol | q4: signal(S); //exit protocol
I }

Reminder: At p4, pis yet to execute its exit protocol, so it is in its CS.
Thus we require that the program satisfy

e mutex property: if pis at p4 (abbr. "p4"), then — q4

@ deadlock free: p2 A g2 — p and q will not both be stuck waiting
(i.e., p or q will progress to CS)

@ starvation free: p2 — p will progress to CS
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State diagram, abbreviated CS program with binary sem

p4: signal(S);
q2: wait(S);

S=(0, 0)

p2: wait(S);
q4: signal(S);
S=(0,0)

@ The start state is at top left
@ In the red states
> one process is blocked, so only the other can move
> only one move, by the process blocking itself, leads to a red state.
@ In the green states, both can move
» From the light green states, the system either moves back to the start
state, or to a blocking state.
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Correctness of semaphore CS program from state diagram

Mutex There is no state with p4 and gq4. We can draw such a state,
but it is not reachable from the start state of the program.

Deadlock There is no state where both processes are blocked. There is
always a move from every reachable state.

Starvation If p is blocked, then g is poised to do a signal, i.e., g is in its
CS. So it must in a finite time exit its CS (i.e., do the
signal), and so in a finite time lead p into its CS.

If pis poised to do a wait, an unfair scheduler may let g loop
around wait and signal. This is the only loop where p makes
no progress to its CS. Since p is always ready to do its wait,
a fair scheduler must let it act eventually and lead to ts CS.
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Questions to ponder

Why is the semaphore defined this way? Why not let signal always

increment 5./ and let someone else (who?) get a waiting process to retry
wait?

There are many other patterns to discover in the state diagram. Why 5

states? How odd that such a symmetric program produces an odd number
of states!
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Variant of semaphore invariant for the CS program

@ Lemma: The initial value k of 5.Vis 1 in this program, so the 2nd
semaphore invariant becomes S.V + #wait(S) = 1+ #signal(S).
Let #CS = #wait(5) — #signal(S); it is the number of processes in
their CSs. Then #CS =1- S.V.

Then for this program, #CS+5.V = 1 is another form of the 2nd
semaphore invariant.
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Correctness of semaphore CS program by invariants

@ Mutex: The 1st semaphore invariant is 5.VV> 0, so #CS < 1.

@ Deadlock: If we are in deadlock, both processes are blocked, so it
must be that S5.V/=0. But also #CS = 0. Contradicts the above, so
deadlock is not possible.

@ Starvation: If p is waiting to do the wait, a fair scheduler must let it
do that eventually.

Then suppose p is starved, so S.V=0 and peS.L. Then because
#CS+5.V =1, it follows that #CS = 1 and g is in its CS, and
S.L={p}. Then g has to do a signal(5) and thus lead p to its CS.
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Producer-consumer (PC) infinite buffer, with semaphores

An infinite buffer B holds items produced by producer, p, and consumed
by consumer, c. While p can always act, ¢ must wait if 5 is empty.
Semaphore /V is used to ensure this.

queue of int B := 0
sem N := (0,0)

process p process ¢
int d; int d;
while true { while true {
pl: append(d, B); cl: wait(N);//cons protocol
p2: signal(N); //prod protocol | c2: d:= take(B),

b ¥

Note: p does the signal(N), while ¢ does the wait(/V). Note also that the
CS and protocols occur in different orders in p and c.

Since the buffer can grow indefinitely, the state diagram can too. So we
will need meta-arguments about the diagram.
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Producer-consumer (PC) infinite buffer, invariants

We begin with a simplifying assumption: make the two actions of p into
one atomic action, and similarly for g. The assumption is for pedagogical
reasons; it can be removed!

Then N.V = #B is an invariant. True initially. Every atomic action by p
increments both V.V and #B5. Every atomic action by ¢ decrements both
N.V and #B.

So PC safety: ¢ never removes an item from an empty buffer.

Deadlock: Only ¢ can block, and it won't as long as p produces. (p is
allowed to stop; that is not a deadlock).

Starvation: Only ¢ can block, and with a fair scheduler, it can always act
as long as B is non-empty.

The last two arguments are degenerate cases.
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Producer-consumer (PC) finite buffer, with semaphores

A finite buffer B holds up to /V items produced by producer, p, and
consumed by consumer, c. The conditions: ¢ must wait if B is empty, and
p must wait if B is full. Semaphores E and F are used to ensure this.

queue [capacity N] of int B := ()
sem E:=(0,0), sem F:= (N,0)
process p process ¢
int d, int d
while true { while true {
pl: wait(F); //pre-protocol cl: wait(E), //pre-protocol
p2: append(d, B); c2: d:= take(B),
p3: signal(E); //post-protocol | ¢3: signal(F); //post-protocol
h H

NB: p does wait(F) and signal(E), while g does wait(E) and signal(F).

The PC safety requirement is that ¢ never removes an item from an empty
buffer, and that p never puts an item into a full buffer.
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State diagram, abbreviated PC program, 1-place buffer

e pl: wait(F), pl: blocked and pl: signal(E) are the three states of p,
and similarly for q. The third parameter in each state notes whether
there is an item in the buffer.

@ The start state is at top left

@ In the red states

> one process is blocked, so only the other can move
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Producer-consumer (PC) finite buffer, invariants

We begin with a simplifying assumption: make the two actions of p into
one atomic action, and similarly for q. For pedagogical reasons; the
assumption can be removed!

Then N.V = #B is an invariant. True initially. Every atomic action by p
increments both V.V and #B5. Every atomic action by ¢ decrements both
N.V and #B.

So PC safety: ¢ never removes an item from an empty buffer.

Deadlock: Only ¢ can block, and it won't as long as p produces. (p is
allowed to stop; that is not a deadlock).

Starvation: Only ¢ can block, and with a fair scheduler, it can always act
as long as B is non-empty.

The last two arguments are degenerate cases.
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Locks

@ A Jock is a binary semaphore
» where only the process that does a /lock action can do the
corresponding unlock action.

> there is no queue of waiting processes, so unlock cannot pass the lock
on directly to a waiting process

» Easy solution for the CS problem. PC problem not easy.

» For more on locks, see Carlo/Sandro Lecture 2, frame 25 onwards.
@ For a binary semaphore,

» no thread owns it

» consecutive P (or V) operations will be blocked

» calls to P and V can be made by different threads
o for a lock (also called a mutex)

> a thread that owns a lock can invoke lock operations again without

being blocked
» The owner for calls to lock and unlock must be the same thread
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Monitors, protected objects

@ Both monitors and Protected Objects (PO’s) combine the object idea
with synchronisation. Only one entry at a time.
» What if producer enters monitor and then discovers buffer full? It waits
on the condition variable (queue) “not-full".
> Leads to two kinds of scheduling disciplines.
» Messy. Deprecated.
» For more on monitors, see Ben-Ari's slides, or Carlo/Sandro Lecture 5.
@ A PO instead has a guard on each entry. For producer it is “not-full".
Wait before entry for guard to become true.
» Upon any exit, run-time re-checks all guards.
» For more on PO’s, see Ben-Ari's slides.
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