Java Concurrency

Nir Piterman
TDA 384 / DIT 391



Creating Threads

Created

[ellg

Main Memory

e What does a thread need to do?

start() Start a thread by calling run() method

run() Entry point for a thread

join() Wait for a thread to end

isAlive() Checks if thread is still running or not

setName() Swapped out and waiting Swapped out and blocked
getName()

getPriority() Page file / swap space

https://en.wikipedia.org/wiki/Process_state



Extend Thread

lass MyThread extends Thread

public void run()
i

System.out.println({"concurrent thread started running..™);

void main(String args[])

MyThread mt = new MyThread();

mt.start();




Extend?

Hierarchy: Animals

* Animal

* Mammal
* Canine
* Dog
« Wolf
* Feline
+ Cat
* Fish
* Tuna
* Shark
* Reptile
* Crocodile
* lguana

Object - Bank Account

» Accounts have certain data and operations
— Regardless of whether checking, savings, etc.

+ Data :
Kinds of Bank Accounts
— account nu
— balance * Account
— owner
: — Checkin
* Operations Checking
_ open * Monthly fees
— close . M.inimum balance.
— get balance — Savings
— deposit * Interest rate
— withdraw

of "account", and has some data and
operations of its own.

Advanced C++ Programming

» Each type shares some data and operations

15




Implement Runnable

 Java does not support multiple inheritance.
* If you need your class to inherit.

class MyThread implements Runnable

r
L

public woid run()

r
L

System.out.println{“concurrent thread started running..");
1
I

1
J

class MyThreadDemo

r
L

public static wvoid main(String args[])

I
L

MyThread mt = new MyThread();
Thread t = new Thread(mt);

t.start();




Concurrency humor

Data Races

Data races

Race conditions are typically caused by a
between threads that memory. Knock knock.
A occurs when two concurrent threads
- access a shared memory location, — “Race condition.”
- at least one access is a ,
+ the threads use no explicit to B : 2
protect the shared data. — “Who’s there?

int counter = 0;

thread t thread u
int cnt; int cnt;
1 cnt = counter; cnt = counter; 1 Lo
2 counter =_gnt + 1; counter = cnt + 1, 2

N

data race

6/46




LOCI(S interface Lock {

void lock(); // acquire lock

void unlock(): // release lock

Lock implementations in Java }

The most common implementation of the Lock interface in Java is
class ReentrantLock.

Mutual exclusion:
* ReentrantLock guarantees mutual exclusion

Starvation:

* ReentrantLock does not guarantee freedom from starvation by
default

» however, calling the constructor with new ReentrantLock(true)
“favors granting access to the longest-waiting thread”

« this still does not guarantee that thread scheduling is fair

Deadlocks:

« one thread will succeed in acquiring the lock
« however, deadlocks may occur in systems that use multiple locks
(remember the dining philosophers)

32/46



Implicit Locking

Built-in locks in Java

Every object in Java has an implicit lock, which can be accessed
using the keyword synchronized.

Whole method locking Block locking
(synchronized methods): (synchronized block):
synchronized T m() {

// the critical section O sl
// 1s the whole method

// body
}

Every call to m implicitly: Every execution of the block
implicitly:

// the critical section
// 1s the block’s content

}

1. acquires the lock

2 executes m 1. acquires the lock

3 releases the lock 2. executes the block

3. releases the lock

30/46




interface Semaphore {

Semaphores

int count(): // current value of counter
void up(); // increment counter
void down(): // decrement counter

Mutual exclusion for processes with semaphores

With semaphores the entry/exit protocols are trivial:

* initialize semaphore to 1
» entry protocol: call sem.down ()
« exit protocol: call sem.up()

Semaphore sem = new Semaphore(l);

thread t thread u
int cnt; int cnt;
1 sem.down () ; sem.down () ; 5
2 cnt = counter; cnt = counter; 6
%! counter = cnt + 1; counter = cnt + 1; 7
4 sem.up(); sem.up(); 8

The implementation of the Semaphore interface guarantees mutual
exclusion, deadlock freedom, and starvation freedom.

37/48




Producer-consumer (PC) finite buffer, with semaphores

A finite buffer £ holds up to /V items produced by producer, p, and
consumed by consumer, c. The conditions: ¢ must wait if 5 is empty, and
p must wait if £ is full. Semaphores £ and / are used to ensure this.

queue [capacity N] of int B :=0

sem £ :=(0,0), sem F:= (N,0)
process p process ¢
int d; int d
while true { while true {
pl: wait(F); //pre-protocol cl: wait(E); //pre-protocol
p2: append(d, B); c2: ‘= take(B),
p3: signal(E); //post-protocol | ¢3: signal(F); / /post-protocol

. _
I I
NB: p does wait(F) and signal(E), while g does wait(E) and signal(F).

The PC safety requirement is that ¢ never removes an item from an empty
buffer, and that p never puts an item into a full buffer.

K. V. S. Prasad (TDA384/DIT391 Principles Lecture 3: Semaphores 9 September 2019 14 /16



Polling vs waiting

Common reasons for rejection

Using polling/busy waiting for synchronization is a common mistake that leads to submissions being
rejected.

Here are some examples of polling/busy waiting in pseudo code. Loops that behave similarly to the
situations below (where the dots do not include any blocking wait) are considered as polling.

“It depends on where you think
we’re going.”

while (e) { // POLLING!
sleep(t);
Using a blocking operation within a loop is not considered as polling
while (e) { // NCO POLLING!

walt (o) ;

provided that it is not the case that that the waiting process is woken up from its wait at regular intervals.
Thus, the following example is also an instance of polling:



Q2 (15p). A small building firm can only build one house at a time, and cannot
start on a new one till the present one is completed. The firm has
N specialist workers such as a mason, a carpenter, an electrician, a
plumber, ete. They are told to start on a house by the team manager,
who then waits till each worker reports that they are done on this
house, before starting the team on the next house. The firm never

stops building houses.

(Part a). Write the declarations of the semaphores you will use in
your solution. For each semaphore, indicate its name and the number
of permits with which it is initialised. What should the scope of these
semaphores be? (2p)

(Part b). Write the implementation of the method run() of the class
Worker according to the description above. Remember that the only
shared variables among threads are NumSpecialists and perhaps the
semaphores you defined in Part a. (5p)

(Part c). Write the implementation of the method run() of the class
TeamManager according to the description above. Remember that the
only shared variables among threads are NumSpecialists and perhaps
the semaphores you defined in Part a. (5p)

(Part d). How would your solution change if you only use binary
semaphores? (3p)



