Lecture 3 - 4 - 5;
Semaphores

© K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

Wednesday 22 Jan 2020, Friday 24 Jan 2020 and Monday 27 Jan 2020

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Invariants

"Closed circuit" Two players, Make and Prevent, move in turns on a finite
rectangular grid of dots. A move links previously unlinked
horizontally or vertically neighbouring dots by a dotted line
(Make) or a solid line (Prevent). Make wins by making a
closed circuit. Prevent wins when the grid is exhausted
without a circuit. Is there a winning strategy for either?

Hoare's example From "An Axiomatic Basis for Computer Programming
(CACM, 1969)"
Floyd "Assigning Meanings to Programs" (Symposium on Applied
Mathematics, 1967)

Turing Award Wikipedia page

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

Process states, showing who causes the transitions
The picture as seen by process p.
schedule?

run?
uspend?

wait!

blocked

Convention, borrowed from Hoare's CSP, is ! for speech and ? for hearing.

The run? action is by the parent process (who creates p).

exit! and wait! are the only actions taken p itself.

The signal? action is taken by a process other than p.

schedule? and suspend? are actions taken by the invisible scheduler.

No process can tell whether p is ready or running.
© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Definition of general semaphore

semaphore is a type or class, with atomic methods wait and signal.

Data: A pair (int V, set L), where Vis the number of tokens
available, (each representing a shared resource) and L is the
set of processes blocked on the semaphore.

Typically, V' is initialised to the total number of tokens, and
L to the empty set, 0.
Method wait: if V> 0 then V/--
else {L:=LUp; //where pis the process doing the wait
block p} //when p is unblocked, it completes wait
//by simply exiting the method.
Method signal: if L = () then V4++
else {L := L-g; //where ¢ is an arbitrary process in L
make g ready}
Writers often drop L, as though the semaphore is just V. But the blocking
and unblocking of processes is associated with wait and signal.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Semaphore invariants

Let semaphore S be initialised to (k,), where k > 0. Then the following
are invariant:

Q@ 5V>0

Q@ S.V + #wait(S) = k+ #signal(S)
Proof by induction on number of semaphore instructions. (Other
instructions do not affect S.V).

@ Base: True at initialisation.
Step: signal(S) can only increase 5.V
wait(S) decrements it by 1 only if S.V> 0.

@ Base: True at initialisation; no sem actions yet.
Step: wait decrements S.V/ only if it goes through. Otherwise neither
5.V nor #wait(S) change.
signal always goes through. It increments either 5./ or #wait(S) by
unblocking a process blocked on S.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Definition of binary semaphore

A binary semaphore is like a general semaphore, except that V/ can only be
0 or 1. Method wait is as for general semaphore, but signal changes.
Data: A pair (bool V, set L), where /=0 (resp. 1) means the
shared resource is (un)available.
Typically, Vis initialised to 1 (available), and L to .
Method wait: if V= 1 then V:= 0

else {L:=LUp, //where pisthe process doing the wait
block p}

Method signal: if V= 1 then undefined!
else {if L = (then V:= 1

else {L := L-g; //where g is an arbitrary process in L
make ¢ ready}
}

The semaphore invariants hold for binary semaphores too.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

CS problem for two processes, with semaphores

Reminder: we require that the program satisfy
e mutex property: if pis at p3 (abbr. "p3"), then - q3

@ deadlock free: p2 A g2 — p and q will not both be stuck waiting
(i.e., p or q will progress to CS)

@ starvation free: p2 — p will progress to CS

binary sem S := (1, 0)
process p process q
while true { while true {
pl: NCS; ql: NCS;
p2: wait(S); //entry protocol | q2: wait(S); //entry protocol
p3: CS; q3: CS;
p4: signal(S); //exit protocol | qé4: signal(S); //exit protocol
ti }

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Abbreviated CS program with binary semaphore

We remove the uninteresting commands to reduce the number of states
we have to reason about, giving

binary sem S := (1,0)
process p process
while true { while true {
p2: wait(S); //entry protocol | q2: wait(S); //entry protocol
p4: signal(S); //exit protocol | q4: signal(S); //exit protocol
I }

Reminder: At p4, pis yet to execute its exit protocol, so it is in its CS.
Thus we require that the program satisfy

e mutex property: if pis at p4 (abbr. "p4"), then — q4

@ deadlock free: p2 A g2 — p and q will not both be stuck waiting
(i.e., p or q will progress to CS)

@ starvation free: p2 — p will progress to CS

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

State diagram, abbreviated CS program with binary sem

p4: signal(S);
q2: wait(S);

S=(0, 0)

p2: wait(S);
q4: signal(S);
S=(0,0)

@ The start state is at top left
@ In the red states
> one process is blocked, so only the other can move
> only one move, by the process blocking itself, leads to a red state.
@ In the green states, both can move
» From the light green states, the system either moves back to the start
state, or to a blocking state.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Correctness of semaphore CS program from state diagram

Mutex There is no state with p4 and gq4. We can draw such a state,
but it is not reachable from the start state of the program.

Deadlock There is no state where both processes are blocked. There is
always a move from every reachable state.

Starvation If p is blocked, then g is poised to do a signal, i.e., g is in its
CS. So it must in a finite time exit its CS (i.e., do the
signal), and so in a finite time lead p into its CS.

If pis poised to do a wait, an unfair scheduler may let g loop
around wait and signal. This is the only loop where p makes
no progress to its CS. Since p is always ready to do its wait,
a fair scheduler must let it act eventually and lead to ts CS.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Questions to ponder

Why is the semaphore defined this way? Why not let signal always

increment 5./ and let someone else (who?) get a waiting process to retry
wait?

There are many other patterns to discover in the state diagram. Why 5

states? How odd that such a symmetric program produces an odd number
of states!

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Variant of semaphore invariant for the CS program

@ Lemma: The initial value k of 5.Vis 1 in this program, so the 2nd
semaphore invariant becomes S.V + #wait(S) = 1+ #signal(S).
Let #CS = #wait(5) — #signal(S); it is the number of processes in
their CSs. Then #CS =1- S.V.

Then for this program, #CS+5.V = 1 is another form of the 2nd
semaphore invariant.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Correctness of semaphore CS program by invariants

@ Mutex: The 1st semaphore invariant is 5.VV> 0, so #CS < 1.

@ Deadlock: If we are in deadlock, both processes are blocked, so it
must be that S5.V/=0. But also #CS = 0. Contradicts the above, so
deadlock is not possible.

@ Starvation: If p is waiting to do the wait, a fair scheduler must let it
do that eventually.

Then suppose p is starved, so S.V=0 and peS.L. Then because
#CS+5.V =1, it follows that #CS = 1 and g is in its CS, and
S.L={p}. Then g has to do a signal(5) and thus lead p to its CS.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Producer-consumer (PC) infinite buffer, with semaphores

An infinite buffer B holds items produced by producer, p, and consumed
by consumer, c. While p can always act, ¢ must wait if 5 is empty.
Semaphore /V is used to ensure this.

queue of int B := 0
sem N := (0,0)

process p process ¢
int d; int d;
while true { while true {
pl: append(d, B); cl: wait(N);//cons protocol
p2: signal(N); //prod protocol | c2: d:= take(B),

b ¥

Note: p does the signal(N), while ¢ does the wait(/V). Note also that the
CS and protocols occur in different orders in p and c.

Since the buffer can grow indefinitely, the state diagram can too. So we
will need meta-arguments about the diagram.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Producer-consumer (PC) infinite buffer, invariants

We begin with a simplifying assumption: make the two actions of p into
one atomic action, and similarly for g. The assumption is for pedagogical
reasons; it can be removed!

Then N.V = #B is an invariant. True initially. Every atomic action by p
increments both V.V and #B5. Every atomic action by ¢ decrements both
N.V and #B.

So PC safety: ¢ never removes an item from an empty buffer.

Deadlock: Only ¢ can block, and it won't as long as p produces. (p is
allowed to stop; that is not a deadlock).

Starvation: Only ¢ can block, and with a fair scheduler, it can always act
as long as B is non-empty.

The last two arguments are degenerate cases.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Producer-consumer (PC) finite buffer, with semaphores

A finite buffer B holds up to /V items produced by producer, p, and
consumed by consumer, c. The conditions: ¢ must wait if B is empty, and
p must wait if B is full. Semaphores E and F are used to ensure this.

queue [capacity N] of int B := ()
sem E:=(0,0), sem F:= (N,0)
process p process ¢
int d, int d
while true { while true {
pl: wait(F); //pre-protocol cl: wait(E), //pre-protocol
p2: append(d, B); c2: d:= take(B),
p3: signal(E); //post-protocol | ¢3: signal(F); //post-protocol
h H

NB: p does wait(F) and signal(E), while g does wait(E) and signal(F).

The PC safety requirement is that ¢ never removes an item from an empty
buffer, and that p never puts an item into a full buffer.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

State diagram, abbreviated PC program, 1-place buffer

e pl: wait(F), pl: blocked and pl: signal(E) are the three states of p,
and similarly for q. The third parameter in each state notes whether
there is an item in the buffer.

@ The start state is at top left

@ In the red states

> one process is blocked, so only the other can move

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Producer-consumer (PC) finite buffer, invariants

We begin with a simplifying assumption: make the two actions of p into
one atomic action, and similarly for q. For pedagogical reasons; the
assumption can be removed!

Then N.V = #B is an invariant. True initially. Every atomic action by p
increments both V.V and #B5. Every atomic action by ¢ decrements both
N.V and #B.

So PC safety: ¢ never removes an item from an empty buffer.

Deadlock: Only ¢ can block, and it won't as long as p produces. (p is
allowed to stop; that is not a deadlock).

Starvation: Only ¢ can block, and with a fair scheduler, it can always act
as long as B is non-empty.

The last two arguments are degenerate cases.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Locks

@ A Jock is a binary semaphore
» where only the process that does a /lock action can do the
corresponding unlock action.

> there is no queue of waiting processes, so unlock cannot pass the lock
on directly to a waiting process

» Easy solution for the CS problem. PC problem not easy.

» For more on locks, see Carlo/Sandro Lecture 2, frame 25 onwards.
@ For a binary semaphore,

» no thread owns it

» consecutive P (or V) operations will be blocked

» calls to P and V can be made by different threads
o for a lock (also called a mutex)

> a thread that owns a lock can invoke lock operations again without

being blocked
» The owner for calls to lock and unlock must be the same thread

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

Monitors, protected objects

@ Both monitors and Protected Objects (PO’s) combine the object idea
with synchronisation. Only one entry at a time.
» What if producer enters monitor and then discovers buffer full? It waits
on the condition variable (queue) “not-full".
> Leads to two kinds of scheduling disciplines.
» Messy. Deprecated.
» For more on monitors, see Ben-Ari's slides, or Carlo/Sandro Lecture 5.
@ A PO instead has a guard on each entry. For producer it is “not-full".
Wait before entry for guard to become true.
» Upon any exit, run-time re-checks all guards.
» For more on PO’s, see Ben-Ari's slides.

‘ednesday 22 Jan 2020, Friday 24 Jan 2020

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores

NATO Advanced Study Institute Author: Genuys, F
https://www.cs.utexas.edu/users/EWD /transcriptions/EWD01xx/EWD123.

© K. V. S. Prasad (TDA384/DIT391 Principl Lecture 3 - 4 - 5: Semaphores ‘ednesday 22 Jan 2020, Friday 24 Jan 2020

	History

