Logic in Computer Science:
Modelling and Reasoning about Systems

MICHAEL HUTH
Department of Computing
Imperial College London, United Kingdom.

MARK RYAN
School of Computer Science
University of Birmingham, United Kingdom.

Contents

Foreword to the first edition

Preface to the second edition

Acknowledgments

1 Propositional logic

1.1
1.2

1.3
1.4

1.5

1.6

Declarative sentences e e e e e e

Natural deduction oL

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

Rules for natural deduction
Derivedrules
Natural deduction in summary
Provable equivalence
An aside: proof by contradiction

Propositional logic as a formal language

Semantics of propositional logic

1.4.1
1.4.2
1.4.3
1.4.4

The meaning of logical connectives
Mathematical induction
Soundness of propositional logic
Completeness of propositional logic

Normal forms e

1.5.1
1.5.2
1.5.3

Semantic equivalence, satisfiability and validity
Conjunctive normal forms and validity
Horn clauses and satisfiability

SAT Solvers o o o e

1.6.1

A linearsolver,

iii

T

xi

iv

Contents

1.6.2 Acubicsolver.
1.7 EXercises i e e e e e
1.8 Bibliographicnotes o

Predicate logic
2.1 The need for a richer language
2.2 Predicate logic as a formal language
221 Termso e
222 Formulas 0oL
2.2.3 Free and bound variables
2.2.4 Substitution.o oo 0 0oL
2.3 Proof theory of predicate logic
2.3.1 Natural deductionrules
2.3.2 Quantifier equivalences L.
2.4 Semantics of predicate logic
241 Models
2.4.2 Semantic entailmento
2.4.3 The semantics of equality
2.5 Undecidability of predicate logic
2.6 Expressiveness of predicate logic
2.6.1 Existential second-order logic
2.6.2 Universal second-order logic
2.7 Micromodels of software
2.7.1 State machines 0L
272 Alma —re-visited
2.7.3 A software micromodel. L.
2.8 EXErcises i v it e e e e e e e
2.9 Bibliographicnotes o oL

Verification by model checking

3.1 Motivation for verification,

3.2 Linear-time temporal logic
3.2.1 Syntaxof LTL
3.2.2 Semanticsof LTL,
3.2.3 Practical patterns of specifications
3.2.4 TImportant equivalences between LTL formulas
3.2.5 Adequate sets of connectives for LTL.

3.3 Model checking: systems, tools, properties
3.3.1 Example: mutual exclusion

97

97
102
103
104
106
108
111
111
121
127
128
134
136
136
141
144
145
147
147
152
153
162
178

Contents

3.3.2 The NuSMV model checker
3.3.3 Running NuSMV
3.3.4 Mutual exclusion revisited
3.3.5 Theferry-man,
3.3.6 The alternating bit protocol
3.4 Branching-time logic L.
341 Syntaxof CTL
3.4.2 Semantics of computation tree logic
3.4.3 Practical patterns of specifications
3.4.4 Important equivalences between CTL formulas
3.4.5 Adequate sets of CTL connectives
3.5 CTL* and the expressive powers of LTL and CTL
3.5.1 Boolean combinations of temporal formulas in CTL
3.5.2 Past operatorsin LTL
3.6 Model checking algorithms
3.6.1 The CTL model-checking algorithm
3.6.2 CTL model checking with fairness
3.6.3 The LTL model checking algorithm
3.7 The fixed-point characterisation of CTL
3.7.1 Monotone functionso
3.7.2 The correctness of SATgg o o o
3.7.3 The correctness of SATgy
3.8 ExXercises e e e e e
3.9 Bibliographicnotes o oL

Program verification
4.1 Why should we specify and verify code?
4.2 A framework for software verification
4.2.1 A core programming language
4.2.2 Hoare triples oL
4.2.3 Partial and total correctness
4.2.4 Program variables and logical variables
4.3 Proof calculus for partial correctness
43.1 Proofrules,
4.3.2 Prooftableaux
4.3.3 A case study: minimal-sum section
4.4 Proof calculus for total correctness
4.5 Programming by contract
4.6 EXErcises o i i i e e e e e e e e e

vi

Contents

4.7 Bibliographicnotes oL

Modal logics and agents
51 Modesoftrutho oo o
5.2 Basicmodallogic L.
521 Syntax
5.2.2 Semantics o oo
5.3 Logic engineering oo
5.3.1 The stock of valid formulas
5.3.2 Important properties of the accessibility relation . .
5.3.3 Correspondence theory
5.3.4 Some modal logics
5.4 Natural deduction oL,
5.5 Reasoning about knowledge in a multi-agent system
5.5.1 Someexamples Lo
5.5.2 The modal logic KT45™
5.5.3 Natural deduction for KT45™
5.5.4 Formalising the examples
5.6 Exercises e e e
5.7 Bibliographicnotes 0oL

Binary decision diagrams

6.1 Representing boolean functions
6.1.1 Propositional formulas and truth tables
6.1.2 Binary decision diagrams
6.1.3 Ordered BDDs

6.2 Algorithms for reduced OBDDs
6.2.1 The algorithm reduce
6.2.2 The algorithm apply
6.2.3 The algorithm restrict
6.2.4 The algorithm exists
6.2.5 Assessment of OBDDs

6.3 Symbolic model checking
6.3.1 Representing subsets of the set of states
6.3.2 Representing the transition relation
6.3.3 Implementing the functions pres and prey
6.3.4 Synthesising OBDDs

6.4 A relational mu-calculus oL
6.4.1 Syntax and semantics

319
319
320
320
321
328
330

. 333

335
340
343
346
346
349
354
357
364
372

6.4.2 Coding CTL models and specifications

6.5 Exercises

6.6 Bibliographic notes
Bibliography

Index

Contents

vii

410
415
432

433

437

1

Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a
machine.

Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must
be the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next
one.

Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually

2 Propositional logic

has the same structure as the argument of the previous example! All we
have done is substituted some sentence fragments for others:

Example 1.1 Example 1.2

the train is late it is raining
there are taxis at the station | Jane has her umbrella with her
John is late for his meeting | Jane gets wet.

The argument in each example could be stated without talking about trains
and rain, as follows:

If p and not ¢, then r. Not r. p. Therefore, q.

In developing logics, we are not concerned with what the sentences really
mean, but only in their logical structure. Of course, when we apply such
reasoning, as done above, such meaning will be of great interest.

1.1 Declarative sentences

In order to make arguments rigorous, we need to develop a language in
which we can express sentences in such a way that brings out their logical
structure. The language we begin with is the language of propositional
logic. It is based on propositions, or declarative sentences which one can,
in principle, argue as being true or false. Examples of declarative sentences
are:

1
2
3
4
5
(6).

The sum of the numbers 3 and 5 equals 8.

Jane reacted violently to Jack’s accusations.

Every even natural number > 2 is the sum of two prime numbers.
All Martians like pepperoni on their pizza.

o~ A~~~ o~

Albert Camus était un écrivain frangais.
Die Wirde des Menschen ist unantastbar.

— e N’ e e N

These sentences are all declarative, because they are in principle capable of
being declared ‘true’, or ‘false’. Sentence (1) can be tested by appealing to
basic facts about arithmetic (and by tacitly assuming an Arabic, decimal
representation of natural numbers). Sentence (2) is a bit more problematic.
In order to give it a truth value, we need to know who Jane and Jack are
and perhaps to have a reliable account from someone who witnessed the
situation described. In principle, e.g., if we had been at the scene, we feel
that we would have been able to detect Jane’s wviolent reaction, provided
that it indeed occurred in that way. Sentence (3), known as Goldbach’s
conjecture, seems straightforward on the face of it. Clearly, a fact about

1.1 Declarative sentences 3

all even numbers > 2 is either true or false. But to this day nobody knows
whether sentence (3) expresses a truth or not. It is even not clear whether
this could be shown by some finite means, even if it were true. However, in
this text we will be content with sentences as soon as they can, in principle,
attain some truth value regardless of whether this truth value reflects the
actual state of affairs suggested by the sentence in question. Sentence (4)
seems a bit silly, although we could say that if Martians exist and eat pizza,
then all of them will either like pepperoni on it or not. (We have to introduce
predicate logic in Chapter 2 to see that this sentence is also declarative if no
Martians exist; it is then true.) Again, for the purposes of this text sentence
(4) will do. Et alors, qu’est-ce qu’on pense des phrases (5) et (6)? Sentences
(5) and (6) are fine if you happen to read French and German a bit. Thus,
declarative statements can be made in any natural, or artificial, language.
The kind of sentences we won’t consider here are non-declarative ones, like

e Could you please pass me the salt?
e Ready, steady, go!
e May fortune come your way.

Primarily, we are interested in precise declarative sentences, or statements
about the behaviour of computer systems, or programs. Not only do we
want to specify such statements but we also want to check whether a given
program, or system, fulfils a specification at hand. Thus, we need to develop
a calculus of reasoning which allows us to draw conclusions from given as-
sumptions, like initialised variables, which are reliable in the sense that they
preserve truth: if all our assumptions are true, then our conclusion ought to
be true as well. A much more difficult question is whether, given any true
property of a computer program, we can find an argument in our calculus
that has this property as its conclusion. The declarative sentence (3) above
might illuminate the problematic aspect of such questions in the context of
number theory.

The logics we intend to design are symbolic in nature. We translate a cer-
tain sufficiently large subset of all English declarative sentences into strings
of symbols. This gives us a compressed but still complete encoding of declar-
ative sentences and allows us to concentrate on the mere mechanics of our
argumentation. This is important since specifications of systems or software
are sequences of such declarative sentences. It further opens up the possibil-
ity of automatic manipulation of such specifications, a job that computers
just love to do!. Our strategy is to consider certain declarative sentences as

1 There is a certain, slightly bitter, circularity in such endeavours: in proving that a certain
computer program P satisfies a given property, we might let some other computer program Q

4 Propositional logic
being atomic, or indecomposable, like the sentence
“The number 5 is even.’

We assign certain distinct symbols p,q,r,..., or sometimes pi,ps,ps,... to
each of these atomic sentences and we can then code up more complex
sentences in a compositional way. For example, given the atomic sentences

p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

we can form more complex sentences according to the rules below:

—: The negation of p is denoted by —p and expresses ‘I did not win
the lottery last week,’ or equivalently ‘It is not true that I won the
lottery last week.’

V: Given p and r we may wish to state that at least one of them is true:
‘T won the lottery last week, or I won last week’s sweepstakes.;” we
denote this declarative sentence by p V r and call it the disjunction
of p and r'.

A: Dually, the formula p A r denotes the rather fortunate conjunction of
p and r: ‘Last week I won the lottery and the sweepstakes.’

—: Last, but definitely not least, the sentence ‘If I won the lottery last
week, then I purchased a lottery ticket.” expresses an implication
between p and ¢, suggesting that ¢ is a logical consequence of p. We
write p — ¢ for that?. We call p the assumption of p — ¢ and q its
conclusion.

Of course, we are entitled to use these rules of constructing propositions
repeatedly. For example, we are now in a position to form the proposition

pANqg— Vg

which means that ‘if p and ¢ then not r or ¢’. You might have noticed
a potential ambiguity in this reading. One could have argued that this

try to find a proof that P satisfies the property; but who guarantees us that Q satisfies the
property of producing only correct proofs? We seem to run into an infinite regress.

Its meaning should not be confused with the often implicit meaning of or in natural language
discourse as either ... or. In this text or always means at least one of them and should not
be confounded with ezclusive or which states that ezactly one of the two statements holds.
The natural language meaning of ‘if ... then ... ’ often implicitly assumes a causal role of
the assumption somehow enabling its conclusion. The logical meaning of implication is a bit
different, though, in the sense that it states the preservation of truth which might happen
without any causal relationship. For example, ‘If all birds can fly, then Bob Dole was never
president of the United States of America.’ is a true statement, but there is no known causal
connection between the flying skills of penguins and effective campaigning.

1.2 Natural deduction 5

sentence has the structure ‘p is the case and if q then ... ’ A computer
would require the insertion of brackets, as in

(pAg) = ((-r)Vg)

to disambiguate this assertion. However, we humans get annoyed by a pro-
liferation of such brackets which is why we adopt certain conventions about
the binding priorities of these symbols.

Convention 1.3 — binds more tightly than V and A, and the latter two
bind more tightly than —. Implication — is right-associative: expressions
of the form p — ¢ — r denote p — (¢ —).

1.2 Natural deduction

How do we go about constructing a calculus for reasoning about proposi-
tions, so that we can establish the validity of Examples 1.1 and 1.27 Clearly,
we would like to have a set of rules each of which allows us to draw a con-
clusion given a certain arrangement of premises.

In natural deduction, we have such a collection of proof rules. They al-
low us to infer formulas from other formulas. By applying these rules in
succession, we may infer a conclusion from a set of premises.

Let’s see how this works. Suppose we have a set of formulas' ¢, ¢y,
@3, ..., ¢n, which we will call premises, and another formula, 1, which we
will call a conclusion. By applying proof rules to the premises, we hope
to get some more formulas, and by applying more proof rules to those, to
eventually obtain the conclusion. This intention we denote by

¢1’¢23"'5¢n|_¢'

This expression is called a sequent; it is valid if a proof for it can be found.
The sequent for Examples 1.1 and 1.2 is pA—qg — r, -7, p - ¢g. Constructing
such a proof is a creative exercise, a bit like programming. It is not neces-
sarily obvious which rules to apply, and in what order, to obtain the desired

1 Tt is traditional in logic to use Greek letters. Lower-case letters are used to stand for formulas
and upper-case letters are used for sets of formulas. Here are some of the more commonly used
Greek letters, together with their pronunciation:

Lower-case Upper-case

¢ phi ® Phi

¥ psi ¥ Psi

x chi I'' Gamma
n eta A Delta

a alpha

B beta

¥ gamma

6 Propositional logic

conclusion. Additionally, our proof rules should be carefully chosen; oth-
erwise, we might be able to ‘prove’ invalid patterns of argumentation. For
example, we expect that we won’t be able to show the sequent p,q - p A —q.
For example, if p stands for ‘Gold is a metal.” and ¢ for ‘Silver is a metal,’
then knowing these two facts should not allow us to infer that ‘Gold is a
metal whereas silver isn’t.’

Let’s now look at our proof rules. We present about fifteen of them in
total; we will go through them in turn and then summarise at the end of
this section.

1.2.1 Rules for natural deduction
The rules for conjunction

Our first rule is called the rule for conjunction (A): and-introduction. It
allows us to conclude ¢ A 1, given that we have already concluded ¢ and %
separately. We write this rule as

¢ Y
¢ N

Above the line are the two premises of the rule. Below the line goes the

Al .

conclusion. (It might not yet be the final conclusion of our argument; we
might have to apply more rules to get there.) To the right of the line, we
write the name of the rule; Ai is read ‘and-introduction’. Notice that we
have introduced a A (in the conclusion) where there was none before (in the
premises).

For each of the connectives, there is one or more rules to introduce it and
one or more rules to eliminate it. The rules for and-elimination are these
two:

PN PN
¢ P

The rule Ae; says: if you have a proof of ¢ A 1, then by applying this rule
you can get a proof of ¢. The rule Aey says the same thing, but allows
you to conclude 9 instead. Observe the dependences of these rules: in the
first rule of (1.1), the conclusion ¢ has to match the first conjunct of the
premise, whereas the exact nature of the second conjunct 7 is irrelevant.
In the second rule it is just the other way around: the conclusion v has to
match the second conjunct ¥ and ¢ can be any formula. It is important to

Nea . (1.1)

engage in this kind of pattern matching before the application of proof rules.

Example 1.4 Let’s use these rules to prove that p A g, r - ¢ A r is valid.

1.2 Natural deduction 7

We start by writing down the premises; then we leave a gap and write the
conclusion:

PNAgq
T

gAT

The task of constructing the proof is to fill the gap between the premises
and the conclusion by applying a suitable sequence of proof rules. In this
case, we apply Aez to the first premise, giving us ¢. Then we apply Ai to this
g and to the second premise, r, giving us ¢ A r. That’s it! We also usually
number all the lines, and write in the justification for each line, producing
this:

1 pAgq premise
2 r premise
3 q Aeg 1

4 gAr Ai3,2

Demonstrate to yourself that you’ve understood this by trying to show on
your own that (p Aq) Ar, sAt |- gAs is valid. Notice that the ¢ and v can
be instantiated not just to atomic sentences, like p and ¢ in the example we
just gave, but also to compound sentences. Thus, from (p A g) AT we can
deduce p A g by applying Aei, instantiating ¢ to p A ¢ and ¥ to r.

If we applied these proof rules literally, then the proof above would actu-
ally be a tree with root ¢ A r and leaves p A ¢ and r, like this:

PAg
— Aey

q T
gAT

Al

However, we flattened this tree into a linear presentation which necessitates
the use of pointers as seen in lines 3 and 4 above. These pointers allow
us to recreate the actual proof tree. Throughout this text, we will use the
flattened version of presenting proofs. That way you have to concentrate
only on finding a proof, not on how to fit a growing tree onto a sheet of

paper.
If a sequent is valid, there may be many different ways of proving it. So if

you compare your solution to these exercises with those of others, they need
not coincide. The important thing to realise, though, is that any putative

8 Propositional logic

proof can be checked for correctness by checking each individual line, starting
at the top, for the valid application of its proof rule.

The rules of double negation

Intuitively, there is no difference between a formula ¢ and its double negation
——¢, which expresses no more and nothing less than ¢ itself. The sentence
‘It is not true that it does not rain.’

is just a more contrived way of saying
‘It rains.’

Conversely, knowing ‘It rains,” we are free to state this fact in this more
complicated manner if we wish. Thus, we obtain rules of elimination and
introduction for double negation:

¢ ¢

¢ ——¢

(There are rules for single negation on its own, too, which we will see later.)

—i .

Example 1.5 The proof of the sequent p, =—(¢ A r) - =—p A r below uses
most of the proof rules discussed so far:

1 P premise
2 —-—(gAr) premise
3 —==p ——il

4 gnNT ——e 2

5 T Aeg 4

6

——pAT Ai3,5

Example 1.6 We now prove the sequent (p Ag) Ar, s ANt | ¢ A s which
you were invited to prove by yourself in the last section. Please compare the
proof below with your solution:

1 (pAq) Ar premise
2 sAt premise
3 pAgq Nep 1

4 q Neg 3

5 s Nep 2

6 gN\s AN 4,5

1.2 Natural deduction 9

The rule for eliminating implication

There is one rule to introduce — and one to eliminate it. The latter is one
of the best known rules of propositional logic and is often referred to by
its Latin name modus ponens. We will usually call it by its modern name,
implies-elimination (sometimes also referred to as arrow-elimination). This
rule states that, given ¢ and knowing that ¢ implies 9, we may rightfully
conclude ¥. In our calculus, we write this as

b 9oy
v

Let us justify this rule by spelling out instances of some declarative sen-
tences p and ¢. Suppose that

p: It rained.
p — q: If it rained, then the street is wet.

so ¢ is just ‘The street is wet.” Now, if we know that it rained and if we
know that the street is wet in the case that it rained, then we may combine
these two pieces of information to conclude that the street is indeed wet.
Thus, the justification of the —e rule is a mere application of common sense.
Another example from programming is:

p: The value of the program’s input is an integer.
p — ¢q: If the program’s input is an integer, then the program out-
puts a boolean.

Again, we may put all this together to conclude that our program outputs
a boolean value if supplied with an integer input. However, it is important
to realise that the presence of p is absolutely essential for the inference to
happen. For example, our program might well satisfy p — ¢, but if it doesn’t
satisfy p — e.g. if its input is a surname — then we will not be able to derive
q.

As we saw before, the formal parameters ¢ and the ¢ for —e can be
instantiated to any sentence, including compound ones:

1 pAgq premise
2 -pAqg— 71V —p premise
3 rV -p —e2,1

Of course, we may use any of these rules as often as we wish. For example,

10 Propositional logic

given p, p — q and p — (¢ — r), we may infer :

1 p — (g — r) premise
2 p—q premise
3 p premise
4 q—=r —el,3
5 q —e 2,3
6 T —e 4,5

Before turning to implies-introduction, let’s look at a hybrid rule which
has the Latin name modus tollens. It is like the —e rule in that it eliminates
an implication. Suppose that p — g and —¢q are the case. Then, if p holds
we can use —e to conclude that ¢ holds. Thus, we then have that g and
—q hold, which is impossible. Therefore, we may infer that p must be false.
But this can only mean that —p is true. We summarise this reasoning into
the rule modus tollens, or MT for short:!

P9 Y
—¢

Again, let us see an example of this rule in the natural language setting:

MT .

‘If Abraham Lincoln was Ethiopian, then he was African. Abraham Lincoln was
not African; therefore he was not Ethiopian.’

Example 1.7 In the following proof of
p—>(g—r)p rk—q

we use several of the rules introduced so far:

1 p — (g — r) premise
2 p premise
3 -r premise
4 q—r —e 1,2
5 —q MT 4,3

Examples 1.8 Here are two example proofs which combine the rule MT

1 We will be able to derive this rule from other ones later on, but we introduce it here because it
allows us already to do some pretty slick proofs. You may think of this rule as one on a higher
level insofar as it does not mention the lower-level rules upon which it depends.

1.2 Natural deduction 11

with either ——e or ——i:

1 -p — ¢ premise
2 —q premise
3 ——p MT 1,2
4 p -—e 3

proves that the sequent —p — ¢, =q I p is valid; and

1 p — —g Ppremise
2 q premise
3 g ——i 2

4 —p MT 1,3

shows the validity of the sequent p — —q, g F —p.

Note that the order of applying double negation rules and MT is different
in these examples; this order is driven by the structure of the particular
sequent whose validity one is trying to show.

The rule implies introduction

The rule MT made it possible for us to show that p — ¢, 7¢ - —p is valid.
But the validity of the sequent p — g - =g — —p seems just as plausible.
That sequent is, in a certain sense, saying the same thing. Yet, so far we
have no rule which builds implications that do not already occur as premises
in our proofs. The mechanics of such a rule are more involved than what
we have seen so far. So let us proceed with care. Let us suppose that p — ¢
is the case. If we temporarily assume that —g holds, we can use MT to
infer —p. Thus, assuming p — g we can show that —¢ implies —p; but the
latter we express symbolically as g — —p. To summarise, we have found
an argumentation for p — ¢ - ~q — —p:

1 p—q premise
2 -q assumption
3 -p MT 1,2
4 g —-p —i2-3

The box in this proof serves to demarcate the scope of the temporary as-
sumption ~¢g. What we are saying is: let’s make the assumption of —¢. To
do this, we open a box and put —¢g at the top. Then we continue applying
other rules as normal, for example to obtain —p. But this still depends on

12 Propositional logic

the assumption of —gq, so it goes inside the box. Finally, we are ready to
apply —i. It allows us to conclude —-g — —p, but that conclusion no longer
depends on the assumption —¢g. Compare this with saying that ‘If you are
French, then you are European.” The truth of this sentence does not depend
on whether anybody is French or not. Therefore, we write the conclusion
—q — —p outside the box.

This works also as one would expect if we think of p — ¢ as a type of a
procedure. For example, p could say that the procedure expects an integer
value z as input and ¢ might say that the procedure returns a boolean value
y as output. The validity of p — ¢ amounts now to an assume-guarantee
assertion: if the input is an integer, then the output is a boolean. This
assertion can be true about a procedure while that same procedure could
compute strange things or crash in the case that the input is not an integer.
Showing p — ¢ using the rule —1i is now called type checking, an important
topic in the construction of compilers for typed programming languages.

We thus formulate the rule —1i as follows:

It says: in order to prove ¢ — 1), make a temporary assumption of ¢ and
then prove 9. In your proof of 1, you can use ¢ and any of the other
formulas such as premises and provisional conclusions that you have made
so far. Proofs may nest boxes or open new boxes after old ones have been
closed. There are rules about which formulas can be used at which points
in the proof. Generally, we can only use a formula ¢ in a proof at a given
point if that formula occurs prior to that point and if no box which encloses
that occurrence of ¢ has been closed already.

The line immediately following a closed box has to match the pattern of
the conclusion of the rule that uses the bor. For implies-introduction, this
means that we have to continue after the box with ¢ — 1), where ¢ was the
first and 1 the last formula of that box. We will encounter two more proof
rules involving proof boxes and they will require similar pattern matching.

1.2 Natural deduction 13

Example 1.9 Here is another example of a proof using —i:

1 —g — —p premise

2 p assumption
3 ——p =i 2

4 g MT 1,3

5

p— g —i2-4

which verifies the validity of the sequent —q¢ — —p F p — ——q. Notice that
we could apply the rule MT to formulas occurring in or above the box: at
line 4, no box has been closed that would enclose line 1 or 3.

At this point it is instructive to consider the one-line argument

1 p premise

which demonstrates p - p. The rule —i (with conclusion ¢ — 1) does
not prohibit the possibility that ¢ and % coincide. They could both be
instantiated to p. Therefore we may extend the proof above to

1 | P assumption |

2 p—p —il-1

We write F p — p to express that the argumentation for p — p does not
depend on any premises at all.

Definition 1.10 Logical formulas ¢ with valid sequent + ¢ are theorems.

Example 1.11 Here is an example of a theorem whose proof utilises most

14 Propositional logic

of the rules introduced so far:

1 q—T assumption
2 -q— P assumption
3 P assumption
4 —=p -=i3
5 g MT 2,4
6 q ——e
7 r —e 1,6
8 por —i3-7
9 (rg—-p) = {p-—or) —12-8

10 (g—=r)=>((g—p)—=p-—or) —il-9

Therefore the sequent + (¢ = r) = ((-g = —p) — (p — r)) is valid,
showing that (¢ — r) — ((—g = —p) — (p — r)) is another theorem.

Remark 1.12 Indeed, this example indicates that we may transform any
proof of ¢1, ¢a, ..., ¢, F 1 in such a way into a proof of the theorem

Fér—= (g2 = (¢33 = (- = (o = 9)..0)))

by ‘augmenting’ the previous proof with n lines of the rule —i applied to
ény bn_1, --., ¢1 in that order.

The nested boxes in the proof of Example 1.11 reveal a pattern of using
elimination rules first, to deconstruct assumptions we have made, and then
introduction rules to construct our final conclusion. More difficult proofs
may involve several such phases.

Let us dwell on this important topic for a while. How did we come up with
the proof above? Parts of it are determined by the structure of the formulas
we have, while other parts require us to be creative. Consider the logical
structure of (¢ = r) = ((-¢ = —p) — (p — r)) schematically depicted in
Figure 1.1. The formula is overall an implication since — is the root of the
tree in Figure 1.1. But the only way to build an implication is by means
of the rule —i. Thus, we need to state the assumption of that implication
as such (line 1) and have to show its conclusion (line 9). If we managed
to do that, then we know how to end the proof in line 10. In fact, as we
already remarked, this is the only way we could have ended it. So essentially
lines 1, 9 and 10 are completely determined by the structure of the formula;

1.2 Natural deduction 15

Fig. 1.1. Part of the structure of the formula (¢ =) = ((-mg = —p) = (p = 1))
to show how it determines the proof structure.

further, we have reduced the problem to filling the gaps in between lines 1
and 9. But again, the formula in line 9 is an implication, so we have only
one way of showing it: assuming its premise in line 2 and trying to show
its conclusion in line 8; as before, line 9 is obtained by —i. The formula
p — r in line 8 is yet another implication. Therefore, we have to assume p
in line 3 and hope to show r in line 7, then —i produces the desired result
in line 8.

The remaining question now is this: how can we show r, using the three
assumptions in lines 1-37 This, and only this, is the creative part of this
proof. We see the implication ¢ — r in line 1 and know how to get r (using
—ve) if only we had ¢g. So how could we get ¢? Well, lines 2 and 3 almost
look like a pattern for the MT rule, which would give us ——q in line 5; the
latter is quickly changed to ¢ in line 6 via —~—e. However, the pattern for
MT does not match right away, since it requires ——p instead of p. But this
is easily accomplished via ——i in line 4.

The moral of this discussion is that the logical structure of the formula
to be shown tells you a lot about the structure of a possible proof and
it is definitely worth your while to exploit that information in trying to
prove sequents. Before ending this section on the rules for implication,

16 Propositional logic

let’s look at some more examples (this time also involving the rules for
conjunction).

Example 1.13 Using the rule Ai, we can prove the validity of the sequent

pAg—TEDP—(g—T):

1 pAqg—T premise

2 p assumption
3 q assumption
4 pAq A 2,3

5 T —el,4

6 q—r —13-5

7 p—(qg—r) —i2-6

Example 1.14 Using the two elimination rules Ae; and Aeo, we can show
that the ‘converse’ of the sequent above is valid, too:

1 p— (¢ —r) premise

2 pAg assumption
3 P Nep 2

4 q Neg 2

5 qg—rT —e 1,3

6 T —e b, 4

7 pAg—T —12—6

The validity of p — (¢ > r) FpAg—orand pAg—rkp— (¢ —7)
means that these two formulas are equivalent in the sense that we can prove
one from the other. We denote this by

pAg—rd-p—(g—r).

Since there can be only one formula to the right of I, we observe that each
instance of - can only relate two formulas to each other.

Example 1.15 Here is an example of a proof that uses introduction and
elimination rules for conjunction; it shows the validity of the sequent p —

1.2 Natural deduction 17

gbEp AT =g AT

1 p—q premise

2 pAT assumption
3 P Aeq 2

4 T Aeg 2

) q —el,3

6 gAT AL 5,4

7 pAT = gAT —i2—6

The rules for disjunction

The rules for disjunction are different in spirit from those for conjunction.
The case for conjunction was concise and clear: proofs of ¢ A1) are essentially
nothing but a concatenation of a proof of ¢ and a proof of v, plus an
additional line invoking Ai. In the case of disjunctions, however, it turns
out that the introduction of disjunctions is by far easier to grasp than their
elimination. So we begin with the rules Vi; and Viy. From the premise ¢
we can infer that ‘¢ or 1’ holds, for we already know that ¢ holds. Note
that this inference is valid for any choice of 1/. By the same token, we may
conclude ‘¢ or 7’ if we already have 1. Similarly, that inference works for
any choice of ¢. Thus, we arrive at the proof rules

. ¥
¢V ¢V Y

So if p stands for ‘Agassi won a gold medal in 1996.” and ¢ denotes the
sentence ‘Agassi won Wimbledon in 1996.” then p V ¢ is the case because p
is true, regardless of the fact that g is false. Naturally, the constructed dis-
junction depends upon the assumptions needed in establishing its respective
disjunct p or q.

Now let’s consider or-elimination. How can we use a formula of the form

Vig .

¢V 1) in a proof? Again, our guiding principle is to disassemble assumptions
into their basic constituents so that the latter may be used in our argumen-
tation such that they render our desired conclusion. Let us imagine that we
want to show some proposition x by assuming ¢ V 1. Since we don’t know
which of ¢ and 1 is true, we have to give two separate proofs which we need
to combine into one argument:

1. First, we assume ¢ is true and have to come up with a proof of y.
2. Next, we assume 1) is true and need to give a proof of x as well.

18 Propositional logic

3. Given these two proofs, we can infer x from the truth of ¢ Vv 1, since
our case analysis above is exhaustive.

Therefore, we write the rule Ve as follows:

PV

It is saying that: if ¢ V 9 is true and — no matter whether we assume ¢ or
we assume ¢ — we can get a proof of y, then we are entitled to deduce x
anyway. Let’s look at a proof that pV gt gV p is valid:

1 pV q premise

2 p assumption

3 qVp Vig?2

4 q assumption

) qgVp Vii4

6 qVp Vel 2-3,4-5

Here are some points you need to remember about applying the Ve rule.

e For it to be a sound argument we have to make sure that the conclusions
in each of the two cases (the x in the rule) are actually the same formula.

e The work done by the rule Ve is the combining of the arguments of the
two cases into one.

e In each case you may not use the temporary assumption of the other case,
unless it is something that has already been shown before those case boxes
began.

e The invocation of rule Ve in line 6 lists three things: the line in which
the disjunction appears (1), and the location of the two boxes for the two
cases (2 — 3 and 4 — 5).

If we use ¢ V 9 in an argument where it occurs only as an assumption or
a premise, then we are missing a certain amount of information: we know
¢, or 9, but we don’t know which one of the two it is. Thus, we have to
make a solid case for each of the two possibilities ¢ or 1; this resembles the
behaviour of a CASE or IF statement found in most programming languages.

Example 1.16 Here is a more complex example illustrating these points.
We prove that the sequent ¢ - r+pV g — pVr is valid:

1.2 Natural deduction 19

1 q—r premise

2 pVyqg assumption

3 P assumption

4 pVr Vi 3

5 q assumption

6 T —e 1,5

7 pVr Vig 6

8 pVr Ve 2,3—4,5-T7
9 pVg—>pVr —i2-8

Note that the propositions in lines 4, 7 and 8 coincide, so the application of
Ve is legitimate.

We give some more example proofs which use the rules Ve, Vi; and Vis.

Example 1.17 Proving the validity of the sequent (pVq)VrEpV(gVr)is
surprisingly long and seemingly complex. But this is to be expected, since
the elimination rules break (p V ¢) V r up into its atomic constituents p, q
and 7, whereas the introduction rules then built up the formula p V (g V r).

1 (pVq)Vr premise
2 (pVaq) assumption
3 P assumption
4 pV(gVr) Vi3
5 q assumption
6 qVr Vi; 5
7 pV(gVr) Vigb
8 pV(gVr) Ve23-4,5-7
9 T assumption
10 qVvrT Vig 9
11 pV(gVr) Vipl0
12 pV(gVr) Vel 2-89-11

Example 1.18 From boolean algebra, or circuit theory, you may know that
disjunctions distribute over conjunctions. We are now able to prove this in
natural deduction. The following proof:

20 Propositional logic

1 pA(gVrT) premise
2 P Nep 1
3 (gVvr) Nes 1
4 q assumption
5 (pAq) AL2,4
6 (PAg)V(pAT) Vi1 5
7 r assumption
8 (pAT) N2,7
9 (PAQ)V(pAT) Vip8
10 (pAQ)V(pAT) Ve3,4—6,7-9

verifies the validity of the sequent pA (gVr)F (pAq)V (p Ar) and you are
encouraged to show the validity of the ‘converse’ (pAq)V (pAr) EpA(qVrT)
yourself.

A final rule is required in order to allow us to conclude a box with a formula
which has already appeared earlier in the proof. Consider the sequent - p —
(¢ — p), whose validity may be proved as follows:

1 P assumption
2 q assumption
3 P copy 1

4 q—Dp —i2-3

5 p—(g—p) —il-4

The rule ‘copy’ allows us to repeat something that we know already. We
need to do this in this example, because the rule —i requires that we end the
inner box with p. The copy rule entitles us to copy formulas that appeared
before, unless they depend on temporary assumptions whose box has already
been closed. Though a little inelegant, this additional rule is a small price
to pay for the freedom of being able to use premises, or any other ‘visible’
formulas, more than once.

The rules for negation

We have seen the rules ——i and ——e, but we haven’t seen any rules that
introduce or eliminate single negations. These rules involve the notion of
contradiction. This detour is to be expected since our reasoning is concerned

1.2 Natural deduction 21

about the inference, and therefore the preservation, of truth. Hence, there
cannot be a direct way of inferring —¢, given ¢.

Definition 1.19 Contradictions are expressions of the form ¢A—¢ or =pA ¢,
where ¢ is any formula.

Examples of such contradictions are rA—r, (p = ¢)A—(p — ¢) and =(rvs —
qg) A (rV s — q). Contradictions are a very important notion in logic. As
far as truth is concerned, they are all equivalent; that means we should be
able to prove the validity of

“(rVs—=q)AN(rvVs—q)d(p—q) AN—(p—q) (1.2)

since both sides are contradictions. We'll be able to prove this later, when
we have introduced the rules for negation.

Indeed, it’s not just that contradictions can be derived from contradic-
tions; actually, any formula can be derived from a contradiction. This can be
confusing when you first encounter it; why should we endorse the argument
p A —pt g, where

p: The moon is made of green cheese.

q: I like pepperoni on my pizza.

considering that our taste in pizza doesn’t have anything to do with the
constitution of the moon? On the face of it, such an endorsement may
seem absurd. Nevertheless, natural deduction does have this feature that
any formula can be derived from a contradiction and therefore it makes this
argument valid. The reason it takes this stance is that - tells us all the
things we may infer, provided that we can assume the formulas to the left
of it. This process does not care whether such premises make any sense.
This has at least the advantage that we can match F to checks based on
semantic intuitions which we formalise later by using truth tables: if all the
premises compute to ‘true’, then the conclusion must compute ‘true’ as well.
In particular, this is not a constraint in the case that one of the premises is
(always) false.

The fact that L can prove anything is encoded in our calculus by the
proof rule bottom-elimination:

1
— le.

¢

22 Propositional logic

The fact that L itself represents a contradiction is encoded by the proof rule
not-elimination:

Example 1.20 We apply these rules to show that —pV g |- p — ¢ is valid:

1 -pVgq

2 —p premise q premise

3 P assumption||||p assumption
4 1 —e 3,2 q copy 2

5 q le4 p—q —i3—4

6 p—q —i3-5

7 p—q Ve 1,2—6

Notice how, in this example, the proof boxes for Ve are drawn side by side
instead of on top of each other. It doesn’t matter which way you do it.

What about introducing negations? Well, suppose we make an assump-
tion which gets us into a contradictory state of affairs, i.e. gets us L. Then
our assumption cannot be true; so it must be false. This intuition is the
basis for the proof rule —i:

1

-9
Example 1.21 We put these rules in action, demonstrating that the se-
quent p — ¢, p — g F —p is valid:

i

1 p—q premise

2 p — —q premise

3 p assumption
4 q —el,3

) -q —e 2,3

6 L -e 4,5

7

=p -i3—6

1.2 Natural deduction

23

Lines 3-6 contain all the work of the —i rule. Here is a second example,
showing the validity of a sequent, p — —p F —p, with a contradictory formula
as sole premise:

Tt W N =

p— —p premise

p assumption
—p —e 1,2

1 -e 2,3

—p -i2-4

Example 1.22 We prove that the sequent p — (¢ — 7), p, v | —q is
valid, without using the M'T rule:

O N O Ot W N =

p— (g —r) premise

p premise

—r premise

q assumption
q—r —e 1,2

T —e b, 4

1 -e 6,3

—q —-i4-7

Example 1.23 Finally, we return to the argument of Examples 1.1 and 1.2,
which can be coded up by the sequent p A =g — 7, =7, p | ¢ whose validity

we Now prove:

© 00 N O Ot W N =

pA—-q—r premise

—r premise

P premise

—q assumption
pA—q Ai 3,4

T —e 1,5

1 —e 6,2

-gq -14-7

q ——e 8

24 Propositional logic

1.2.2 Derived rules

When describing the proof rule modus tollens (MT), we mentioned that it
is not a primitive rule of natural deduction, but can be derived from some
of the other rules. Here is the derivation of

oY Y _):/) 3 L MT
from —e, —e and —i:
1 ¢ — 1 premise
2 -1 premise
3 ¢ assumption
4 P —el,3
) 1 —e 4,2
6 0 -i3—5

We could now go back through the proofs in this chapter and replace ap-
plications of MT by this combination of —e, —e and —i. However, it is
convenient to think of MT as a shorthand (or a macro).

The same holds for the rule

¢ -
||¢

It can be derived from the rules —i and —e, as follows:

—i.

0] premise

¢ assumption
1 -e 1,2
——¢ —i2-3

BN W N

There are (unboundedly) many such derived rules which we could write
down. However, there is no point in making our calculus fat and unwieldy;
and some purists would say that we should stick to a minimum set of rules,
all of which are independent of each other. We don’t take such a purist
view. Indeed, the two derived rules we now introduce are extremely useful.
You will find that they crop up frequently when doing exercises in natural
deduction, so it is worth giving them names as derived rules. In the case
of the second one, its derivation from the primitive proof rules is not very
obvious.

1.2 Natural deduction 25

The first one has the Latin name reductio ad absurdum. It means ‘reduc-
tion to absurdity’ and we will simply call it proof by contradiction (PBC for
short). The rule says: if from —¢ we obtain a contradiction, then we are
entitled to deduce ¢:

PBC

This rule looks rather similar to —i, except that the negation is in a different
place. This is the clue to how to derive PBC from our basic proof rules.
Suppose we have a proof of L from —¢. By —1i, we can transform this into
a proof of =¢ — 1 and proceed as follows:

1 -¢ — L given

2 —¢ assumption
3 1 —e 1,2

4 ¢ -i2-3

5 0] -—e4

This shows that PBC can be derived from —i, —i, —e and ——e.

The final derived rule we consider in this section is arguably the most use-
ful to use in proofs, because its derivation is rather long and complicated,
so its usage often saves time and effort. It also has a Latin name, tertium
non datur; the English name is the law of the excluded middle, or LEM for
short. It simply says that ¢V —¢ is true: whatever ¢ is, it must be either true
or false; in the latter case, —¢ is true. There is no third possibility (hence
excluded middle): the sequent F ¢V —¢ is valid. Its validity is implicit, for
example, whenever you write an if-statement in a programming language:
‘if B {C1} else {Cy} relies on the fact that B V B is always true (and
that B and —B can never be true at the same time). Here is a proof in
natural deduction that derives the law of the excluded middle from basic

26 Propositional logic

proof rules:

1 —(¢V -¢) assumption
2 ¢ assumption
3 oV o Vip 2

4 1 -ed, 1

5) —i2—4

6 oV o Vig 5

7 1 —-e 6,1

8 -=(¢V) —-11-7

9 ¢V —-—e 8

Example 1.24 Using LEM, we show that p = ¢ —p V ¢ is valid:

1 p—q premise

2 -pVp LEM

3 -p assumption

4 -pVgqg Vi3

5 p assumption

6 q —e 1,5

7 -pVgq Vi 6

8 -pVgqg Ve2,3—4,5-T7

It can be difficult to decide which instance of LEM would benefit the progress
of a proof. Can you re-do the example above with ¢ V —~g as LEM?

1.2.3 Natural deduction in summary

The proof rules for natural deduction are summarised in Figure 1.2. The
explanation of the rules we have given so far in this chapter is declarative;
we have presented each rule and justified it in terms of our intuition about
the logical connectives. However, when you try to use the rules yourself,
you’ll find yourself looking for a more procedural interpretation; what does
a rule do and how do you use it? For example,

e Al says: to prove ¢ A1, you must first prove ¢ and 1 separately and then
use the rule Ai.

1.2 Natural deduction

The basic rules of natural deduction:

introduction elimination
N 0 v ONY AY
dAY ¢ (]
y 6V
X
. ¢ ‘fp -y
i 6 9
1
1 i L
o
- _‘ﬁ(ﬁ e
¢
Some useful derived rules:
=Y ¢
- T MT ——i
—¢
1
PBC LEM
¢ dV g

Fig. 1.2. Natural deduction rules for propositional logic.

27

28 Propositional logic

e Aej says: to prove ¢, try proving ¢ A1 and then use the rule Ae;. Actually,
this doesn’t sound like very good advice because probably proving ¢ A 1
will be harder than proving ¢ alone. However, you might find that you
already have A lying around, so that’s when this rule is useful. Compare
this with the example sequent in Example 1.15.

e Vi; says: to prove ¢ V 9, try proving ¢. Again, in general it is harder
to prove ¢ than it is to prove ¢ V 9, so this will usually be useful only if
you've already managed to prove ¢. For example, if you want to prove
g | pV g, you certainly won’t be able simply to use the rule Vi, but Vis
will work.

e Ve has an excellent procedural interpretation. It says: if you have ¢ V 1,
and you want to prove some Y, then try to prove y from ¢ and from
in turn. (In those subproofs, of course you can use the other prevailing
premises as well.)

e Similarly, —1i says, if you want to prove ¢ — 1, try proving % from ¢ (and
the other prevailing premises).

e —isays: to prove —¢, prove L from ¢ (and the other prevailing premises).

At any stage of a proof, it is permitted to introduce any formula as as-
sumption, by choosing a proof rule that opens a box. As we saw, natu-
ral deduction employs boxes to control the scope of assumptions. When
an assumption is introduced, a box is opened. Discharging assumptions is
achieved by closing a box according to the pattern of its particular proof
rule. It’s useful to make assumptions by opening boxes. But don’t forget
you have to close them in the manner prescribed by their proof rule.

OK, but how do we actually go about constructing a proof?

Given a sequent, you write its premises at the top of your page and its
conclusion at the bottom. Now, you’re trying to fill in the gap, which
involves working simultaneously on the premises (to bring them towards the
conclusion) and on the conclusion (to massage it towards the premises).
Look first at the conclusion. If it is of the form ¢ — 1, then apply ' the
rule —i. This means drawing a box with ¢ at the top and 1 at the bottom.

1 Except in situations such as p — (¢ — —r),p - ¢ — —r where —e produces a simpler proof

1.2 Natural deduction 29

So your proof, which started out like this:

premises

now looks like this:

premises

0] assumption

(2

¢ =Y —i

You still have to find a way of filling in the gap between the ¢ and the).
But you now have an extra formula to work with and you have simplified
the conclusion you are trying to reach.

The proof rule —i is very similar to —i and has the same beneficial effect
on your proof attempt. It gives you an extra premise to work with and
simplifies your conclusion.

At any stage of a proof, several rules are likely to be applicable. Before
applying any of them, list the applicable ones and think about which one is
likely to improve the situation for your proof. You’ll find that —i and —i
most often improve it, so always use them whenever you can. There is no
easy recipe for when to use the other rules; often you have to make judicious
choices.

1.2.4 Provable equivalence
Definition 1.25 Let ¢ and v be formulas of propositional logic. We say
that ¢ and v are provably equivalent iff (we write ‘iff” for ‘if, and only if’ in
the sequel) the sequents ¢ - 9 and 9 - ¢ are valid; that is, there is a proof

30 Propositional logic

of ¥ from ¢ and another one going the other way around. As seen earlier,
we denote that ¢ and ¢ are provably equivalent by ¢ - 4.

Note that, by Remark 1.12, we could just as well have defined ¢ 4+ % to
mean that the sequent F (¢ — ¥) A (¢ — ¢) is valid; it defines the same
concept. Examples of provably equivalent formulas are

~(pAgq) gV -p A(pVg) A —gA-p
p—>qit-g—-p p—q--pVg
pANg—pdErV-ar pAg—rd-p—(¢g—r).

The reader should prove all of these six equivalences in natural deduction.

1.2.5 An aside: proof by contradiction

Sometimes we can’t prove something directly in the sense of taking apart
given assumptions and reasoning with their constituents in a constructive
way. Indeed, the proof system of natural deduction, summarised in Fig-
ure 1.2, specifically allows for indirect proofs that lack a constructive quality:
for example, the rule

¢

ui

PBC

allows us to prove ¢ by showing that —¢ leads to a contradiction. Although
‘classical logicians’ argue that this is valid, logicians of another kind, called
‘intuitionistic logicians,” argue that to prove ¢ you should do it directly,
rather than by arguing merely that —¢ is impossible. The two other rules
on which classical and intuitionistic logicians disagree are

~~¢

PRV LEM 3
Intuitionistic logicians argue that, to show ¢ V —¢, you have to show ¢,
or —¢. If neither of these can be shown, then the putative truth of the dis-
junction has no justification. Intuitionists reject ——e since we have already
used this rule to prove LEM and PBC from rules which the intuitionists do

accept. In the exercises, you are asked to show why the intuitionists also
reject PBC.

——e

Let us look at a proof that shows up this difference, involving real num-
bers. Real numbers are floating point numbers like 23.54721, only some of

1.2 Natural deduction 31

them might actually be infinitely long such as 23.138592748500123950734 . . .,
with no periodic behaviour after the decimal point.

Given a positive real number a and a natural (whole) number b, we can
calculate a®: it is just a times itself, b times, so 22 =2-2 =4,23 =2.2.2 =38
and so on. When b is a real number, we can also define a®, as follows. We
say that a® e and, for a non-zero rational number k/n, where n # 0, we
let ak/™ & {/ak where {/z is the real number y such that ™ = z. From
real analysis one knows that any real number b can be approximated by a
sequence of rational numbers kg /ng, k1/n1, ... Then we define a® to be the
real number approximated by the sequence ako/mo gki/ny (In calculus,
one can show that this ‘limit’ a® is unique and independent of the choice of
approximating sequence.) Also, one calls a real number irrational if it can’t
be written in the form k/n for some integers k and n # 0. In the exercises
you will be asked to find a semi-formal proof showing that /2 is irrational.

We now present a proof of a fact about real numbers in the informal style
used by mathematicians (this proof can be formalised as a natural deduction
proof in the logic presented in Chapter 2). The fact we prove is:

Theorem 1.26 There ezist irrational numbers a and b such that a® is ra-
tional.

PROOF: We choose b to be v/2 and proceed by a case analysis. Either b is
irrational, or it is not. (Thus, our proof uses Ve on an instance of LEM.)

(i). Assume that b’ is rational. Then this proof is easy since we can
choose irrational numbers ¢ and b to be v/2 and see that a® is just Bb
which was assumed to be rational.

(ii). Assume that b° is irrational. Then we change our strategy slightly

and choose a to be \/iﬁ Clearly, a is irrational by the assumption
of case (ii). But we know that b is irrational (this was known by the
ancient Greeks; see the proof outline in the exercises). So a and b are
both irrational numbers and

V2 :
=2 = VAV Z(va) =2
is rational, where we used the law (z¥)? = z(¥'2).

Since the two cases above are exhaustive (either b is irrational, or it isn’t)
we have proven the theorem. O

This proof is perfectly legitimate and mathematicians use arguments like

32 Propositional logic

that all the time. The exhaustive nature of the case analysis above rests on
the use of the rule LEM, which we use to prove that either b is rational or it
isnot. Yet, there is something puzzling about it. Surely, we have secured the
fact that there are irrational numbers a and b such that a® is rational, but
are we in a position to specify an actual pair of such numbers satisfying this
theorem? More precisely, which of the pairs (a,b) above fulfils the assertion
of the theorem, the pair (v/2,1/2), or the pair (\/5‘/5, v2)? Our proof tells
us nothing about which of them is the right choice; it just says that at least
one of them works.

Thus, the intuitionists favour a calculus containing the introduction and
elimination rules shown in Figure 1.2 and excluding the rule ——e and the
derived rules. Intuitionistic logic turns out to have some specialised appli-
cations in computer science, such as modelling type-inference systems used
in compilers or the staged execution of program code; but in this text we
stick to the full so-called classical logic which includes all the rules.

1.3 Propositional logic as a formal language

In the previous section we learned about propositional atoms and how they
can be used to build more complex logical formulas. We were deliberately
informal about that, for our main focus was on trying to understand the
precise mechanics of the natural deduction rules. However, it should have
been clear that the rules we stated are valid for any formulas we can form, as
long as they match the pattern required by the respective rule. For example,
the application of the proof rule —e in

1 p — q premise
2 P premise
3 q —el,2

is equally valid if we substitute p with p V —r and ¢ with r — p:

1 pV-r — (r —p) premise
2 pV-r premise
3 =D —e 1,2

This is why we expressed such rules as schemes with Greek symbols stand-

ing for generic formulas. Yet, it is time that we make precise the notion of

bl

‘any formula we may form.” Because this text concerns various logics, we

1.8 Propositional logic as a formal language 33

will introduce in (1.3) an easy formalism for specifying well-formed formulas.
In general, we need an unbounded supply of propositional atoms p,q,r, ...,
or pi,pP2,Ps, ... You should not be too worried about the need for infinitely
many such symbols. Although we may only need finitely many of these
propositions to describe a property of a computer program successfully, we
cannot specify how many such atomic propositions we will need in any con-
crete situation, so having infinitely many symbols at our disposal is a cheap
way out. This can be compared with the potentially infinite nature of En-
glish: the number of grammatically correct English sentences is infinite, but
finitely many such sentences will do in whatever situation you might be in
(writing a book, attending a lecture, listening to the radio, having a dinner
date, ...).

Formulas in our propositional logic should certainly be strings over the
alphabet {p,q,r,...} U{p1,p2,p3,... } U{—,A,V,—,(,)}. This is a trivial
observation and as such is not good enough for what we are trying to capture.
For example, the string (—)() Vpg — is a word over that alphabet, yet, it does
not seem to make a lot of sense as far as propositional logic is concerned.
So what we have to define are those strings which we want to call formulas.
We call such formulas well-formed.

Definition 1.27 The well-formed formulas of propositional logic are those
which we obtain by using the construction rules below, and only those,
finitely many times:

atom: Every propositional atom p, g, r,... and p1,p2,p3, . .. is a well-formed
formula.

-z If ¢ is a well-formed formula, then so is (—¢).

Az If ¢ and 9 are well-formed formulas, then so is (¢ A 7).

V: If ¢ and ¢ are well-formed formulas, then so is (¢ V 9).

—: If ¢ and 9 are well-formed formulas, then so is (¢ —).

It is most crucial to realize that this definition is the one a computer would
expect and that we did not make use of the binding priorities agreed upon
in the previous section.

Convention. In this section we act as if we are a rigorous computer and
we call formulas well-formed iff they can be deduced to be so using the
definition above.

Further, note that the condition ‘and only those’ in the definition above
rules out the possibility of any other means of establishing that formulas are
well-formed. Inductive definitions, like the one of well-formed propositional

34 Propositional logic

logic formulas above, are so frequent that they are often given by a defining
grammar in Backus Naur form (BNF). In that form, the above definition
reads more compactly as

pu=p|(=9) | (6AP)|(pV)| (d—9) (1.3)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

So how can we show that a string is a well-formed formula? For example,
how do we answer this for ¢ being

(((=p) Ag) = (pA(qV (-r)))) 7 (1.4)

Such reasoning is greatly facilitated by the fact that the grammar in (1.3)
satisfies the inversion principle, which means that we can invert the process
of building formulas: although the grammar rules allow for five different ways
of constructing more complex formulas — the five clauses in (1.3) — there
is always a unique clause which was used last. For the formula above, this
last operation was an application of the fifth clause, for ¢ is an implication
with the premise ((—p) A ¢) and conclusion (p A (¢ V (-7))). By applying
the inversion principle to the premise, we see that it is a conjunction of
(—p) and q. The former has been constructed using the second clause and
is well-formed since p is well-formed by the first clause in (1.3). The latter
is well-formed for the same reason. Similarly, we can apply the inversion
principle to the conclusion (p A (¢ V (—r))), inferring that it is indeed well-
formed. In summary, the formula in (1.4) is well-formed.

For us humans, dealing with brackets is a tedious task. The reason we
need them is that formulas really have a tree-like structure, although we
prefer to represent them in a linear way. In Figure 1.3 you can see the parse
tree! of the well-formed formula ¢ in (1.4). Note how brackets become
unnecessary in this parse tree since the paths and the branching structure
of this tree remove any possible ambiguity in interpreting ¢. In representing
¢ as a linear string, the branching structure of the tree is retained by the
insertion of brackets as done in the definition of well-formed formulas.

So how would you go about showing that a string of symbols 9 is not well-
formed? At first sight, this is a bit trickier since we somehow have to make
sure that 1 could not have been obtained by any sequence of construction
rules. Let us look at the formula (=)() V pg — from above. We can decide
this matter by being very observant. The string (—)() V pg — contains —)

1 We will use this name without explaining it any further and are confident that you will under-
stand its meaning through the examples.

1.8 Propositional logic as a formal language 35

Fig. 1.3. A parse tree representing a well-formed formula.

and — cannot be the rightmost symbol of a well-formed formula (check all
the rules to verify this claim!); but the only time we can put a ‘)’ to the right
of something is if that something is a well-formed formula (again, check all
the rules to see that this is so). Thus, (=)() V pg — is not well-formed.

Probably the easiest way to verify whether some formula ¢ is well-formed
is by trying to draw its parse tree. In this way, you can verify that the
formula in (1.4) is well-formed. In Figure 1.3 we see that its parse tree has
— as its root, expressing that the formula is, at its top level, an implication.
Using the grammar clause for implication, it suffices to show that the left
and right subtrees of this root node are well-formed. That is, we proceed
in a top-down fashion and, in this case, successfully. Note that the parse
trees of well-formed formulas have either an atom as root (and then this is
all there is in the tree), or the root contains =, V, A or —. In the case of -
there is only one subtree coming out of the root. In the cases A, V or — we
must have two subtrees, each of which must behave as just described; this
is another example of an inductive definition.

Thinking in terms of trees will help you understand standard notions
in logic, for example, the concept of a subformula. Given the well-formed
formula ¢ above, its subformulas are just the ones that correspond to the
subtrees of its parse tree in Figure 1.3. So we can list all its leaves p, ¢
(occurring twice), and r, then (—p) and ((—p) A ¢) on the left subtree of —

36 Propositional logic

and (—r), (¢V (-r)) and ((p A (¢ V (—=p)))) on the right subtree of —. The
whole tree is a subtree of itself as well. So we can list all nine subformulas
of ¢ as

Let us consider the tree in Figure 1.4. Why does it represent a well-formed
formula? All its leaves are propositional atoms (p twice, ¢ and r), all branch-
ing nodes are logical connectives (— twice, A, V and —) and the numbers
of subtrees are correct in all those cases (one subtree for a — node and two
subtrees for all other non-leaf nodes). How do we obtain the linear represen-
tation of this formula? If we ignore brackets, then we are seeking nothing but
the in-order representation of this tree as a list'. The resulting well-formed
formula is ((=(p V (¢ — (-p)))) AT).

The tree in Figure 1.21 on page 85, however, does not represent a well-
formed formula for two reasons. First, the leaf A (and a similar argument
applies to the leaf), the left subtree of the node —, is not a propositional
atom. This could be fixed by saying that we decided to leave the left and
right subtree of that node unspecified and that we are willing to provide
those now. However, the second reason is fatal. The p node is not a leaf
since it has a subtree, the node —. This cannot make sense if we think of
the entire tree as some logical formula. So this tree does not represent a
well-formed logical formula.

1 The other common ways of flattening trees to lists are preordering and postordering. See any
text on binary trees as data structures for further details.

1.4 Semantics of propositional logic 37

AN\

()
())
&)

Fig. 1.4. Given: a tree; wanted: its linear representation as a logical formula.

1.4 Semantics of propositional logic
1.4.1 The meaning of logical connectives

In the second section of this chapter, we developed a calculus of reasoning
which could verify that sequents of the form ¢1,¢o,..., ¢, F ¥ are valid,
which means: from the premises ¢1, ¢o, ..., ¢, we may conclude 1.

In this section we give another account of this relationship between the
premises ¢1, @2, ... , ¢, and the conclusion 2. To contrast with the sequent
above, we define a new relationship, written

¢1’¢2""1¢nt:¢'

This account is based on looking at the ‘truth values’ of the atomic formu-
las in the premises and the conclusion; and at how the logical connectives
manipulate these truth values. What is the truth value of a declarative sen-
tence, like sentence (3) ‘Every even natural number > 2 is the sum of two
prime numbers’? Well, declarative sentences express a fact about the real
world, the physical world we live in, or more abstract ones such as computer
models, or our thoughts and feelings. Such factual statements either match
reality (they are true), or they don’t (they are false).

If we combine declarative sentences p and ¢ with a logical connective, say

38 Propositional logic

Fig. 1.5. The truth table for conjunction, the logical connective A.

A, then the truth value of pAgq is determined by three things: the truth value
of p, the truth value of ¢ and the meaning of A. The meaning of A is captured
by the observation that p A q is true iff p and g are both true; otherwise pAgq
is false. Thus, as far as A is concerned, it needs only to know whether p and
q are true, it does not need to know what p and g are actually saying about
the world out there. This is also the case for all the other logical connectives
and is the reason why we can compute the truth value of a formula just by
knowing the truth values of the atomic propositions occurring in it.

Definition 1.28 1. The set of truth values contains two elements T and
F, where T represents ‘true’ and F represents ‘false’.
2. A waluation or model of a formula ¢ is an assignment of each propo-
sitional atom in ¢ to a truth value.

Example 1.29 The map which assigns T to ¢ and F to p is a valuation for
pV —q. Please list the remaining three valuations for this formula.

We can think of the meaning of A as a function of two arguments; each
argument is a truth value and the result is again such a truth value. We
specify this function in a table, called the truth table for conjunction, which
you can see in Figure 1.5. In the first column, labelled ¢, we list all possible
truth values of ¢. Actually we list them twice since we also have to deal
with another formula v, so the possible number of combinations of truth
values for ¢ and 9 equals 2 - 2 = 4. Notice that the four pairs of ¢ and 1
values in the first two columns really exhaust all those possibilities (TT, TF,
FT and FF). In the third column, we list the result of ¢ A1 according to the
truth values of ¢ and 1. So in the first line, where ¢ and 1 have value T,
the result is T again. In all other lines, the result is F since at least one of
the propositions ¢ or 1 has value F.

In Figure 1.6 you find the truth tables for all logical connectives of propo-
sitional logic. Note that — turns T into F and vice versa. Disjunction is
the mirror image of conjunction if we swap T and F, namely, a disjunction

1.4 Semantics of propositional logic 39

¢l Y| oAy ¢l Y| oV
TIT| T TIT| T
T|F| F T|F| T
FlT| F FlT| T
F|F| F F|F| F
|y |9 ¢ | ¢ LI
T{T| T T| F T F
T|F| F F| T
FlT| T
FIF| T

Fig. 1.6. The truth tables for all the logical connectives discussed so far.

returns F iff both arguments are equal to F, otherwise (= at least one of the
arguments equals T) it returns T. The behaviour of implication is not quite
as intuitive. Think of the meaning of — as checking whether truth is being
preserved. Clearly, this is not the case when we have T — F, since we infer
something that is false from something that is true. So the second entry in
the column ¢ — 1) equals F. On the other hand, T — T obviously preserves
truth, but so do the cases F — T and F — F, because there is no truth to be
preserved in the first place as the assumption of the implication is false.

If you feel slightly uncomfortable with the semantics (= the meaning) of
—, then it might be good to think of ¢ — 1 as an abbreviation of the
formula —¢ V ¥ as far as meaning is concerned; these two formulas are very
different syntactically and natural deduction treats them differently as well.
But using the truth tables for = and V you can check that ¢ — 1) evaluates
to T iff =¢V 9 does so. This means that ¢ — 9 and —¢ V¢ are semantically
equivalent; more on that in Section 1.5.

Given a formula ¢ which contains the propositional atoms p1,po, ..., Pn,
we can construct a truth table for ¢, at least in principle. The caveat is that
this truth table has 2" many lines, each line listing a possible combination
of truth values for p1,po,...,p,; and for large n this task is impossible to
complete. Our aim is thus to compute the value of ¢ for each of these 2"
cases for moderately small values of n. Let us consider the example ¢ in
Figure 1.3. Tt involves three propositional atoms (n = 3) so we have 23 = 8
cases to consider.

We illustrate how things go for one particular case, namely for the val-
uation in which ¢ evaluates to F; and p and r evaluate to T. What does
“pAg — pA(qV -r) evaluate to? Well, the beauty of our semantics is
that it is compositional. If we know the meaning of the subformulas —p A ¢

40 Propositional logic

AN
() O}
cio! éF

Fig. 1.7. The evaluation of a logical formula under a given valuation.

and p A (g V —r), then we just have to look up the appropriate line of the
— truth table to find the value of ¢, for ¢ is an implication of these two
subformulas. Therefore, we can do the calculation by traversing the parse
tree of ¢ in a bottom-up fashion. We know what its leaves evaluate to since
we stated what the atoms p, ¢ and r evaluated to. Because the meaning of p
is T, we see that —p computes to F. Now ¢ is assumed to represent F and the
conjunction of F and F is F. Thus, the left subtree of the node — evaluates
to F. As for the right subtree of —, r stands for T so —r computes to F and ¢
means F, so the disjunction of F and F is still F. We have to take that result,
F, and compute its conjunction with the meaning of p which is T. Since the
conjunction of T and F is F, we get F as the meaning of the right subtree of
—. Finally, to evaluate the meaning of ¢, we compute F — F which is T.
Figure 1.7 shows how the truth values propagate upwards to reach the root
whose associated truth value is the truth value of ¢ given the meanings of
p, g and r above.

It should now be quite clear how to build a truth table for more complex
formulas. Figure 1.8 contains a truth table for the formula (p — —¢q) — (¢V
—p). To be more precise, the first two columns list all possible combinations
of values for p and ¢q. The next two columns compute the corresponding
values for —p and —¢q. Using these four columns, we may compute the
column for p — —¢g and ¢ V =p. To do so we think of the first and fourth
columns as the data for the — truth table and compute the column of

1.4 Semantics of propositional logic 41

ple|l-p|-g|p=>—qlqgVvp| =g = (¢Vp)
TIT| F | F F T T
T|F F T T F F
F|T| T F T T T
FIF|T|T T T T

Fig. 1.8. An example of a truth table for a more complex logical formula.

p — —gq accordingly. For example, in the first line p is T and —q is F so
the entry for p -+ —¢ is T — F = F by definition of the meaning of —. In
this fashion, we can fill out the rest of the fifth column. Column 6 works
similarly, only we now need to look up the truth table for V with columns
2 and 3 as input. Finally, column 7 results from applying the truth table of
— to columns 5 and 6.

1.4.2 Mathematical induction

Here is a little anecdote about the German mathematician Gauss who, as a
pupil at age 8, did not pay attention in class (can you imagine?), with the
result that his teacher made him sum up all natural numbers from 1 to 100.
The story has it that Gauss came up with the correct answer 5050 within
seconds, which infuriated his teacher. How did Gauss do it? Well, possibly
he knew that

: 1
14+2+43+4+n=—""°) (7;+) (1.5)

for all natural numbers n.! Thus, taking n = 100, Gauss could easily calcu-
late:

100 - 101
1+2+3+4+---+100:T:5050.

Mathematical induction allows us to prove equations, such as the one
in (1.5), for arbitrary n. More generally, it allows us to show that every
natural number satisfies a certain property. Suppose we have a property
M which we think is true of all natural numbers. We write M (5) to say
that the property is true of 5, etc. Suppose that we know the following two
things about the property M:

1 There is another way of finding the sum 14 2+ - - + 100, which works like this: write the sum
backwards, as 100 + 99 + --- + 1. Now add the forwards and backwards versions, obtaining
101 + 101 + - -- + 101 (100 times), which is 10100. Since we added the sum to itself, we now
divide by two to get the answer 5050. Gauss probably used this method; but the method
of mathematical induction that we explore in this section is much more powerful and can be
applied in a wide variety of situations.

42 Propositional logic

S >
P o
& & A 7
w > D
S 5 ¥ <
%,be > /Q f\/@
N »
W S ¢ 5%
& & & X'\,\
S » Q) &
§‘\’Q g\\/@ §&\ g\/\ §v\\/\‘h
© @ 3 @& ©
Q Q Q Q Q
& &) R S
Q& Q & Q Q2
O
1 2 3 n n+1

Fig. 1.9. How the principle of mathematical induction works. By proving just two
facts, M (1) and M(n) - M(n+ 1) for a formal (and unconstrained) parameter n,
we are able to deduce M (k) for each natural number k.

1. Base case: The natural number 1 has property M, i.e. we have a
proof of M(1).

2. Inductive step: If n is a natural number which we assume to have
property M (n), then we can show that n+ 1 has property M (n+ 1);
i.e. we have a proof of M (n) - M(n+ 1).

Definition 1.30 The principle of mathematical induction says that, on the
grounds of these two pieces of information above, every natural number n
has property M (n). The assumption of M (n) in the inductive step is called
the induction hypothesis.

Why does this principle make sense? Well, take any natural number k.
If k equals 1, then k has property M (1) using the base case and so we are
done. Otherwise, we can use the inductive step, applied to n = 1, to infer
that 2 =1+ 1 has property M(2). We can do that using —e, for we know
that 1 has the property in question. Now we use that same inductive step
on n = 2 to infer that 3 has property M (3) and we repeat this until we reach
n = k (see Figure 1.9). Therefore, we should have no objections about using
the principle of mathematical induction for natural numbers.

Returning to Gauss’ example we claim that the sum 1+2+3+44---+n
equals n - (n + 1)/2 for all natural numbers n.

1.4 Semantics of propositional logic 43

Theorem 1.31 The sum 1+2+3+4+---+n equals n-(n+1)/2 for all
natural numbers n.

PRrROOF: We use mathematical induction. In order to reveal the fine structure
of our proof we write LHS,, for the expression 1 4+2+3+4+--- 4+ n and
RHS,, for n- (n+ 1)/2. Thus, we need to show LHS,, = RHS,, for all n > 1.

Base case: If n equals 1, then LHS; is just 1 (there is only one summand),
which happens to equal RHS; =1- (1 +1)/2.

Inductive step: Let us assume that LHS,, = RHS,. Recall that this
assumption is called the induction hypothesis; it is the driving force of our
argument. We need to show LHS,,;; = RHS,;1, i.e. that the longer sum
142+3+4+---4+(n+1)equals (n+1):((n+1)+1)/2. The key
observation is that the sum 1 +2+3+4+---+ (n+ 1) is nothing but the
sum (14+2+3+4+---4+n)+(n+1) of two summands, where the first one is
the sum of our induction hypothesis. The latter says that 1+2+34+44---+n
equals n - (n + 1)/2, and we are certainly entitled to substitute equals for
equals in our reasoning. Thus, we compute

LHSn+1
= 14243444+ (n+1)
= LHS, + (n+1) regrouping the sum
= RHS, + (n+1) by our induction hypothesis
=m0 4 (n 4 1)

n'(’?'l) 4 2'(";1) arithmetic

% arithmetic

w arithmetic

= RHSn+1 .

Since we successfully showed the base case and the inductive step, we can
use mathematical induction to infer that all natural numbers n have the
property stated in the theorem above. O

Actually, there are numerous variations of this principle. For example, we
can think of a version in which the base case is n = 0, which would then
cover all natural numbers including 0. Some statements hold only for all
natural numbers, say, greater than 3. So you would have to deal with a
base case 4, but keep the version of the inductive step (see the exercises for
such an example). The use of mathematical induction typically suceeds on

44 Propositional logic

properties M (n) that involve inductive definitions (e.g. the definition of k!
with [> 0). Sentence (3) on page 2 suggests there may be true properties
M(n) for which mathematical induction won’t work.

Course-of-values induction. There is a variant of mathematical induc-
tion in which the induction hypothesis for proving M(n + 1) is not just
M(n), but the conjunction M(1) A M(2) A--- A M(n). In that variant,
called course-of-values induction, there doesn’t have to be an explicit base
case at all — everything can be done in the inductive step.

How can this work without a base case? The answer is that the base
case is implicitly included in the inductive step. Consider the case n = 3:
the inductive-step instance is M (1) A M(2) A M(3) — M(4). Now consider
n = 1: the inductive-step instance is M (1) — M(2). What about the case
when n equals 07 In this case, there are zero formulas on the left of the —,
so we have to prove M (1) from nothing at all. The inductive-step instance
is simply the obligation to show M(1). You might find it useful to modify
Figure 1.9 for course-of-values induction.

Having said that the base case is implicit in course-of-values induction,
it frequently turns out that it still demands special attention when you get
inside trying to prove the inductive case. We will see precisely this in the
two applications of course-of-values induction in the following pages.

In computer science, we often deal with finite structures of some kind,
data structures, programs, files etc. Often we need to show that every
instance of such a structure has a certain property. For example, the well-
formed formulas of Definition 1.27 have the property that the number of ‘(’
brackets in a particular formula equals its number of ‘)’ brackets. We can
use mathematical induction on the domain of natural numbers to prove this.
In order to succeed, we somehow need to connect well-formed formulas to
natural numbers.

Definition 1.32 Given a well-formed formula ¢, we define its height to be
1 plus the length of the longest path of its parse tree.

For example, consider the well-formed formulas in Figures 1.3, 1.4 and 1.10.
Their heights are 5, 6 and 5, respectively. In Figure 1.3, the longest path
goes from — to A to V to — to r, a path of length 4, so the height is 4+1 = 5.
Note that the height of atoms is 1 +0 = 1. Since every well-formed formula
has finite height, we can show statements about all well-formed formulas
by mathematical induction on their height. This trick is most often called
structural induction, an important reasoning technique in computer science.

1.4 Semantics of propositional logic 45

Fig. 1.10. A parse tree with height 5.

Using the notion of the height of a parse tree, we realise that structural
induction is just a special case of course-of-values induction.

Theorem 1.33 For every well-formed propositional logic formula, the num-
ber of left brackets is equal to the number of right brackets.

PRrROOF: We proceed by course-of-values induction on the height of well-
formed formulas ¢. Let M (n) mean ‘All formulas of height n have the same
number of left and right brackets.” We assume M (k) for each k£ < n and try
to prove M (n). Take a formula ¢ of height n.

e Base case: Then n = 1. This means that ¢ is just a propositional atom.
So there are no left or right brackets, 0 equals 0.

e Course-of-values inductive step: Then n > 1 and so the root of the
parse tree of ¢ must be -, —, V or A, for ¢ is well-formed. We assume
that it is —, the other three cases are argued in a similar way. Then ¢
equals (¢1 — ¢2) for some well-formed formulas ¢; and ¢ (of course, they
are just the left, respectively right, linear representations of the root’s two
subtrees). It is clear that the heights of ¢; and ¢9 are strictly smaller than
n. Using the induction hypothesis, we therefore conclude that ¢; has the
same number of left and right brackets and that the same is true for ¢,.
But in (¢1 — ¢2) we added just two more brackets, one ‘(" and one)’.
Thus, the number of occurrences of ‘(" and ‘)’ in ¢ is the same.

46 Propositional logic

O

The formula (p — (¢ A —r)) illustrates why we could not prove the above

directly with mathematical induction on the height of formulas. While this

formula has height 4, its two subtrees have heights 1 and 3, respectively.

Thus, an induction hypothesis for height 3 would have worked for the right
subtree but failed for the left subtree.

1.4.3 Soundness of propositional logic

The natural deduction rules make it possible for us to develop rigorous
threads of argumentation, in the course of which we arrive at a conclusion
7 assuming certain other propositions ¢1, ¢o, ..., d,. In that case, we said
that the sequent ¢1, o, ..., ¢, F 9 is valid. Do we have any evidence that
these rules are all correct in the sense that valid sequents all ‘preserve truth’
computed by our truth-table semantics?

Given a proof of ¢1, ¢, ..., ¢, F 9, is it conceivable that there is a valu-
ation in which % above is false although all propositions ¢1, ¢a,..., ¢, are
true? Fortunately, this is not the case and in this subsection we demonstrate
why this is so. Let us suppose that some proof in our natural deduction cal-
culus has established that the sequent ¢1, ¢2,..., ¢, F 9 is valid. We need
to show: for all valuations in which all propositions ¢1, ¢9, ..., ¢, evaluate
to T, ¥ evaluates to T as well.

Definition 1.34 If, for all valuations in which all ¢4, ¢o, . .., ¢, evaluate to
T, 9 evaluates to T as well, we say that

¢17¢27"'a¢n'=¢

holds and call E the semantic entailment relation.
Let us look at some examples of this notion.

1. Does p A ¢ E p hold? Well, we have to inspect all assignments of
truth values to p and ¢; there are four of these. Whenever such an
assignment computes T for p A ¢ we need to make sure that p is true
as well. But p A ¢ computes T only if p and ¢ are true, so pAgFE pis
indeed the case.

2. What about the relationship p V ¢ F p? There are three assignments
for which pV g computes T, so p would have to be true for all of these.
However, if we assign T to g and F to p, then p V ¢ computes T, but
p is false. Thus, p V q E p does not hold.

1.4 Semantics of propositional logic 47

3. What if we modify the above to =q,pV g F p? Notice that we have to
be concerned only about valuations in which =g and pV g evaluate to
T. This forces ¢ to be false, which in turn forces p to be true. Hence
—¢q,pV q FE p is the case.

4. Note that p F ¢V —q holds, despite the fact that no atomic proposition
on the right of F occurs on the left of F.

From the discussion above we realize that a soundness argument has to show:
if ¢1,¢a,..., ¢y 1 is valid, then ¢1, po, ..., ¢, E 9 holds.

Theorem 1.35 (Soundness) Let ¢1, ¢o, ..., dn and ¢ be propositional logic
formulas. If ¢1,¢2,...,dn F ¥ is valid, then ¢1, po, ..., ¢y E P holds.

PROOF: Since ¢1, ¢2, - .., ¢, - 1 is valid we know there is a proof of 9 from
the premises ¢1,¢o,...,¢,. We now do a pretty slick thing, namely, we
reason by mathematical induction on the length of this proof! The length of
a proof is just the number of lines it involves. So let us be perfectly clear
about what it is we mean to show. We intend to show the assertion M (k):

‘For all sequents ¢1,¢a,...,¢n F 1 (n > 0) which have a proof of length k, it is the
case that ¢1, @2, ..., 0, F Y holds.’

by course-of-values induction on the natural number k. This idea requires
some work, though. The sequent p A ¢ — 7 F p — (¢ — r) has a proof

1 pAqg—T premise

2 p assumption
3 q assumption
4 pAgq A2, 3

5 r —el,4

6 q—r —i3-5

7 p—>(g—r) —i2-6

but if we remove the last line or several of the last lines, we no longer
have a proof as the outermost box does not get closed. We get a complete
proof, though, by removing the last line and re-writing the assumption of
the outermost box as a premise:

48 Propositional logic

1 pAqg—r premise

2 p premise

3 q assumption
4 pAgq A 2,3

5 r —el,4

6 qg—r —13-5

This is a proof of the sequent pAg — 7, pF p — r. The induction hypothesis
then ensures that p Ag — r, p F p — r holds. But then we can also reason
that p Agq — rF p — (¢ — r) holds as well — why?

Let’s proceed with our proof by induction. We assume M (k') for each
k' < k and we try to prove M (k).

Base case: a one-line proof. If the proof has length 1 (k = 1), then it
must be of the form

1 ¢ premise

since all other rules involve more than one line. This is the case whenn =1
and ¢ and 9 equal ¢, i.e. we are dealing with the sequent ¢ F ¢. Of course,
since ¢ evaluates to T so does ¢. Thus, ¢ F ¢ holds as claimed.

Course-of-values inductive step: Let us assume that the proof of the
sequent ¢1,¢a,...,¢, F 1 has length k£ and that the statement we want
to prove is true for all numbers less than k. Our proof has the following
structure:

1 ¢1 premise
¢2 premise

n ¢, premise

k 1 justification

There are two things we don’t know at this point. First, what is happening
in between those dots? Second, what was the last rule applied, i.e. what is
the justification of the last line? The first uncertainty is of no concern; this
is where mathematical induction demonstrates its power. The second lack
of knowledge is where all the work sits. In this generality, there is simply

1.4 Semantics of propositional logic 49

no way of knowing which rule was applied last, so we need to consider all
such rules in turn.

1. Let us suppose that this last rule is Ai. Then we know that 1 is of the
form 11 A1) and the justification in line k refers to two lines further
up which have 1, respectively 1o, as their conclusions. Suppose
that these lines are ki and ky. Since ki and k9 are smaller than
k, we see that there exist proofs of the sequents ¢1, ¢a,...,dn F 91
and ¢1, ¢2, ..., ¢n F P2 with length less than k — just take the first
k1, respectively ko, lines of our original proof. Using the induction
hypothesis, we conclude that ¢, ¢o,..., ¢, F 11 and ¢1, o, ..., ¢ F
1p9 holds. But these two relations imply that ¢1, ¢a, ..., ¢, E 1 Ao
holds as well — why?

2. If 9 has been shown using the rule Ve, then we must have proved,
assumed or given as a premise some formula 7; V 72 in some line &’
with &' < k, which was referred to via Ve in the justification of line k.
Thus, we have a shorter proof of the sequent ¢1,da,...,dp Fn1 V1o
within that proof, obtained by turning all assumptions of boxes that
are open at line k¥’ into premises. In a similar way we obtain proofs
of the sequents ¢1, po,...,¢n,n F ¥ and ¢1, ¢2,..., ¢n,m2 - 9 from
the case analysis of Ve. By our induction hypothesis, we conclude
that the relations ¢1, ¢2,...,¢n E 1 V2, ¢1,02,...,¢n,m F 9 and
¢1,h2,...,¢dn,n2 E 9 hold. But together these three relations then
force that ¢1, ¢o, ..., ¢, F 1 holds as well — why?

3. You can guess by now that the rest of the argument checks each
possible proof rule in turn and ultimately boils down to verifying that
our natural deduction rules behave semantically in the same way as
their corresponding truth tables evaluate. We leave the details as an
exercise.

O
The soundness of propositional logic is useful in ensuring the non-ezistence of
a proof for a given sequent. Let’s say you try to prove that ¢1, ¢o, ..., ¢a F 1
is valid, but that your best efforts won’t succeed. How could you be sure
that no such proof can be found? After all, it might just be that you can’t
find a proof even though there is one. It suffices to find a valuation in which
¢; evaluate to T whereas 1/ evaluates to F. Then, by definition of F, we don’t
have ¢1, ¢2, ..., ¢2 F 1. Using soundness, this means that ¢1, ¢o,...,da 1
cannot be valid. Therefore, this sequent does not have a proof. You will
practice this method in the exercises.

50 Propositional logic

1.4.4 Completeness of propositional logic

In this subsection, we hope to convince you that the natural deduction rules
of propositional logic are complete: whenever ¢1, ¢2, ..., ¢, F 1 holds, then
there exists a natural deduction proof for the sequent ¢1,¢2,...,dn = .
Combined with the soundness result of the previous subsection, we then
obtain

B1y by b b is valid iff 1, o, ..., dn E 9 holds.

This gives you a certain freedom regarding which method you prefer to use.
Often it is much easier to show one of these two relationships (although
neither of the two is universally better, or easier, to establish). The first
method involves a proof search, upon which the logic programming paradigm
is based. The second method typically forces you to compute a truth table
which is exponential in the size of occurring propositional atoms. Both
methods are intractable in general but particular instances of formulas often
respond differently to treatment under these two methods.

The remainder of this section is concerned with an argument saying that
if ¢1,¢2,-.., ¢, E 9 holds, then ¢1, po,..., ¢, - 9 is valid. Assuming that
o1, P2, - .-, dn F 1 holds, the argument proceeds in three steps:

Step 1: We show that = ¢1 — (d2 = (¢3 — (... (¢n — %) ...))) holds.
Step 2: We show that ¢ — (¢2 = (¢3 = (... (¢n =) ...))) is valid.
Step 3: Finally, we show that ¢, ¢o,..., ¢, F 1 is valid.

The first and third steps are quite easy; all the real work is done in the
second one.

Step 1:

Definition 1.36 A formula of propositional logic ¢ is called a tautology iff
it evaluates to T under all its valuations, i.e. iff F ¢.

Supposing that ¢1,¢a,..., ¢, E 9 holds, let us verify that ¢1 — (¢ —
(¢35 = (... (dn — %) ...))) is indeed a tautology. Since the latter formula is a
nested implication, it can evaluate to F only if all ¢1, ¢o,...,¢, evaluate to T
and 1 evaluates to F; see its parse tree in Figure 1.11. But this contradicts

the fact that ¢i,ds,...,¢n E 9 holds. Thus, E ¢ — (¢ — (¢35 —
(... (¢n —) ...))) holds.

1.4 Semantics of propositional logic 51

Fig. 1.11. The only way this parse tree can evaluate to F. We represent parse trees
for ¢1, ¢2, ..., ¢, as triangles as their internal structure does not concern us here.

Step 2:

Theorem 1.37 If F n holds, then - n is valid. In other words, if n is a
tautology, then n is a theorem.

This step is the hard one. Assume that F 7 holds. Given that n contains
n distinct propositional atoms p1,po,...,p, we know that n evaluates to T
for all 2™ lines in its truth table. (Each line lists a valuation of 7.) How can
we use this information to construct a proof for 7 In some cases this can
be done quite easily by taking a very good look at the concrete structure of
7. But here we somehow have to come up with a uniform way of building
such a proof. The key insight is to ‘encode’ each line in the truth table of 5
as a sequent. Then we construct proofs for these 2" sequents and assemble
them into a proof of 7.

Proposition 1.38 Let ¢ be a formula such that p1,ps,...,pn are its only
propositional atoms. Let | be any line number in ¢’s truth table. For all
1 <4 < nlet p; be p; if the entry in line [of p; is T, otherwise p; is —p;.
Then we have

1. p1,P2,-.-,Pn b ¢ is provable if the entry for ¢ in linel is T
2. P1,P2,...,Pn b ¢ is provable if the entry for ¢ in linel is F

52 Propositional logic

PROOF: This proof is done by structural induction on the formula ¢, that
is, mathematical induction on the height of the parse tree of ¢.

1. If ¢ is a propositional atom p, we need to show that p - p and
—=p F —p. These have one-line proofs.

2. If ¢ is of the form —¢; we again have two cases to consider. First,
assume that ¢ evaluates to T. In this case ¢; evaluates to F. Note
that ¢; has the same atomic propositions as ¢. We may use the
induction hypothesis on ¢, to conclude that p1,ps, ..., P, F —¢1; but
—¢1 is just ¢, so we are done.

Second, if ¢ evaluates to F, then ¢; evaluates to T and we get
P1,P2, .-, Pn - ¢1 by induction. Using the rule ——i, we may extend
the proof of p1,p9,...,pn F ¢1 to one for p1,p9,...,Pn F ——¢1; but
——¢y is just ¢, so again we are done.

The remaining cases all deal with two subformulas: ¢ equals ¢ o ¢, where
ois —, A or V. In all these cases let g1, ..., q; be the propositional atoms of
¢1 and r1,...,7; be the propositional atoms of ¢o. Then we certainly have
{g1,---,q}U{r1,...,mx} = {p1,...,pn}. Therefore, whenever gi,...,q + 11
and 71,...,7, F 1o are valid so is p1, ..., P, b ¥1 A P2 using the rule Ai. In
this way, we can use our induction hypothesis and only owe proofs that the
conjunctions we conclude allow us to prove the desired conclusion for ¢ or
—¢ as the case may be.

3. To wit, let ¢ be ¢1 — ¢o. If ¢ evaluates to F, then we know that ¢
evaluates to T and ¢9 to F. Using our induction hypothesis, we have
Giy---,q1 F ¢1 and 71, ..., P F 2, SO P1,...,Pn F d1 A o follows.
We need to show pi,...,p, F —(d1 — ¢2); but using p1,...,p, F
@1 A, this amounts to proving the sequent ¢1 A—go F = (1 — b2),
which we leave as an exercise.

If ¢ evaluates to T, then we have three cases. First, if ¢; evaluates
to F and ¢2 to F, then we get, by our induction hypothesis, that
ql,...,ql F ﬁ¢1 and fl,...,fk F ﬁ(]bg, S0 ﬁl,...,ﬁn F —|¢1 A _|¢2
follows. Again, we need only to show the sequent —¢1 A =¢po - 1 —
¢2, which we leave as an exercise. Second, if ¢1 evaluates to F and ¢o
to T, we use our induction hypothesis to arrive at p1,...,pp F =1 Ap2
and have to prove —¢; A g2 = ¢1 — ¢9, which we leave as an exercise.
Third, if ¢1 and ¢o evaluate to T, we arrive at p1,...,P, F ¢1 A ¢da,
using our induction hypothesis, and need to prove ¢1 Ado F d1 — @2,
which we leave as an exercise as well.

4. If ¢ is of the form ¢1 A ¢o, we are again dealing with four cases in

1.4 Semantics of propositional logic 53

total. First, if ¢1 and ¢o evaluate to T, we get Gi1,...,4; F ¢1 and
71,...,7, F ¢o by our induction hypothesis, so p1,...,pp F ¢1 A
¢o follows. Second, if ¢; evaluates to F and ¢o to T, then we get
Ply---5Pn F 21 A @2 using our induction hypothesis and the rule Ai
as above and we need to prove =1 A ¢p2 F —(h1 A ¢p2), which we leave
as an exercise. Third, if ¢; and ¢9 evaluate to F, then our induction
hypothesis and the rule Ai let us infer that pq,...,0, b —¢1 A —¢o;
so we are left with proving —¢1 A =¢2 F =(¢1 A ¢2), which we leave
as an exercise. Fourth, if ¢; evaluates to T and ¢ to F, we obtain
Ply---3Pn F @1 A 2o by our induction hypothesis and we have to
show ¢1 A —¢o F —(¢1 A ¢2), which we leave as an exercise.

5. Finally, if ¢ is a disjunction ¢1 V ¢o, we again have four cases. First,
if 1 and ¢2 evaluate to F, then our induction hypothesis and the rule
Al give us Pi,...,Pn F =1 A =¢2 and we have to show —¢1 A —¢o -
=(¢1 V ¢2), which we leave as an exercise. Second, if ¢; and ¢,
evaluate to T, then we obtain p1,...,9, F ¢1 A ¢2, by our induction
hypothesis, and we need a proof for ¢1 A ¢o2 F ¢1 V ¢o, which we
leave as an exercise. Third, if ¢; evaluates to F and ¢9 to T, then we
arrive at pi1,...,Pn = —¢1 A ¢9, using our induction hypothesis, and
need to establish —¢1 A ¢o F @1 V ¢2, which we leave as an exercise.
Fourth, if ¢ evaluates to T and ¢2 to F, then p1,...,Pn F 1 A 2o
results from our induction hypothesis and all we need is a proof for
@1 A —¢a F @1 V ¢o, which we leave as an exercise.

O
We apply this technique to the formula F ¢1 — (2 — (¢p3 — (... (¢ —
) ...))). Since it is a tautology it evaluates to T in all 2" lines of its truth
table; thus, the proposition above gives us 2" many proofs of p1, Pg, ..., Pn -
7, one for each of the cases that p; is p; or —p;. Our job now is to assemble
all these proofs into a single proof for 1 which does not use any premises.
We illustrate how to do this for an example, the tautology p A ¢ — p.
The formula p A ¢ — p has two propositional atoms p and ¢q. By the
proposition above, we are guaranteed to have a proof for each of the four
sequents

Pqg F pAg—p
p,g F pAg—=p
p,mq F pAg—p
p,mq F pAg—p.

54 Propositional logic

Ultimately, we want to prove p A ¢ — p by appealing to the four proofs of
the sequents above. Thus, we somehow need to get rid of the premises on
the left-hand sides of these four sequents. This is the place where we rely on
the law of the excluded middle which states r V —r, for any r. We use LEM
for all propositional atoms (here p and ¢) and then we separately assume all
the four cases, by using Ve. That way we can invoke all four proofs of the
sequents above and use the rule Ve repeatedly until we have got rid of all our
premises. We spell out the combination of these four phases schematically:

1 pV-p LEM
2 p ass -p ass
3 qV—q LEM|| qV —¢q LEM
4 q ass||—q ass q ass|[—q ass
5

6

7 pPAG—=p pPAG—p pPAg—=p PAg—=p

8 pPAQq—D Ve pAq—D Ve

9 pAg—p Ve

As soon as you understand how this particular example works, you will
also realise that it will work for an arbitrary tautology with n distinct atoms.
Of course, it seems ridiculous to prove p A ¢ — p using a proof that is this
long. But remember that this illustrates a uniform method that constructs
a proof for every tautology 7, no matter how complicated it is.

Step 3: Finally, we need to find a proof for ¢q, ¢o,..., ¢, F 1. Take the
proof for = ¢1 — (d2 = (¢35 — (... (¢ —)...))) given by step 2 and
augment its proof by introducing ¢1, ¢, ..., ¢, as premises. Then apply
—e n times on each of these premises (starting with ¢1, continuing with ¢,
etc.). Thus, we arrive at the conclusion 1 which gives us a proof for the

sequent ¢1, o, ..., P, - P.

Corollary 1.39 (Soundness and Completeness) Let ¢1, b2, ..., Pn, 1 be
formulas of propositional logic. Then ¢1,¢a,...,¢n E 9 is holds iff the se-
quent ¢1,po, ..., ¢ F P is valid.

1.5 Normal forms 55

1.5 Normal forms

In the last section, we showed that our proof system for propositional logic is
sound and complete for the truth-table semantics of formulas in Figure 1.6.
Soundness means that whatever we prove is going to be a true fact, based on
the truth-table semantics. In the exercises, we applied this to show that a se-
quent does not have a proof: simply show that ¢1, ¢9,. .., ¢2 does not seman-
tically entail v; then soundness implies that the sequent ¢1, ¢o,...,da F 9
does not have a proof. Completeness comprised a much more powerful state-
ment: no matter what (semantically) valid sequents there are, they all have
syntactic proofs in the proof system of natural deduction. This tight cor-
respondence allows us to freely switch between working with the notion of
proofs () and that of semantic entailment (F).

Using natural deduction to decide the validity of instances of - is only
one of many possibilities. In Exercise 1.2.6 we sketch a non-linear, tree-like,
notion of proofs for sequents. Likewise, checking an instance of F by apply-
ing Definition 1.34 literally is only one of many ways of deciding whether
¢1,¢2,..-,6n F 9 holds. We now investigate various alternatives for de-
ciding ¢1, ¢2,...,¢n F 9 which are based on transforming these formulas
syntactically into ‘equivalent’ ones upon which we can then settle the mat-
ter by purely syntactic or algorithmic means. This requires that we first
clarify what exactly we mean by equivalent formulas.

1.5.1 Semantic equivalence, satisfiability and validity

Two formulas ¢ and 1) are said to be equivalent if they have the same ‘mean-
ing.” This suggestion is vague and needs to be refined. For example, p — ¢
and —p V g have the same truth table; all four combinations of T and F for
p and g return the same result. ’Coincidence of truth tables’ is not good
enough for what we have in mind, for what about the formulas p A g — p
and 7V —r? At first glance, they have little in common, having different
atomic formulas and different connectives. Moreover, the truth table for
p A g — p is four lines long, whereas the one for r V —r consists of only two
lines. However, both formulas are always true. This suggests that we define
the equivalence of formulas ¢ and 9 via F: if ¢ semantically entails 1 and
vice versa, then these formulas should be the same as far as our truth-table
semantics is concerned.

Definition 1.40 Let ¢ and v be formulas of propositional logic. We say
that ¢ and v are semantically equivalent iff ¢ E 1) and 9 E ¢ hold. In that
case we write ¢ = 1. Further, we call ¢ valid if F ¢ holds.

56 Propositional logic

Note that we could also have defined ¢ = 9 to mean that F (¢ —
P) A (¢ — ¢) holds; it amounts to the same concept. Indeed, because of
soundness and completeness, semantic equivalence is identical to provable
equivalence (Definition 1.25). Examples of equivalent formulas are

p—q = —q—p

p—q = 7pVyg
pANgq—>p = rV-r
pAg—T = p—(¢—T).

Recall that a formula 7 is called a tautology if F 7 holds, so the tautologies
are exactly the valid formulas. The following lemma says that any decision
procedure for tautologies is in fact a decision procedure for the validity of
sequents as well.

Lemma 1.41 Given formulas ¢1,¢a,...,¢n and v of propositional logic,
G1, b2y -y bn E Y holds iff E ¢1 — (b2 — (¢3 — -+ = (¢, — 1)) holds.

PROOF: First, suppose that F ¢1 — (¢2 = (¢3 = --- = (¢ — 9))) holds.
If ¢1,¢2,..., ¢, are all true under some valuation, then 7 has to be true
as well for that same valuation. Otherwise, F ¢1 — (d2 — (¢35 — -+ —
(¢, — %)) would not hold (compare this with Figure 1.11). Second, if
é1, b2, - - -, én E 1 holds, we have already shown that F ¢1 — (¢o — (¢3 —
o+ = (édn — 9))) follows in step 1 of our completeness proof. O

For our current purposes, we want to transform formulas into ones which
don’t contain — at all and the occurrences of A and V are confined to
separate layers such that validity checks are easy. This is being done by

1. using the equivalence ¢ — 1 = ¢ V 9 to remove all occurrences of
— from a formula and

2. by specifying an algorithm that takes a formula without any — into
a normal form (still without —) for which checking validity is easy.

Naturally, we have to specify which forms of formulas we think of as being
‘normal.” Again, there are many such notions, but in this text we study only
two important ones.

Definition 1.42 A literal L is either an atom p or the negation of an atom
—p. A formula C is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where each clause D is a disjunction of literals :

1.5 Normal forms 57

L == p| —p
D == L | LVD (1.6)
C == D | DAC.

Examples of formulas in conjunctive normal form are
(1) (~gVpVr)A(-pVT)Agq (i) (pVr)A(-pVrT)A(pV-T).

In the first case, there are three clauses of type D: =qVpVr, -pVr,
and ¢ — which is a literal promoted to a clause by the first rule of clauses
in (1.6). Notice how we made implicit use of the associativity laws for A
and V, saying that ¢V (¥ V) = (¢ V) Vnand ¢ A (Y An) = (6 AY) An,
since we omitted some parentheses. The formula (=(qV p)Vr)A(gVr)is
not in CNF since ¢ V p is not a literal.

Why do we care at all about formulas ¢ in CNF? One of the reasons for
their usefulness is that they allow easy checks of validity which otherwise
take times exponential in the number of atoms. For example, consider the
formula in CNF from above: (-gVpVr)A (-pVr)Agq. The semantic
entailment F (mgVpVr)A(-pVr)Aq holds iff all three relations

FE-qVpVr FE-pVr Fq

hold, by the semantics of A. But since all of these formulas are disjunctions
of literals, or literals, we can settle the matter as follows.

Lemma 1.43 A disjunction of literals L1 V Lo V - -+ V Ly, is valid iff there
are 1 <4,5 < m such that L; is —L;.

Proor: If L; equals —L;, then L; V Ly V -+ V Ly, evaluates to T for all
valuations. For example, the disjunct pV ¢V rV —¢q can never be made false.

To see that the converse holds as well, assume that no literal L; has a
matching negation in Ly V Lo V - - - V Ly,. Then, for each k with 1 < k < n,
we assign F to Ly, if Ly is an atom; or T, if L is the negation of an atom.
For example, the disjunct —qg V p V r can be made false by assigning F to p
and r and T to gq. |

Hence, we have an easy and fast check for the validity of F ¢, provided
that ¢ is in CNF; inspect all conjuncts 1, of ¢ and search for atoms in
1 such that 1, also contains their negation. If such a match is found
for all conjuncts, we have F ¢. Otherwise (= some conjunct contains no
pair L; and —L;), ¢ is not valid by the lemma above. Thus, the formula

58 Propositional logic

(mgVpVr)A(=pVr)Agq above is not valid. Note that the matching literal
has to be found in the same conjunct 1. Since there is no free lunch in
this universe, we can expect that the computation of a formula ¢’ in CNF,
which is equivalent to a given formula ¢, is a costly worst-case operation.
Before we study how to compute equivalent conjunctive normal forms, we
introduce another semantic concept closely related to that of validity.

Definition 1.44 Given a formula ¢ in propositional logic, we say that ¢ is
satisfiable if it has a valuation in which is evaluates to T.

For example, the formula p V ¢ — p is satisfiable since it computes T if
we assign T to p. Clearly, p V ¢ — p is not valid. Thus, satisfiability is a
weaker concept since every valid formula is by definition also satisfiable but
not vice versa. However, these two notions are just mirror images of each
other, the mirror being negation.

Proposition 1.45 Let ¢ be a formula of propositional logic. Then ¢ is
satisfiable iff ¢ is not valid.

PROOF: First, assume that ¢ is satisfiable. By definition, there exists a
valuation of ¢ in which ¢ evaluates to T; but that means that —¢ evaluates
to F for that same valuation. Thus, —¢ cannot be valid.

Second, assume that —¢ is not valid. Then there must be a valuation
of =¢ in which —¢ evaluates to F. Thus, ¢ evaluates to T and is therefore
satisfiable. (Note that the valuations of ¢ are exactly the valuations of —¢.)

O

This result is extremely useful since it essentially says that we need pro-
vide a decision procedure for only one of these concepts. For example, let’s
say that we have a procedure P for deciding whether any ¢ is valid. We
obtain a decision procedure for satisfiability simply by asking P whether —¢
is valid. If it is, ¢ is not satisfiable; otherwise ¢ is satisfiable. Similarly, we
may transform any decision procedure for satisfiability into one for validity.
We will encounter both kinds of procedures in this text.

There is one scenario in which computing an equivalent formula in CNF
is really easy; namely, when someone else has already done the work of
writing down a full truth table for ¢. For example, take the truth table
of (p > —q) — (¢ V —p) in Figure 1.8 (page 41). For each line where
(p = —q) — (g V —p) computes F we now construct a disjunction of literals.
Since there is only one such line, we have only one conjunct ;. That con-
junct is now obtained by a disjunction of literals, where we include literals

1.5 Normal forms 59

—p and ¢q. Note that the literals are just the syntactic opposites of the truth
values in that line: here p is T and ¢ is F. The resulting formula in CNF
is thus —p V ¢ which is readily seen to be in CNF and to be equivalent to
(p——q) — (¢V-p).

Why does this always work for any formula ¢7 Well, the constructed
formula will be false iff at least one of its conjuncts v; will be false. This
means that all the disjuncts in such a 1; must be F. Using the de Morgan
rule =1 Voo V -+ V =y, = 2(d1 A pa A -+ A ¢y), we infer that the con-
junction of the syntactic opposites of those literals must be true. Thus, ¢
and the constructed formula have the same truth table.

Consider another example, in which ¢ is given by the truth table:

T I RS R R [
T T R TR R | [P
Mmoo oE oA A M s

Note that this table is really just a specification of ¢; it does not tell us
what ¢ looks like syntactically, but it does tells us how it ought to ‘behave.’
Since this truth table has four entries which compute F, we construct four
conjuncts 1; (1 < i < 4). We read the v; off that table by listing the
disjunction of all atoms, where we negate those atoms which are true in
those lines:

P E=pV-gVr (line 2) P2 EpV gV -r (line 5)
def def

Ps =pV-qgVr etc PYg =pVqVr.
The resulting ¢ in CNF is therefore
(=pV-gVr)A(pV-gV-r)AN(PpV-gVr)AN(pVqgV-r).

If we don’t have a full truth table at our disposal, but do know the structure
of ¢, then we would like to compute a version of ¢ in CNF. It should
be clear by now that a full truth table of ¢ and an equivalent formula in
CNF are pretty much the same thing as far as questions about validity are
concerned — although the formula in CNF may be much more compact.

60 Propositional logic

1.5.2 Conjunctive normal forms and validity

We have already seen the benefits of conjunctive normal forms in that they
allow for a fast and easy syntactic test of validity. Therefore, one wonders
whether any formula can be transformed into an equivalent formula in CNF.
We now develop an algorithm achieving just that. Note that, by Defini-
tion 1.40, a formula is valid iff any of its equivalent formulas is valid. We
reduce the problem of determining whether any ¢ is valid to the problem
of computing an equivalent ¥ = ¢ such that ¢ is in CNF and checking, via
Lemma 1.43, whether v is valid.

Before we sketch such a procedure, we make some general remarks about
its possibilities and its realisability constraints. First of all, there could
be more or less efficient ways of computing such normal forms. But even
more so, there could be many possible correct outputs, for 1 = ¢ and
P9 = ¢ do not generally imply that 1), is the same as 1o, even if 9, and
19 are in CNF. For example, take ¢ & p, 9y & p and 99 & p A (pV
q); then convince yourself that ¢ = 1o holds. Having this ambiguity of
equivalent conjunctive normal forms, the computation of a CNF for ¢ with
minimal ‘cost’ (where ‘cost’ could for example be the number of conjuncts,
or the height of ¢’s parse tree) becomes a very important practical problem,
an issue persued in Chapter 6. Right now, we are content with stating a
deterministic algorithm which always computes the same output CNF for a
given input ¢.

This algorithm, called CNF, should satisfy the following requirements:

(1) CNF terminates for all formulas of propositional logic as input;
(2) for each such input, CNF outputs an equivalent formula; and
(3) all output computed by CNF is in CNF.

If a call of CNF with a formula ¢ of propositional logic as input terminates,
which is enforced by (1), then (2) ensures that 9 = ¢ holds for the output
9. Thus, (3) guarantees that v is an equivalent CNF of ¢. So ¢ is valid iff
1) is valid; and checking the latter is easy relative to the length of 1.

What kind of strategy should CNF employ? It will have to function cor-
rectly for all, i.e. infinitely many, formulas of propositional logic. This
strongly suggests to write a procedure that computes a CNF by structural
induction on the formula ¢. For example, if ¢ is of the form ¢ A ¢2, we may
simply compute conjunctive normal forms 7; for ¢; (i = 1,2), whereupon
1 A 12 is a conjunctive normal form which is equivalent to ¢ provided that
n; = ¢; (i = 1,2). This strategy also suggests to use proof by structural
induction on ¢ to prove that CNF meets the requirements (1-3) stated above.

1.5 Normal forms 61

Given a formula ¢ as input, we first do some preprocessing. Initially, we
translate away all implications in ¢ by replacing all subformulas of the form
19 — n by =9 V7. This is done by a procedure called IMPL _FREE. Note that
this procedure has to be recursive, for there might be implications in % or
7 as well.

The application of IMPL_FREE might introduce double negations into the
output formula. More importantly, negations whose scopes are non-atomic
formulas might still be present. For example, the formula pA—(pAg) has such
a negation with p A g as its scope. Essentially, the question is whether one
can efficiently compute a CNF for —¢ from a CNF for ¢. Since nobody seems
to know the answer, we circumvent the question by translating —¢ into an
equivalent formula that contains only negations of atoms. Formulas which
only negate atoms are said to be in negation normal form (NNF). We spell
out such a procedure, NNF, in detail later on. The key to its specification
for implication-free formulas lies in the de Morgan rules. The second phase
of the preprocessing, therefore, calls NNF with the implication-free output of
IMPL FREE to obtain an equivalent formula in NNF.

After all this preprocessing, we obtain a formula ¢’ which is the result of
the call NNF (IMPL_FREE (¢)). Note that ¢/ = ¢ since both algorithms only
transform formulas into equivalent ones. Since ¢' contains no occurrences
of — and since only atoms in ¢’ are negated, we may program CNF by an
analysis of only three cases: literals, conjunctions and disjunctions.

e If ¢ is a literal, it is by definition in CNF and so CNF outputs ¢.

o If ¢ equals ¢1 A ¢po, we call CNF recursively on each ¢; to get the respective
output 7; and return the CNF 71 A 19 as output for input ¢.

o If ¢ equals ¢1 V ¢2, we again call CNF recursively on each ¢; to get the
respective output 7;; but this time we must not simply return n; V 79
since that formula is certainly not in CNF, unless 7, and 72 happen to be
literals.

So how can we complete the program in the last case? Well, we may resort
to the distributivity laws, which entitle us to translate any disjunction of
conjunctions into a conjunction of disjunctions. However, for this to result
in a CNF, we need to make certain that those disjunctions generated contain
only literals. We apply a strategy for using distributivity based on matching
patterns in ¢; V ¢o. This results in an independent algorithm called DISTR
which will do all that work for us. Thus, we simply call DISTR with the pair
(m1,72) as input and pass along its result.

Assuming that we already have written code for IMPL_FREE, NNF and

62 Propositional logic

DISTR, we may now write pseudo code for CNF:

function CNF (¢):
/* precondition: ¢ implication free and in NNF */
/* postcondition: CNF (¢) computes an equivalent CNF for ¢ */
begin function
case
¢ is a literal: return ¢
¢ is ¢1 A ¢o: return CNF (¢1) A CNF (¢2)
¢ is ¢1 V ¢2: return DISTR (CNF (¢), CNF (d2))
end case

end function

Notice how the calling of DISTR is done with the computed conjunctive
normal forms of ¢ and ¢5. The routine DISTR has n; and 79 as input pa-
rameters and does a case analysis on whether these inputs are conjunctions.
What should DISTR do if none of its input formulas is such a conjunction?
Well, since we are calling DISTR for inputs 7; and 7y which are in CNF, this
can only mean that n; and 7o are literals, or disjunctions of literals. Thus,
m V 1o is in CNF.

Otherwise, at least one of the formulas 7; and 79 is a conjunction. Since
one conjunction suffices for simplifying the problem, we have to decide which
conjunct we want to transform if both formulas are conjunctions. That way
we maintain that our algorithm CNF is deterministic. So let us suppose that
71 is of the form 711 A m12. Then the distributive law says that 7 V 1o =
(m1 V n2) A (mea V n2). Since all participating formulas 711, 712 and 7, are
in CNF, we may call DISTR again for the pairs (n11,72) and (112,72), and
then simply form their conjunction. This is the key insight for writing the
function DISTR.

The case when 75 is a conjunction is symmetric and the structure of
the recursive call of DISTR is then dictated by the equivalence 71 V 1y =

1.5 Normal forms 63

(1 Vn21) A (1 V m22), where n2 = n21 A 122:

function DISTR (n1,72):
/* precondition: 1; and 7y are in CNF */
/* postcondition: DISTR (7)1, 72) computes a CNF for n; V ne */
begin function
case
M1 i8 m11 A mi2: return DISTR (n11,72) ADISTR (912, 72)
M2 i8 121 A M22: return DISTR (71, 721) ADISTR (71, 122)
otherwise (= no conjunctions): return 7; V 7,
end case

end function

Notice how the three clauses are exhausting all possibilities. Furthermore,
the first and second cases overlap if 77; and 72 are both conjunctions. It is
then our understanding that this code will inspect the clauses of a case state-
ment from the top to the bottom clause. Thus, the first clause would apply.

Having specified the routines CNF and DISTR, this leaves us with the
task of writing the functions IMPL FREE and NNF. We delegate the de-
sign of IMPL FREE to the exercises. The function NNF has to transform any
implication-free formula into an equivalent one in negation normal form.
Four examples of formulas in NNF are

p -p
—pA(pAq) DA (p—q),

although we won’t have to deal with a formula of the last kind since — won’t
occur. Examples of formulas which are not in NNF are ——p and —(p A q).
Again, we program NNF recursively by a case analysis over the structure
of the input formula ¢. The last two examples already suggest a solution for
two of these clauses. In order to compute a NNF of =—¢, we simply compute
a NNF of ¢. This is a sound strategy since ¢ and ——¢ are semantically

equivalent. If ¢ equals —(¢1 A ¢2), we use the de Morgan rule —(¢1 A ¢2) =
=1 V g as a recipe for how NNF should call itself recursively in that case.

Dually, the case of ¢ being =(¢;1 V ¢2) appeals to the other de Morgan rule
(1 V d2) = —¢1 A —¢p2 and, if ¢ is a conjunction or disjunction, we simply
let NNF pass control to those subformulas. Clearly, all literals are in NNF.

64 Propositional logic

The resulting code for NNF is thus

function NNF (¢):
/* precondition: ¢ is implication free */
/* postcondition: NNF (¢) computes a NNF for ¢ */
begin function
case
¢ is a literal: return ¢
¢ is 7—¢1: return NNF (¢q)
¢ is ¢1 A ¢2: return NNF (¢;) A NNF (¢2)
¢ is ¢1 V ¢2: return NNF (¢1) V NNF (¢2)
¢ is =(¢1 A ¢p2): return NNF (—¢q) V NNF (—¢o)
¢ is =(¢1 V ¢2): return NNF (—¢;) A NNF (—¢2)
end case

end function

Notice that these cases are exhaustive due to the algorithm’s precondition.
Given any formula ¢ of propositional logic, we may now convert it into an

equivalent CNF by calling CNF (NNF (IMPL_FREE (¢))). In the exercises, you
are asked to show that

e all four algorithms terminate on input meeting their preconditions,
e the result of CNF (NNF (IMPL_FREE (¢))) is in CNF and

e that result is semantically equivalent to ¢.

We will return to the important issue of formally proving the correctness of
programs in Chapter 4.

Let us now illustrate the programs coded above on some concrete exam-
ples. We begin by computing CNF (NNF (IMPL_FREE (—-pAgq — pA(r — q)))).
We show almost all details of this computation and you should compare this
with how you would expect the code above to behave. First, we compute

1.5 Normal forms 65
IMPL_FREE (¢)):

IMPL _FREE (¢) = ~IMPL_FREE (—p A ¢) V IMPL_FREE (p A (1 — q))
—((IMPL_FREE —p) A (IMPL_FREEq)) V IMPL FREE (p A (r — q))

(

=()
=-(-p A q) V ((IMPL_FREE p) A IMPL_FREE (r — q))
=-(-pAq)V (p A IMPL_FREE (r — q))
=-=(-pAq)V (p A (~(IMPL_FREEr) V (IMPL_FREEq)))
=-(-pAq)V (pA (-rV (IMPL_FREE()))
==(-pAgQV(pA(-rVy).

(

NNF (IMPL_FREE ¢) = NNF (—~(—pAgq)) VNNF (p A (-1 V q))
NNF (—(=p) V —q) VNNF (p A (=7 V q))
(NNF (=—p)) V (NNF (=g)) VNNF (p A (=7 V q))
(p V (NNF (—g))) VNNF (p A (=1 V q))
(pV —q) VINNF (p A (=1 V q))
= (pV —q) V ((NNF p) A (NNF (=7 V gq)))
(
(pV
(pV
(

pV —q)V (pA (NNF (=1 Vq)))
(NNF (=r)) V (NNF g)))

-q) A(
A (=r V (NNF g)))
A(

v (
V(p
—q) Vv (p
pV-q)V(p

Third, we finish it off with

CNF (NNF (IMPL_FREE ¢)) = CNF ((pV =q)V (p A (=7 V q)))

= DISTR (CNF (p V —q),CNF (p A (=1 V q)))
DISTR (p V —q,CNF (p A (=7 V q)))

= DISTR(pV —g,p A (—rVq))

= DISTR (pV —q,p) ADISTR (p V —gq,—r V q)

= (pV—gVp)ADISTR (pV =g,V q)

= (pV-qVp)A(pV—gV-rVyg).

The formula (p V —¢ V p) A (pV =gV —r V q) is thus the result of the call

CNF (NNF (IMPL_FREE ¢)) and is in conjunctive normal form and equivalent
to ¢. Note that it is satisfiable (choose p to be true) but not valid (choose p

66 Propositional logic

to be false and ¢ to be true); it is also equivalent to the simpler conjunctive
normal form p V —g. Observe that our algorithm does not do such opti-
misations so one would need a separate optimiser running on the output.
Alternatively, one might change the code of our functions to allow for such
optimisations ‘on the fly,” a computational overhead which could prove to
be counter-productive.

You should realise that we omitted several computation steps in the sub-
calls CNF (pV —q) and CNF (p A (—rV ¢q)). They return their input as a result
since the input is already in conjunctive normal form.

As a second example, consider ¢ £ r — (s — (tA s — r)). We compute

IMPL FREE (¢) = —(IMPL_FREE r) V IMPL FREE (s — (t A 5 — 1))
=—rV IMPL FREE (s — (t A s — 7))
— —r V (~(IMPL _FREE s) V IMPL FREE (t A 5 — 7))
—s V IMPL_FREE (t A s — 1))
-5 V (~(IMPL_FREE (¢ A 5)) V IMPL_FREET))
(IMPL_FREE?) A (IMPL_FREE s)) V IMPL FREET))

_—|’]“\/

V(=
=-rV (-sV (—(¢t A (IMPL_FREEs)) V (IMPL_FREET)))
=-rV (=sV (=(tAs))V (IMPL_FREET))
=-rV(nsV(=(tAs))Vr)
NNF (IMPL_FREE ¢) = NNF (-rV (msV =(tAs)Vr))

= (NNF —r) VNNF (=sV —=(tAs)Vr)
= —rVNNF (nsV(tAs)Vr)

—7 V (NNF (=s) V NNF (=(t A s) V1))
= —rV(-sVNNF (=(tAs)Vr))

(
—rV (=5 V (NNF (~(t A s)) V NNF 1))
= —rV (-sV (NNF (=t V —s)) VNNF r)
—rV (=5 V ((NNF (—t) V NNF (=s)) V NNF 1))
= —rV (=sV ((=t VNNF (=s)) V NNF 7))
—rV (ns V ((—t V —s) VNNF 7))
= —rV(-sV((-tV-s)Vr))

where the latter is already in CNF and valid as r has a matching —r.

1.5 Normal forms 67

1.5.3 Horn clauses and satisfiability

We have already commented on the computational price we pay for trans-
forming a propositional logic formula into an equivalent CNF. The latter
class of formulas has an easy syntactic check for validity, but its test for
satisfiability is very hard in general. Fortunately, there are practically im-
portant subclasses of formulas which have much more efficient ways of decid-
ing their satisfiability. One such example is the class of Horn formulas; the
name ‘Horn’ is derived from the logician A. Horn’s last name. We shortly
define them and give an algorithm for checking their satisfiability.

Recall that the logical constants L (‘bottom’) and T (‘top’) denote an
unsatisfiable formula, respectively, a tautology.

Definition 1.46 A Horn formula is a formula ¢ of propositional logic if it
can be generated as an instance of H in this grammar:

P x= L |T|p (1.7)
A == P | PANA

C == A—->P

H : C| CANH.

We call each instance of C a Horn clause.

Horn formulas are conjunctions of Horn clauses. A Horn clause is an impli-

cation whose assumption A is a conjunction of propositions of type P and

whose conclusion is also of type P. Examples of Horn formulas are
(PpAgAs—=>p)A(gAr =>p)A(PAs—)

(pAgAs—= L)YAN(gAr = p) AN (T —9)

(P2 Ap3Aps = pi13) A(T = ps) A (ps Apin — L).

68 Propositional logic
Examples of formulas which are not Horn formulas are

(pAgAs—=>—Dp)AN(gAT —=p)AN(PAs—)
(PAgAs—= LYA(—gAT = p) A (T =)
(p2 Ap3 Aps — p13 Apar) A (T = ps) A (ps Apin — L)

(P2 Ap3Aps = pi3a Apar) AT = ps) A(ps Apur VL),

The first formula is not a Horn formula since —p, the conclusion of the
implication of the first conjunct, is not of type P. The second formula
does not qualify since the premise of the implication of the second conjunct,
=g A r, is not a conjunction of atoms, L, or T. The third formula is not a
Horn formula since the conclusion of the implication of the first conjunct,
P13 A po7, is not of type P. The fourth formula clearly is not a Horn formula
since it is not a conjunction of implications.

The algorithm we propose for deciding the satisfiability of a Horn formula
¢ maintains a list of all occurrences of type P in ¢ and proceeds like this:

1. It marks T if it occurs in that list.

2. If there is a conjunct Py A P, A--- A Py, — P’ of ¢ such that all P;
with 1 < j < k; are marked, mark P’ as well and go to 2. Otherwise
(= there is no conjunct Py A P, A --- A Py, — P’ such that all Pj are
marked) go to 3.

3. If 1 is marked, print out ‘The Horn formula ¢ is unsatisfiable.” and
stop. Otherwise, go to 4.

4. Print out ‘The Horn formula ¢ is satisfiable.” and stop.

In these instructions, the markings of formulas are shared by all other occur-
rences of these formulas in the Horn formula. For example, once we mark
po because of one of the criteria above, then all other occurrences of po are
marked as well. We use pseudo code to specify this algorithm formally:

function HORN (¢):
/* precondition: ¢ is a Horn formula */
/* postcondition: HORN (¢) decides the satisfiability for ¢ */
begin function
mark all occurrences of T in ¢;
while there is a conjunct Py APy A--- A Py, — P' of ¢
such that all P; are marked but P’ isn’t do

1.5 Normal forms 69

mark P’
end while
if 1 is marked then return ‘unsatisfiable’ else return ‘satisfiable’
end function

We need to make sure that this algorithm terminates on all Horn formulas
¢ as input and that its output (= its decision) is always correct.

Theorem 1.47 The algorithm HORN is correct for the satisfiability decision
problem of Horn formulas and has no more than n + 1 cycles in its while-
statement if n is the number of atoms in ¢. In particular, HORN always
terminates on correct input.

PROOF: Let us first consider the question of program termination. Notice
that entering the body of the while-statement has the effect of marking an
unmarked P which is not T. Since this marking applies to all occurrences
of P in ¢, the while-statement can have at most one more cycle than there
are atoms in ¢.

Since we guaranteed termination, it suffices to show that the answers given
by the algorithm HORN are always correct. To that end, it helps to reveal
the functional role of those markings. Essentially, marking a P means that
that P has got to be true if the formula ¢ is ever going to be satisfiable. We
use mathematical induction to show that

‘All marked P are true for all valuations in which ¢ evaluates to T.” (1.8)

holds after any number of executions of the body of the while-statement
above. The base case, zero executions, is when the while-statement has not
yet been entered but we already and only marked all occurrences of T. Since
T must be true in all valuations, (1.8) follows.

In the inductive step, we assume that (1.8) holds after &k cycles of the
while-statement. Then we need to show that same assertion for all marked
P after k + 1 cycles. If we enter the (k + 1)th cycle, the condition of the
while-statement is certainly true. Thus, there exists a conjunct Py A P> A
-+ AN Py; — P' of ¢ such that all P; are marked. Let v be any valuation
in which ¢ is true. By our induction hypothesis, we know that all P; and
therefore P; A P, A --- A Py, have to be true in v as well. The conjunct
P APy A--- APy, — P' of ¢ has be to true in v, too, from which we infer
that P’ has to be true in v.

By mathematical induction, we therefore secured that (1.8) holds no mat-
ter how many cycles that while-statement went through.

70 Propositional logic

Finally, we need to make sure that the if-statement above always renders
correct replies. First, if | is marked, then there has to be some conjunct
PyANPyA\--- NPy, — L of ¢ such that all P; are marked as well. By (1.8)
that conjunct of ¢ evaluates to T — F = F whenever ¢ is true. As this is
impossible the reply ‘unsatisfiable’ is correct. Second, if L is not marked,
we simply assign T to all marked atoms and F to all unmarked atoms and
use proof by contradiction to show that ¢ has to be true with respect to
that valuation.

If ¢ is not true under that valuation, it must make one of its principal
conjuncts Py APy A--- APy, — P’ false. By the semantics of implication this
can only mean that all P; are true and P’ is false. By the definition of our
valuation, we then infer that all P; are marked, so PLAP,A---APy;, — P'is
a conjunct of ¢ that would have been dealt with in one of the cycles of the
while-statement and so P’ is marked, too. Since L is not marked, P’ has to
be T or some atom ¢. In any event, the conjunct is then true by (1.8), a
contradiction O

Note that the proof by contradiction employed in the last proof was not
really needed. It just made the argument seem more natural to us. The
literature is full of such examples where one uses proof by contradiction
more out of psychological than proof-theoretical necessity.

1.6 SAT solvers

The marking algorithm for Horn formulas computes marks as constraints
on all valuations that can make a formule true. By (1.8), all marked atoms
have to be true for any such valuation. We can extend this idea to general
formulas ¢ by computing constraints saying which subformulas of ¢ require
a certain truth value for all valuations that make ¢ true:

‘All marked subformulas evaluate to their mark value

for all valuations in which ¢ evaluates to T.’ (1.9)

In that way, marking atomic formulas generalizes to marking subformu-
las; and ‘true’ marks generalize into ‘true’ and ‘false’ marks. At the same
time, (1.9) serves as a guide for designing an algorithm and as an invariant
for proving its correctness.

1.6 SAT solvers 71

1.6.1 A linear solver

We will execute this marking algorithm on the parse tree of formulas, except
that we will translate formulas into the adequate fragment

pu=p | (=) | (AQ) (1.10)

and then share common subformulas of the resulting parse tree, making the
tree into a directed, acyclic graph (DAG). The inductively defined transla-
tion

T(p)=p T(~¢) = ~T(¢)
T(¢1 A d2) =T(¢1) NT(2) T(¢1V ¢2) = =(=T(¢1) A =T(2))
T(p1 — ¢2) = =(T(¢1) A =T(42))

transforms formulas generated by (1.3) into formulas generated by (1.10)
such that ¢ and T'(¢$) are semantically equivalent and have the same propo-
sitional atoms. Therefore, ¢ is satisfiable iff T'(¢) is satisfiable; and the set
of valuations for which ¢ is true equals the set of valuations for which T'(¢)
is true. The latter ensures that the diagnostics of a SAT solver, applied
to T'(¢), is meaningful for the original formula ¢. In the exercises, you are
asked to prove these claims.

Example 1.48 For the formula ¢ being pA—(qV—p) we compute T'(¢) = pA
—=(—=g A—-p). The parse tree and DAG of T'(¢) are depicted in Figure 1.12.

Any valuation that makes p A =—(—g A —=—p) true has to assign T to the
topmost A-node in its DAG of Figure 1.12. But that forces the mark T on
the p-node and the topmost —-node. In the same manner, we arrive at a
complete set of constraints in Figure 1.13, where the time stamps ‘1:’ etc
indicate the order in which we applied our intuitive reasoning about these
constraints; this order is generally not unique.

The formal set of rules for forcing new constraints from old ones is depicted
in Figure 1.14. A small circle indicates any node (-, A or atom). The force
laws for negation, —y and —¢, indicate that a truth constraint on a —-node
forces its dual value at its sub-node and vice versa. The law Aie propagates
a T constraint on a A-node to its two sub-nodes; dually, A¢; forces a T mark
on a A-node if both its children have that mark. The laws Ag and Ag force a
F constraint on a A-node if any of its sub-nodes has a F value. The laws Ag
and Ag are more complex: if an A-node has a F constraint and one of its
sub-nodes has a T constraint, then the other sub-node obtains a F-constraint.

72 Propositional logic

Fig. 1.12. Parse tree (left) and directed acyclic graph (right) of the formula from
Example 1.48. The p-node is shared on the right.

Fig. 1.13. A witness to the satisfiability of the formula represented by this DAG.

1.6 SAT solvers 73

- T - F
ﬂ\ \Ht forcing laws for negation
‘ o F © T

Nte:

true conjunction forces true conjuncts true conjunctions force true conjunction

F
//\ A false conjuncts
/ \ / \7\ force false conjunction
Nfrt F
[¢] [}

F

A \ false conjunction and true conjunct
/ \%\1 % \ force false conjunction
o o F
T %

Afr: Afprt F ;o

Fig. 1.14. Rules for flow of constraints in a formula’s DAG. Small circles indicate
arbitrary nodes (—, A or atom). Note that the rules Aqj, Afr and Ay require that
the source constraints of both = are present.

Please check that all constraints depicted in Figure 1.13 are derivable from
these rules. The fact that each node in a DAG obtained a forced marking
does not yet show that this is a witness to the satisfiability of the formula
represented by this DAG. A post-processing phase takes the marks for all
atoms and re-computes marks of all other nodes in a bottom-up manner, as
done in Section 1.4 on parse trees. Only if the resulting marks match the
ones we computed have we found a witness. Please verify that this is the
case in Figure 1.13.

We can apply SAT solvers to checking whether sequents are valid. For
example, the sequent pAgq —>rtp—>qg—risvalidiff (pAg—71) = p—
g — r is a theorem (why?) iff $ = =((pAg—> 1) > p — q — r)is not
satisfiable. The DAG of T'(¢) is depicted in Figure 1.15. The annotations
‘1’ etc indicate which nodes represent which sub-formulas. Notice that such
DAGs may be constructed by applying the translation clauses for T' to sub-
formulas in a bottom-up manner — sharing equal subgraphs were applicable.

74 Propositional logic

) “g»
“5” = entire formula -
“A” 37y »Q” ‘

- “pr o
“P=pAg—r ‘
“r =p_ 717 A
L - qg—r /

“o»
A

wgn_,

wp» ‘
—

A

NS

T

Fig. 1.15. The DAG for the translation of =((pAg — 1) = p — ¢ — r). Labels ‘1’
etc indicate which nodes represent what subformulas.

The findings of our SAT solver can be seen in Figure 1.16. The solver
concludes that the indicated node requires the marks T and F for (1.9) to be
met. Such contradictory constraints therefore imply that all formulas T'(¢)
whose DAG equals that of this figure are not satisfiable. In particular, all
such ¢ are unsatisfiable. This SAT solver has a linear running time in the
size of the DAG for T'(¢). Since that size is a linear function of the length
of ¢ — the translation T' causes only a linear blow-up — our SAT solver has
a linear running time in the length of the formula. This linearity came with
a price: our linear solver fails for all formulas of the form —(¢; A ¢2).

1.6.2 A cubic solver

When we applied our linear SAT solver, we saw two possible outcomes:
we either detected contradictory constraints, meaning that no formula rep-
resented by the DAG is satisfiable (e.g. Fig. 1.16); or we managed to force
consistent constraints on all nodes, in which case all formulas represented by

1.6 SAT solvers 75

- 1: T
|
- 2: F
|
A 3: T
/
4: T
|
5: F—
6: TA

its conjunction parent

and Ag, force F 4: T
its children and
A¢i force T 5 F
— a contradiction
10: T
7T 11: F

Fig. 1.16. The forcing rules, applied to the DAG of Figure 1.15, detect contradictory
constraints at the indicated node — implying that the initial constraint ‘1:T’ cannot
be realized. Thus, formulas represented by this DAG are not satisfiable.

this DAG are satisfiable with those constraints as a witness (e.g. Fig. 1.13).
Unfortunately, there is a third possibility: all forced constraints are consis-
tent with each other, but not all nodes are constrained! We already remarked
that this occurs for formulas of the form —(¢; A ¢2).

Recall that checking validity of formulas in CNF is very easy. We already
hinted at the fact that checking satisfiability of formulas in CNF is hard. To
illustrate, consider the formula

(pV(gvr)A(lpVv-g) A((gV-r)A((rV-p)A(=pV(~qV ﬂ?")))())))
1.11

in CNF — based on Example 4.2, page 77, in [Pap94]. Intuitively, this for-
mula should not be satisfiable. The first and last clause in (1.11) ‘say’ that
at least one of p, ¢, and r are false and true (respectively). The remain-
ing three clauses, in their conjunction, ‘say’ that p, ¢, and r all have the

76 Propositional logic

1: T A

Fig. 1.17. The DAG for the translation of the formula in (1.11). It has a A-spine
of length 4 as it is a conjunction of five clauses. Its linear analysis gets stuck: all
forced constraints are consistent with each other but several nodes, including all
atoms, are unconstrained.

same truth value. This cannot be satisfiable, and a good SAT solver should
discover this without any user intervention. Unfortunately, our linear SAT
solver can neither detect inconsistent constraints nor compute constraints
for all nodes. Figure 1.17 depicts the DAG for T'(¢), where ¢ is as in (1.11);
and reveals that our SAT solver got stuck: no inconsistent constraints were
found and not all nodes obtained constraints; in particular, no atom received
a mark! So how can we improve this analysis? Well, we can mimic the role
of LEM to improve the precision of our SAT solver. For the DAG with
marks as in Figure 1.17, pick any node n that is not yet marked. Then test
node n by making two independent computations:

1.6 SAT solvers 77

1. determine which temporary marks are forced by adding to the marks
in Figure 1.17 the T mark only to n; and

2. determine which temporary marks are forced by adding, again to the
marks in Figure 1.17, the F mark only to n.

If both runs find contradictory constraints, the algorithm stops and re-
ports that T'(¢) is unsatisfiable. Otherwise, all nodes that received the same
mark in both of these runs receive that very mark as a permanent one; that
is, we update the mark state of Figure 1.17 with all such shared marks.

We test any further unmarked nodes in the same manner until we either
find contradictory permanent marks, a complete witness to satisfiability (all
nodes have consistent marks), or we have tested all currently unmarked
nodes in this manner without detecting any shared marks. Only in the lat-
ter case does the analysis terminate without knowing whether the formulas
represented by that DAG are satisfiable.

Example 1.49 We revisit our stuck analysis of Figure 1.17. We test a
—-node and explore the consequences of setting that —-node’s mark to T;
Figure 1.18 shows the result of that analysis. Dually, Figure 1.19 tests the
consequences of setting that —-node’s mark to F. Since both runs reveal a
contradiction, the algorithm terminates, ruling that the formula in (1.11) is
not satisfiable.

In the exercises, you are asked to show that the specification of our cubic
SAT solver is sound. Its running time is indeed cubic in the size of the
DAG (and the length of original formula). One factor stems from the linear
SAT solver used in each test run. A second factor is introduced since each
unmarked node has to be tested. The third factor is needed since each new
permanent mark causes all unmarked nodes to be tested again.

We deliberately under-specified our cubic SAT solver, but any implemen-
tation or optimization decisions need to secure soundness of the analysis.
All replies of the form

1. ‘The input formula is not satisfiable’ and
bl

2. ‘The input formula is satisfiable under the following valuation ...
have to be correct. The third form of reply ‘Sorry, I could not figure this one
out.” is correct by definition. :-) We briefly discuss two sound modifications
to the algorithm that introduce some overhead, but may cause the algorithm
to decide many more instances. Consider the state of a DAG right after we
have explored consequences of a temporary mark on a test node.

78 Propositional logic

1: T A

temporary T mark
at test node;
explore consequences

5: T

6: F

a:l -

contradictory
g:F q ¢T ¢ constraints
at conjunction

A
b:F ~
c¢T p
Fig. 1.18. Marking an unmarked node with T and exploring what new constraints

would follow from this. The analysis shows that this test marking causes contra-
dictory constraints. We use lowercase letters ‘a:’ etc to denote temporary marks.

1. If that state — permanent plus temporary markings — contains con-
tradictory constraints, we can erase all temporary marks and mark
the test node permanently with the dual mark of its test. That is,
if marking node n with v resulted in a contradiction, it will get a
permanent mark v, where T = F and F = T; otherwise

2. if that state managed to mark all nodes with consistent constraints,
we report these markings as a witness of satisfiability and terminate
the algorithm.

If none of these cases apply, we proceed as specified: promote shared marks
of the two test runs to permanent ones, if applicable.

1.6 SAT solvers 79
1: T A

contradictory
constraints
at conjunction

temporary F mark
at test node; 5. T
explore consequences

Fig. 1.19. Marking the same unmarked node with F and exploring what new con-
straints would follow from this. The analysis shows that this test marking also
causes contradictory constraints.

Example 1.50 To see how one of these optimizations may make a differ-
ence, consider the DAG in Figure 1.20. If we test the indicated node with
T, contradictory constraints arise. Since any witness of satisfiability has to
assign some value to that node, we infer that it cannot be T. Thus, we may
permanently assign mark F to that node. For this DAG, such an optimiza-
tion does not seem to help. No test of an unmarked node detects a shared
mark or a shared contradiction. Our cubic SAT solver fails for this DAG.

80

Propositional logic
1: T

analysis gets stuck right away ‘

testing this node » A A
with T renders \ /
a contradiction

justifying to mark -

it with F permanently A ‘

AN y

\
P

Fig. 1.20. Testing the indicated node with T causes contradictory constraints, so we
may mark that node with F permanently. However, our algorithm does not seem
to be able to decide satisfiability of this DAG even with that optimization.

Exercises 1.1

1.7 Exercises

1. Use =, =, A and V to express the following declarative sentences in
propositional logic; in each case state what your respective proposi-

tional atoms p, ¢, etc. mean:

If the sun shines today, then it won’t shine tomorrow.
Robert was jealous of Yvonne, or he was not in a good mood.
If the barometer falls, then either it will rain or it will snow.
If a request occurs, then either it will eventually be acknowl-
edged, or the requesting process won’t ever be able to make
progress.

Cancer will not be cured unless its cause is determined and a
new drug for cancer is found.

If interest rates go up, share prices go down.

If Smith has installed central heating, then he has sold his car,
or he has not paid his mortgage.

Today it will rain or shine, but not both.

If Dick met Jane yesterday, they had a cup of coffee together,
or they took a walk in the park.

No shoes, no shirt, no service.
My sister wants a black and white cat.

1.7 Exercises 81

2. The formulas of propositional logic below implicitly assume the bind-
ing priorities of the logical connectives put forward in Convention 1.3.
Make sure that you fully understand those conventions by reinserting
as many brackets as possible. For example, given p A ¢ — r, change
it to (p A q¢) — r since A binds more tightly than —.

)
(b) (p—a) A=(rVp—q)
() (p—q) = (r—sVt)
(d) pV(~g—=pArT)
)
)
)

pPVp— g

Exercises 1.2
1. Prove the validity of the following sequents:

(@) (pAg)Ar,sANtEqAs

g—rEpP—=q9 = @—r)
p=>(g—rhp—rqbpor
p—=>qr—>skEpVr—qVs
pVgkr—= (pVg) Ar
(pV(g—p)Agkp
p—=>q,r—>skEpAr—gAs
p—=qk((pANg) = p)AN(— (PNq))
Fg—(—(p—(¢g—Dp))
*a)p=gArE@—=g9 A1)

Fp—q) — ((r—s)—= (pAr — qA s)); here you might be

able to ‘recycle’ and augment a proof from a previous exercise.
(w) p=qb—g—-p

*(v) pVergFp

82

Propositional logic

(w) np—=(r—q)kp—(gAr)
*x) p—(gVr),g—s,r—>skp—s
*(v) kA VpAT) EPA(gVT).
2. For the sequents below, show which ones are valid and which ones
aren’t:
*(a) p—>-~qkqg—p
*(b) =pV gk =(pAq)
(c) -p,pVagtg
(d) pVg,~qVrEtpvr
(e) p— (¢gVr),—gq,—rF —p without using the MT rule
(f) =pA-gF=(pVa)
)
)

EE S R

(8) pA-pE=(r—=g)A(r—q)
(h) p—>qg,s—>tkEpVs—gAnt
* (i) =(=pVa) Fp
3. Prove the validity of the sequents below:

“p—=qkFqg—p

(p—q) —r s—-p t, " sAt—qbr
(s—=pVEt—=>q9F(s—>qV(E—p)
(v) (pANg) = r, r—38, gA-sE —p.

4. Explain why intuitionistic logicians also reject the proof rule PBC.

1.7 Exercises 83
5. Prove the following theorems of propositional logic:

*(a) (P—=9) =9~ ((g—p) —p)
(b) Given a proof for the sequent of the previous item, do you now
have a quick argument for ((¢ — p) = p) = ((p — ¢) = q)?
(€ (p=a)A(g—=p) = ((PVa — (PAg)
*d) (=9 = ((-p=>9) =9
6. Natural deduction is not the only possible formal framework for
proofs in propositional logic. As an abbreviation, we write I" to de-
note any finite sequence of formulas ¢1, ¢o, ..., ¢, (n > 0). Thus, any
sequent may be written as I' I 9 for an appropriate, possibly empty,
I'. In this exercise we propose a different notion of proof, which
states rules for transforming valid sequents into valid sequents. For
example, if we have already a proof for the sequent I', ¢ F 1, then
we obtain a proof of the sequent I' - ¢ — 1 by augmenting this
very proof with one application of the rule —i. The new approach
expresses this as an inference rule between sequents:

o9y
I'¢g—

The rule assumption is written as

—i.

assumption

oo
i.e. the premise is empty. Such rules are called axioms.

(a) Express all remaining proof rules of Figure 1.2 in such a form.
(Hint: some of your rules may have more than one premise.)

(b) Explain why proofs of I' F %) in this new system have a tree-like
structure with T" - 1) as root.

(c) Prove pV (p Aq) F p in your new proof system.

7. Show that v/2 cannot be a rational number. Proceed by proof by
contradiction: assume that v/2 is a fraction k /1 with integers k and
I # 0. On squaring both sides we get 2 = k2/I2, or equivalently
21?2 = k2. We may assume that any common 2 factors of k and [have
been cancelled. Can you now argue that 2/ has a different number of
2 factors from k2? Why would that be a contradiction and to what?
8. There is an alternative approach to treating negation. Omne could
simply ban the operator — from propositional logic and think of ¢ —
1 as ‘being’ —¢. Naturally, such a logic cannot rely on the natural
deduction rules for negation. Which of the rules —i, —e, ——e and

84

Propositional logic

—-i can you simulate with the remaining proof rules by letting —¢
be ¢ — 17

. Let us introduce a new connective ¢ <> 1 which should abbreviate

(¢ —) A (¢p — ¢). Design introduction and elimination rules for
<> and show that they are derived rules if ¢ <> 9 is interpreted as

(@ =) A (P = 4).

Exercises 1.3

In order to facilitate reading these exercises we assume below the usual

conventions about binding priorities agreed upon in Convention 1.3.

1. Given the following formulas, draw their corresponding parse tree:

(a) p

—pV(p—q)

(pAg) = (=rV(g—T))

(s V (=p)) = (-p))

sV ((=p) = (=p)))

(s = (rvD)V((=g) A1) = ((=(p = 5)) = 1))
D =g A(r—(qV(=pAT))).

. For each formula below, list all its subformulas:

*(a) p—= (-pV (mmg = (P A Q)))
(b) (s=>rVvV(gAT)— (=(p—s)—>T)

(© (p= @A (r—=(gV(mpAr))).

. Draw the parse tree of a formula ¢ of propositional logic which is

*(a) a negation of an implication
(b) a disjunction whose disjuncts are both conjunctions
* (¢) a conjunction of conjunctions.

. For each formula below, draw its parse tree and list all subformulas:

*(a) =(s = (=(p = (g Vv —9))))
(b) (p— -9 V(pAT)—=38)V-r.

. For the parse tree in Figure 1.22 find the logical formula it represents.
. For the trees below, find their linear representations and check whether

they correspond to well-formed formulas:

1.7 Exercises 85

Fig. 1.21. A tree that represents an ill-formed formula.

(a) the tree in Figure 1.10 on page 45
(b) the tree in Figure 1.23.

* 7. Draw a parse tree that represents an ill-formed formula such that

(a) one can extend it by adding one or several subtrees to obtain
a tree that represents a well-formed formula;

(b) it is inherently ill-formed; i.e. any extension of it could not
correspond to a well-formed formula.

8. Determine, by trying to draw parse trees, which of the following
formulas are well-formed:

(@) pA=(pV—q) = (r—s)

(b) pA=(pVaAs) = (r—s)

(¢) pA=(pV As) = (r — 3s).
Among the ill-formed formulas above which ones, and in how many
ways, could you ‘fix’ by the insertion of brackets only?

Exercises 1.4
* 1. Construct the truth table for —p V ¢ and verify that it coincides with
the one for p — ¢. (By ‘coincide’ we mean that the respective columns
of T and F values are the same.)
2. Compute the complete truth table of the formula

*(@) (p—q) —p)—p
(b) represented by the parse tree in Figure 1.3 on page 35

86 Propositional logic

Fig. 1.22. A parse tree of a negated implication.

1.7 Exercises

5

Fig. 1.23. Another parse tree of a negated implication.

)

)

) ((p— —q) = —p) = ¢
) =9 V-9

) (p—¢q) —p)—p

) (pvg) =r)=((p—=>r)Vig—rT))
i) —q) — (=p—).

87

3. Given a valuation and a parsetree of a formula, compute the truth
value of the formula for that valuation (as done in a bottom-up fash-

ion in Figure 1.7 on page 40) with the parse tree in

* (a) Figure 1.10 on page 45 and the valuation in which ¢ and r

evaluate to T and p to F;

(b) Figure 1.4 on page 37 and the valuation in which ¢ evaluates

to T and p and r evaluate to F;

(c) Figure 1.23 where we let p be T, ¢ be F and r be T; and
(d) Figure 1.23 where we let p be F, ¢ be T and r be F.

4. Compute the truth value on the formula’s parse tree, or specify the

corresponding line of a truth table where

88

Propositional logic

*(a) p evaluates to F, g to T and the formula is p — (=g V (¢ — p))
*(b) the formula is =((—g A (p — r)) A (r — q)), p evaluates to F, g
to T and r evaluates to T.

* 5. A formula is valid iff it computes T for all its valuations; it is satisfiable

iff it computes T for at least one of its valuations. Is the formula of
the parse tree in Figure 1.10 on page 45 valid? Is it satisfiable?

. Let * be a new logical connective such that p * ¢ does not hold iff p

and ¢ are either both false or both true.

(a) Write down the truth table for p x q.

(b) Write down the truth table for (p * p) * (g * q).

(c) Does the table in (b) coincide with a table in Figure 1.6
(page 39)? If so, which one?

(d) Do you know # already as a logic gate in circuit design? If so,
what is it called?

. These exercises let you practice proofs using mathematical induction.

Make sure that you state your base case and inductive step clearly.
You should also indicate where you apply the induction hypothesis.

(a) Prove that
2-1-1)+2-2-D+@2-3-1)+---+2-n—-1)=n?

by mathematical induction on n > 1.
(b) Let k and ! be natural numbers. We say that k is divisible
by [if there exists a natural number p such that £k = p - [.
For example, 15 is divisible by 3 because 15 = 5-3. Use
mathematical induction to show that 11" — 4" is divisible by
7 for all natural numbers n > 1.
* (¢) Use mathematical induction to show that

. 1)-(2 1
124924324 .. 42" (n +)6(”+)

for all natural numbers n > 1.

*(d) Prove that 2" > n + 12 for all natural numbers n > 4. Here
the base case is n = 4. Is the statement true for any n < 47

(e) Suppose a post office sells only 2¢ and 3¢ stamps. Show that

any postage of 2¢, or over, can be paid for using only these
stamps. Hint: use mathematical induction on n, where nd is
the postage. In the inductive step consider two possibilities:
first, nd¢ can be paid for using only 2¢ stamps. Second, paying
nd requires the use of at least one 3¢ stamp.

1.7 Exercises 89

(f) Prove that for every prefix of a well-formed propositional logic
formula the number of left brackets is greater or equal to the
number of right brackets.

* 8. The Fibonacci numbers are most useful in modelling the growth of

populations. We define them by F; & 1, F, £ 1 and Foi LF, +
F,_1 for all n > 2. So F3 P +F=1+1=2etc. Show the
assertion ‘Fj, is even.” by mathematical induction on n > 1. Note
that this assertion is saying that the sequence Fj, Fg, Fy, ... consists
of even numbers only.

9. Consider the function rank, defined by

rank(p) = 1
rank(~¢) = 1+ rank(¢)
rank(¢ o) = 1+ max(rank(¢),rank(?))

where p is any atom, o € {—,V, A} and max(n,m) is n if n > m and
m otherwise. Recall the concept of the height of a formula (Defini-
tion 1.32 on page 44). Use mathematical induction on the height of
¢ to show that rank(¢) is nothing but the height of ¢ for all formulas
¢ of propositional logic.

*10. Here is an example of why we need to secure the base case for math-
ematical induction. Consider the assertion

‘The number n? 4+ 5n + 1 is even for all n > 1.’

(a) Prove the inductive step of that assertion.
(b) Show that the base case fails to hold.
(¢) Conclude that the assertion is false.

)

(d) Use mathematical induction to show that n? 4 5n + 1 is odd
for all n > 1.

11. For the soundness proof of Theorem 1.35 on page 47,

(a) explain why we could not use mathematical induction but had
to resort to course-of-values induction;

(b) give justifications for all inferences that were annotated with
‘why?” and

(c) complete the case analysis ranging over the final proof rule
applied; inspect the summary of natural deduction rules in
Figure 1.2 on page 27 to see which cases are still missing. Do
you need to include derived rules?

90

12.

13.

14.

15.

16.

17.

Propositional logic

Show that the following sequents are not valid by finding a valuation
in which the truth values of the formulas to the left of - are T and
the truth value of the formula to the right of I is F.

(a) -pV(g—>p)F-pAg
(b) -r > (pVaq),rAN—-qkr—gq
*)p=>(@—=>r)kp—=(r—q)
(d) =p,pVat —q

(€) p— (mgVr),-rk =g — -p.
For each of the following invalid sequents, give examples of natural
language declarative sentences for the atoms p, ¢ and r such that the
premises are true, but the conclusion false.

*(a) pVatpAg

*(b) =p = —qk =g — -p

(c) p—=atbpVye

(d)p=@@vr)Ep—=gAlP—r).

Find a formula of propositional logic ¢ which contains only the atoms
p, q and r and which is true only when p and ¢ are false, or when
=g A (pVr)is true.

Use mathematical induction on n to prove the theorem ((¢1 A (p2 A
(- Adn)...) =) = (1= (d2 = (. (=) ..2))))-

Prove the validity of the following sequents needed to secure the com-
pleteness result for propositional logic:

(a) ¢1 Ao (1 — ¢2)
(b) g1 Ao = d1 — ¢o
(€) "p1 Aot 1 — o

(d) ¢p1 Ao dp1 — ¢

(€) =1 Ao b =(d1 A ¢2)
(f) =1 Ao = =(d1 A b2)
(8) 1 A—gat —(h1 A o)
(h) =1 A= = =(h1 V #2)
)

)

D= [eIR="

i) g1 Ao 1V o
g1 Ao b d1 Vo
(k) ¢1 A~ = b1V o

Does F ¢ hold for the ¢ below? Please justify your answer.

(a) p—=qVig—r)
*() ((g— (pV(g—p))V-lp—q) —p

=

1.7 Exercises 91

Exercises 1.5
1. Show that a formula ¢ is valid iff T = ¢, where T is an abbreviation
for an instance p V —p of LEM.
2. Which of these formulas are semantically equivalent to p — (g V r)?
(a) ¢V (=pVr)
(b) gA—r —p
(c) pA—T —q
(d) =g A=r — —p.

*

*

3. An adequate set of connectives for propositional logic is a set such
that for every formula of propositional logic there is an equivalent
formula with only connectives from that set. For example, the set
{—, V} is adequate for propositional logic, because any occurrence of
A and — can be removed by using the equivalences ¢ — ¢ = ¢ V¢
and ¢ A = —(—¢ V).

(a) Show that {—,A}, {—,—} and {—, L} are adequate sets of
connectives for propositional logic. (In the latter case, we are
treating L as a nullary connective.)

(b) Show that, if C C {—,A,V,—, L} is adequate for propositional
logic, then = € C or L € C. (Hint: suppose C contains neither
= nor | and consider the truth value of a formula ¢, formed
by using only the connectives in C, for a valuation in which
every atom is assigned T.)

(c) Is {¢+,~} adequate? Prove your answer.

4. Use soundness or completeness to show that a sequent ¢1, ¢o, ..., dn F
1 has a proof iff ¢1 = ¢o — ... ¢, — 9 is a tautology.
5. Show that the relation = is

(a) reflexive: ¢ = ¢ holds for all ¢

(b) symmetric: ¢ =1 implies) = ¢ and

(c) transitive: ¢ =1 and 9 = n imply ¢ = 1.
6. Show that, with respect to =,

(a) A and V are idempotent:

(i) pA¢p=¢
(i) V=9

(b) A and V are commutative:
(i) AP =9 Ag

(i) vy =9 Ve

(c) A and V are associative:

92

Propositional logic
(i) ¢A (Y An) =(dAY)An
(ii) ¢V (pVvn)=(pVe)Vn
(d) A and V are absorptive:
) pn(evn) =46
(i) vV (gAn) =¢
(e) A and V are distributive:
(i) ¢A(p VD) =(6AY)V(PAN)
(i) oV AN =(8VY)A(6Vn)

(f) = allows for double negation: ¢ = ——¢ and

(g) A and V satisfies the de Morgan rules:
1) ~(¢AP) =9V -y
*(ii) —(¢V) =—pA .

7. Construct a formula in CNF based on each of the following truth
tables:

*(a)

T I T R RS I R B S
I I R T Y
IS I R R RS R
*n»—]nj'ﬁ»a'ﬂ'ﬂ'—l‘;?

* 8.

* 0.
10.

11.

12.

13.

14.

15.

1.7 Exercises 93

I I B I Y
I T T)
T I T T T I R O
'—1-:-1'-11»—]'11'11'—1'11‘;%

Write a recursive function IMPL_FREE which requires a (parse tree of a)
propositional formula as input and produces an equivalent implication-
free formula as output. How many clauses does your case statement
need? Recall Definition 1.27 on page 33.

Compute CNF (NNF (IMPL_FREE —(p — (—(¢ A (—p — q))))))-

Use structural induction on the grammar of formulas in CNF to show
that the ‘otherwise’ case in calls to DISTR applies iff both 7; and 79
are of type D in (1.6) on page 57.

Use mathematical induction on the height of ¢ to show that the call
CNF (NNF (IMPL_FREE ¢)) returns, up to associativity, ¢ if the latter
is already in CNF.

Why do the functions CNF and DISTR preserve NNF and why is this
important?

For the call CNF (NNF (IMPL_FREE (¢))) on a formula ¢ of propositional
logic, explain why

(a) its output is always a formula in CNF
(b) its output is semantically equivalent to ¢
(c) that call always terminates.

Show that all the algorithms presented in Section 1.5.2 terminate on
any input meeting their precondition. Can you formalise some of your
arguments? Note that algorithms might not call themselves again on
formulas with smaller height. E.g. the call of CNF (¢1 V ¢2) results
in a call DISTR (CNF(¢1),CNF(¢2)), where CNF(¢;) may have greater
height than ¢;. Why is this not a problem?

Apply algorithm HORN from page 68 to each of these Horn formulas:

*(a) (pAgAw — LYA({E—= L)A(r = p)A(T = r)A(T = A (u —
)N (T = u)

94 Propositional logic

(b) PAgAhw = DAt = L)A(r =2 p)A(T =2 1r)A(T —
DA Au—=w)A(u—s)A(T = u)

(c) (PAgAs—=DP)AN(gAT = Dp)A(pAs—s)

(d) (pAgAs—= L)A(gAT = D)A(T —3)

(e) (p5 = p11) NP2 Ap3s Aps — p13) A(T = ps) A(ps Apir — L)

B (To2gA (T =>s)A(w—=> L)APAgAs = L)A(v —

SYN(T =r)A(r—p)
() (T = OA(T = s)A(w = L)A(pAgAs = v)A(v = S)AN(T —
r)A(r — p).

16. Explain why the algorithm HORN fails to work correctly if we change
the concept of Horn formulas by extending the clause for P on page 67
toPu=1 | T | p|-p?

17. What can you say about the CNF of Horn formulas. More precisely,
can you specify syntactic criteria for a CNF that ensure that there is
an equivalent Horn formula? Can you describe informally programs
which would translate from one form of representation into another?

Exercises 1.6
1. Use mathematical induction to show that, for all ¢ of (1.3) on page 34,

(a) T(¢) can be generated by (1.10) on page 71,

(b) T(¢) has the same set of valuations as ¢, and

(c) the set of valuations in which ¢ is true equals the set of valu-
ations in which T'(¢) is true.

* 2. Show that all rules of Figure 1.14 (page 73) are sound: if all current
marks satisfy the invariant (1.9) from page 70, then this invariant
still holds if the derived constraint of that rule becomes an additional
mark.

3. In Figure 1.16 on page 75 we detected a contradiction which secured
the validity of the sequent pAgq¢ — r F p — ¢ — r. Use the same
method with the linear SAT solver to show that the sequent F (p —
q)V (r — p) is valid. (This is interesting since we proved this validity
in natural deduction with a judicious choice of the proof rule LEM;
and the linear SAT solver does not employ any case analysis.)

* 4. Consider the sequent p V ¢,p — r F r. Determine a DAG which
is not satisfiable iff this sequent is valid. Tag the DAG’s root node
with ‘1: T, apply the forcing laws to it, and extract a witness to the
DAG'’s satisfiability. Explain in what sense this witness serves as an
explanation for the fact that p vV ¢,p — r | r is not valid.

10.

*11.

12.

13.

14.

1.7 Exercises 95

. Explain in what sense the SAT solving technique, as presented in this

chapter, can be used to check whether formulas are tautologies.

. For ¢ from (1.10), can one reverse engineer ¢ from the DAG of T'(¢)?
. Consider a modification of our method which initially tags a DAG’s

root node with ‘1: F.” In that case,

(a) are the forcing laws still sound? If so, state the invariant.
(b) what can we say about the formula(s) a DAG represents if

(i) we detect contradictory constraints?
(ii) we compute consistent forced constraints for each node?

. Given an arbitrary Horn formula ¢, compare our linear SAT solver —

applied to T'(¢) — to the marking algorithm — applied to ¢. Discuss
similarities and differences of these approaches.

. Consider Figure 1.20 on page 80. Verify that

(a) its test produces contradictory constraints
(b) its cubic analysis does not decide satisfiability, regardless of
whether the two optimizations we described are present.

Verify that the DAG of Figure 1.17 (page 76) is indeed the one ob-
tained for T'(¢), where ¢ is the formula in (1.11) on page 75.

An implementor may be concerned with the possibility that the an-
swers to the cubic SAT solver may depend on a particular order in
which we test unmarked nodes or use the rules in Figure 1.14. Give
a semi-formal argument for why the analysis results don’t depend on
such an order.

Find a formula ¢ such that our cubic SAT solver cannot decide the
satisfiability of T'(¢).

Advanced Project: Write a complete implementation of the cubic
SAT solver described in Section 1.6.2. It should read formulas from
the keyboard or a file; should assume right-associativity of V, A, and
— (respectively); compute the DAG of T'(¢); perform the cubic SAT
solver next. Think also about including appropriate user output,
diagnostics, and optimizations.

Show that our cubic SAT solver specified in this section

(a) terminates on all syntactically correct input;

(b) satisfies the invariant (1.9) after the first permanent marking;
(c) preserves (1.9) for all permanent markings it makes;

(d) computes only correct satisfiability witnesses;

(e) computes only correct ‘not satisfiable’ replies; and

96 Propositional logic

(f) remains to be correct under the two modifications described
on page 77 for handling results of a node’s two test runs.

1.8 Bibliographic notes

Logic has a long history stretching back at least 2000 years, but the truth-
value semantics of propositional logic presented in this and every logic text-
book today was invented only about 160 years ago, by G. Boole [Boob54].
Boole used the symbols + and - for disjunction and conjunction.

Natural deduction was invented by G. Gentzen [Gen69], and further de-
veloped by D. Prawitz [Pra65]. Other proof systems existed before then,
notably axiomatic systems which present a small number of axioms together
with the rule modus ponens (which we call —e). Proof systems often present
as small a number of axioms as possible; and only for an adequate set of con-
nectives such as — and —. This makes them hard to use in practice. Gentzen
improved the situation by inventing the idea of working with assumptions
(used by the rules —i, —i and Ve) and by treating all the connectives sepa-
rately.

Our linear and cubic SAT solvers are variants of Stalmarck’s method
[SS90], a SAT solver which is patented in Sweden and in the United States
of America.

Further historical remarks, and also pointers to other contemporary books
about propositional and predicate logic, can be found in the bibliographic
remarks at the end of Chapter 2. For an introduction to algorithms and
data structures see e.g. [Wei98].

3
Verification by model checking

3.1 Motivation for verification

There is a great advantage in being able to verify the correctness of com-
puter systems, whether they are hardware, software, or a combination. This
is most obvious in the case of safety-critical systems, but also applies to
those that are commercially critical, such as mass-produced chips, mission
critical, etc. Formal verification methods have quite recently become usable
by industry and there is a growing demand for professionals able to apply
them. In this chapter, and the next one, we examine two applications of
logics to the question of verifying the correctness of computer systems, or
programs.

Formal verification techniques can be thought of as comprising three parts:

e A framework for modelling systems, typically a description language of
some sort;

e A specification language for describing the properties to be verified;

e A wverification method to establish whether the description of a system
satisfies the specification.

Approaches to wverification can be classified according to the following
criteria:

Proof-based vs. model-based. In a proof-based approach, the system
description is a set of formulas I" (in a suitable logic) and the spec-
ification is another formula ¢. The verification method consists of
trying to find a proof that I' |- ¢. This typically requires guidance
and expertise from the user.

In a model-based approach, the system is represented by a model
M for an appropriate logic. The specification is again represented
by a formula ¢ and the verification method consists of computing

180

3.1 Motivation for verification 181

whether a model M satisfies ¢ (written M E ¢). This computation
is usually automatic for finite models.

In Chapters 1 and 2, we could see that logical proof systems are
often sound and complete, meaning that I' |- ¢ (provability) holds
if, and only if, ' F ¢ (semantic entailment) holds, where the latter
is defined as follows: for all models M, if for all ¢y € T" we have
M E 1, then M E ¢. Thus, we see that the model-based approach
is potentially simpler than the proof-based approach, for it is based
on a single model M rather than a possibly infinite class of them.

Degree of automation. Approaches differ on how automatic the method
is; the extremes are fully automatic and fully manual. Many of the
computer-assisted techniques are somewhere in the middle.

Full- vs. property-verification. The specification may describe a single
property of the system, or it may describe its full behaviour. The
latter is typically expensive to verify.

Intended domain of application, which may be hardware or software;
sequential or concurrent; reactive or terminating; etc. A reactive
system is one which reacts to its environment and is not meant to
terminate (e.g. operating systems, embedded systems and computer
hardware).

Pre- vs. post-development. Verification is of greater advantage if intro-
duced early in the course of system development, because errors
caught earlier in the production cycle are less costly to rectify. (It is
alleged that Intel lost millions of dollars by releasing their Pentium
chip with the FDIV error.)

This chapter concerns a verification method called model checking. In
terms of the above classification, model checking is an automatic, model-
based, property-verification approach. It is intended to be used for concur-
rent, reactive systems and originated as a post-development methodology.
Concurrency bugs are among the most difficult to find by testing (the activ-
ity of running several simulations of important scenarios), since they tend to
be non-reproducible or not covered by test cases, so it is well worth having
a verification technique that can help one to find them.

The Alloy system described in Chapter 2 is also an automatic, model-
based, property-verification approach. The way models are used is slightly
different, however. Alloy finds models which form counterexamples to as-
sertions made by the user. Model checking starts with a model described
by the user, and discovers whether hypotheses asserted by the user are valid
on the model. If they are not, it can produce counterexamples, consisting of

182 Verification by model checking

execution traces. Another difference between Alloy and model checking is
that model checking (unlike Alloy) focusses explicitly on temporal properties
and the temporal evolution of systems.

By contrast, Chapter 4 describes a very different verification technique
which in terms of the above classification is a proof-based, computer-assisted,
property-verification approach. It is intended to be used for programs which
we expect to terminate and produce a result.

Model checking is based on temporal logic. The idea of temporal logic is
that a formula is not statically true or false in a model, as it is in propo-
sitional and predicate logic. Instead, the models of temporal logic contain
several states and a formula can be true in some states and false in others.
Thus, the static notion of truth is replaced by a dynamic one, in which the
formulas may change their truth values as the system evolves from state
to state. In model checking, the models M are transition systems and the
properties ¢ are formulas in temporal logic. To verify that a system satisfies
a property, we must do three things:

e Model the system using the description language of a model checker, ar-
riving at a model M.

e Code the property using the specification language of the model checker,
resulting in a temporal logic formula ¢.

e Run the model checker with inputs M and ¢.

The model checker outputs the answer ‘yes’ if M E ¢ and ‘no’ otherwise; in
the latter case, most model checkers also produce a trace of system behaviour
which causes this failure. This automatic generation of such ‘counter traces’
is an important tool in the design and debugging of systems.

Since model checking is a model-based approach, in terms of the classifica-
tion given earlier, it follows that in this chapter, unlike in the previous two,
we will not be concerned with semantic entailment (I' F ¢), or with proof
theory (I' F ¢), such as the development of a natural deduction calculus for
temporal logic. We will work solely with the notion of satisfaction, i.e. the
satisfaction relation between a model and a formula (M E ¢).

There is a whole zoo of temporal logics that people have proposed and
used for various things. The abundance of such formalisms may be organised
by classifying them according to their particular view of ‘time.” Linear-time
logics think of time as a set of paths, where a path is a sequence of time
instances. Branching-time logics represent time as a tree, rooted at the
present moment and branching out into the future. Branching time appears
to make the non-deterministic nature of the future more explicit. Another
quality of time is whether we think of it as being continuous or discrete.

3.2 Linear-time temporal logic 183

The former would be suggested if we study an analogue computer, the latter
might be preferred for a synchronous network.

Temporal logics have a dynamic aspect to them, since the truth of a for-
mula is not fixed in a model, as it is in predicate or propositional logic, but
depends on the time-point inside the model. In this chapter, we study a
logic where time is linear, called Linear-time Temporal Logic (LTL), and
another where time is branching, namely Computation Tree Logic (CTL).
These logics have proven to be extremely fruitful in verifying hardware and
communication protocols; and people are beginning to apply them to the
verification of software. Model checking is the process of computing an an-
swer to the question of whether M, s E ¢ holds, where ¢ is a formula of
one of these logics, M is an appropriate model of the system under con-
sideration, s is a state of that model and F is the underlying satisfaction
relation.

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of ¢. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are
very powerful, for they allow us to focus on the essentials of our particular
concern.

3.2 Linear-time temporal logic

Linear-time temporal logic, or LTL for short, is a temporal logic, with con-
nectives that allow us to refer to the future. It models time as a sequence of
states, extending infinitely into the future. This sequence of states is some-
times called a computation path, or simply a path. In general, the future is
not determined, so we consider several paths, representing different possible
futures, any one of which might be the ‘actual’ path that is realised.

We work with a fixed set Atoms of atomic formulas (such as p,q,r,..., or
P1,P2,---). These atoms stand for atomic facts which may hold of a system,
like ‘Printer Q5 is busy,” or ‘Process 3259 is suspended,” or ‘The content
of register R1 is the integer value 6. The choice of atomic descriptions
obviously depends on our particular interest in a system at hand.

184 Verification by model checking

3.2.1 Syntax of LTL

Definition 3.1 Linear-time temporal logic (LTL) has the following syntax
given in Backus Naur form:

¢ = T|Llp[(=9)[(6A¢)|(dV)| (s~ ¢)
| (Xo) [(FP)[(GP)[(¢UQ)[(@Wh)[(pR¢) (3.1)

where p is any propositional atom from some set Atoms.

Thus, the symbols T and | are LTL formulas, as are all atoms from
Atoms; and —¢ is an LTL formula if ¢ is one, etc. The connectives X, F,
G, U, R, and W are called temporal connectives. X means ‘neXt state,’
F means ‘some Future state,” and G means ‘all future states (Globally).’
The next three, U, W and R are called ‘Until,” ‘Release’ and ‘Weak-until’
respectively. We will look at the precise meaning of all these connectives in
the next section; for now, we concentrate on their syntax.

Here are some examples of LTL formulas:

e (Fp)A(Ga)) = (pWr))

e (F(p— (Gr)) V((—q) U p)), the parse tree of this formula is illustrated
in Figure 3.1.

e (pW(gWr))

e (G(Fp)) = (F(qVs)))-

It’s boring to write all those brackets, and makes the formulas hard to
read. Many of them can be omitted without introducing ambiguities; for
example, (p — (F ¢q)) could be written p — F ¢ without ambiguity. Others,
however, are required to resolve ambiguities. In order to omit some of those,
we assume similar binding priorities for the LTL connectives to those we
assumed for propositional and predicate logic.

Convention 3.2 The unary connectives (consisting of — and the temporal
connectives X, F and G) bind most tightly. Next in the order come U, R
and W; then come A and V; and after that comes —.

These binding priorities allow us to drop some brackets without introduc-
ing ambiguity. The examples above can be written

e FpANGgq—opWr

e F(p—>Gr)Vv—-qUp
o pW(gWr)

e GFp—>F(qVs).

3.2 Linear-time temporal logic 185

> O ®
© © @

Fig. 3.1. The parse tree of (F (p = Gr) V (=q U p)).

The brackets we retained were in order to override the priorities of Conven-
tion 3.2, or to disambiguate cases which the convention does not resolve.
For example, with no brackets at all, the second formula would become
Fp — GrV —q U p, corresponding to the parse tree of Figure 3.2, which is
quite different.

The following are not well-formed formulas:

e Ur — since U is binary, not unary
e p G g — since G is unary, not binary.

Definition 3.3 A subformula of an LTL formula ¢ is any formula 1) whose
parse tree is a subtree of ¢’s parse tree.

The subformulas of p W (¢ U r), e.g., are p, ¢, 7, g Ur and p W (¢ U r).

3.2.2 Semantics of LTL

The kinds of systems we are interested in verifying using LTL may be mod-
elled as transition systems. A transition system models a system by means
of states (static structure) and transitions (dynamic structure). More for-
mally:

186 Verification by model checking

Fig. 3.2. The parse tree of Fp — Gr V =¢ U p, assuming binding priorities of
Convention 3.2.

Definition 3.4 A transition system M = (S,—,L) is a set of states S
endowed with a transition relation — (a binary relation on S), such that
every s € S has some s’ € S with s — ', and a labelling function L: S —
P(Atoms).

Transition systems are also simply called models in this chapter. So a model
has a collection of states S, a relation —, saying how the system can move
from state to state, and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that particular state. We write
P(Atoms) for the power set of Atoms, a collection of atomic descriptions.
For example, the power set of {p,q} is {0, {p}, {q},{p,q}}. A good way of
thinking about L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic (we called that
a valuation). The difference now is that we have more than one state, so
this assignment depends on which state s the system is in: L(s) contains all
atoms which are true in state s.

We may conveniently express all the information about a (finite) transition
system M using directed graphs whose nodes (which we call states) contain
all propositional atoms that are true in that state. For example, if our
system has only three states sp, s1 and ss; if the only possible transitions
between states are sy — s1, Sg — 82, 81 — Sg, S| — S92 and sa — S9; and

3.2 Linear-time temporal logic 187

DN
@ ¥
S1 0.

Fig. 3.3. A concise representation of a transition system M = (S, —, L) as a di-
rected graph. We label state s with [iff [€ L(s).

S1 51

S0 S0

\

S92 52

\ S3 \ S3

S4 S4

Sd

Fig. 3.4. On the left, we have a system with a state s4 that does not have any
further transitions. On the right, we expand that system with a ‘deadlock’ state
sq such that no state can deadlock; of course, it is then our understanding that
reaching the ‘deadlock’ state sq corresponds to deadlock in the original system.

if L(so) = {p, ¢}, L(s1) = {¢,r} and L(s2) = {r}, then we can condense all
this information into Figure 3.3. We prefer to present models by means of
such pictures whenever that is feasible.

The requirement in Definition 3.4 that for every s € S there is at least one
s’ € S such that s — s’ means that no state of the system can ‘deadlock.’
This is a technical convenience, and in fact it does not represent any real
restriction on the systems we can model. If a system did deadlock, we
could always add an extra state s; representing deadlock, together with
new transitions s — s4 for each s which was a deadlock in the old system,
as well as sy — s4. See Figure 3.4 for such an example.

188 Verification by model checking

/50\82\52
/\ @ @

VA \Q

Fig. 3.5. Unwinding the system of Figure 3.3 as an infinite tree of all computation
paths beginning in a particular state.

Definition 3.5 A path in a model M = (S, —, L) is an infinite sequence of
states s1,s2,83,... in S such that, for each ¢ > 1, s; — s;11. We write the
path as s1 — s9 — ...

Consider the path m = s1 — s9 — It represents a possible future of
our system: first it is in state s, then it is in state sg, and so on. We write
7' for the suffix starting at s;, e.g. 7 is 53 — s4 — ...

It is useful to visualise all possible computation paths from a given state s
by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state sg, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S,—, L) be a model and # = s; — ... be a path
in M. Whether 7 satisfies an LTL formula is defined by the satisfaction
relation F as follows:

1. tET
2. mH L

3.2 Linear-time temporal logic 189
S0 S1 82 S3 S84 S5 S St S8 S9 S10

~ J

D

q

Fig. 3.6. An illustration of the meaning of Until in the semantics of LTL. Suppose
p is satisfied at (and only at) ss3, s4, s5, S6, 57, 88 and ¢ is satisfied at (and only at)
sg. Only the states s3 to sg each satisfy p U ¢ along the path shown.

3. mEpiff pe L(sy)

4. tE-¢iff mH ¢

5. TEP1 Ao iff TFE ¢1 and 7 F ¢

6. TEP1 Vo iff mE Py or mE ¢

7. mE ¢1 — ¢o iff m E ¢po whenever 7 E ¢

8. TEX¢iff 2 F ¢

9. nEGoiff, foralli>1, 7' F ¢

10. 7 E F ¢ iff there is some i > 1 such that 7° F ¢

11. 7 E ¢ U 4 iff there is some i > 1 such that #* F 4 and for all
j=1,...,i—1 we have 7/ E ¢

12. mFE ¢ W 4 iff either there is some i > 1 such that 7’ F ¢ and for all
j=1,...,i—1 we have 7/ E ¢; or for all k£ > 1 we have 7 E ¢

13. ™ E ¢ R 4 iff either there is some i > 1 such that 7 E ¢ and for all
j=1,...,1 we have 7/ E 4, or for all £ > 1 we have 7% k 4.

Clauses 1 and 2 reflect the facts that T is always true, and L is always false.
Clauses 3—7 are similar to the corresponding clauses we saw in propositional
logic. Clause 8 removes the first state from the path, in order to create a
path starting at the ‘next’ (second) state.

Notice that clause 3 means that atoms are evaluated in the first state along
the path in consideration. However, that doesn’t mean that all the atoms
occuring in an LTL formula refer to the first state of the path; if they are in
the scope of a temporal connective, e.g. in G (p — X g), then the calculation
of satisfaction involves taking suffices of the path in consideration, and the
atoms refer to the first state of those suffices.

Let’s now look at clauses 11-13, which deal with the binary temporal
connectives. U, which stands for ‘until,’ is the most commonly encountered
one of these. The formula ¢1 U ¢ holds on a path if it is the case that ¢
holds continuously until ¢o holds. Moreover, ¢1 U ¢9 actually demands that
¢2 does hold in some future state. See Figure 3.6 for illustration: each of
the states s3 to sg satisfies p U ¢ along the path shown, but sy to s3 don’t.

The other binary connectives are W, standing for ‘weak until,” and R,
standing for ‘release.” Weak-until is just like U, except that ¢ W 1 does not

190 Verification by model checking

require that 1 is eventually satisfied along the path in question, which is
required by ¢ U 1. Release R is the dual of U; that is, ¢ R 1) is equivalent to
—(—=¢ U —p). It is called ‘release’ because clause 11 determines that 1) must
remain true up to and including the moment when ¢ becomes true (if there
is one); ¢ ‘releases’ 1. R and W are actually quite similar; the differences
are that they swap the roles of ¢ and v, and the clause for W has an 7 — 1
where R has ¢. Since they are similar, why do we need both? We don’t; they
are interdefinable, as we will see later. However, it’s useful to have both. R
is useful because it is the dual of U, while W is useful because it is a weak
form of U.

Note that neither the strong version (U) or the weak version (W) of until
says anything about what happens after the until has been realised. This
is in contrast with some of the readings of ‘until’ in natural language. For
example, in the sentence ‘I smoked until I was 22’ it is not only expressed
that the person referred to continually smoked up until he or she was 22
years old, but we also would interpret such a sentence as saying that this
person gave up smoking from that point onwards. This is different from the
semantics of until in temporal logic. We could express the sentence about
smoking by combining U with other connectives; for example, by asserting
that it was once true that s U (¢ A G —s), where s represents ‘I smoke’ and
t represents ‘I am 22.’

Remark 3.7 Notice that, in clauses 9-13 above, the future includes the
present. This means that, when we say ‘in all future states,” we are including
the present state as a future state. It is a matter of convention whether we
do this, or not. As an exercise, you may consider developing a version of
LTL in which the future excludes the present. A consequence of adopting
the convention that the future shall include the present is that the formulas
Gp—p,p— qUpand p— Fp are true in every state of every model.

So far we have defined a satisfaction relation between paths and LTL for-
mulas. However, to verify systems, we would like to say that a model as
a whole satisfies an LTL formula. This is defined to hold whenever every
possible execution path of the model satisfies the formula.

Definition 3.8 Suppose M = (S,—, L) is a model, s € S, and ¢ an LTL
formula. We write M, s F ¢ if, for every execution path m of M starting at
s, we have 7 F ¢.

If M is clear from the context, we may abbreviate M, s E ¢ by s F ¢.

3.2 Linear-time temporal logic 191

It should be clear that we have outlined the formal foundations of a pro-
cedure that, given ¢, M and s, can check whether M, s F ¢ holds. Later
in this chapter, we will examine algorithms which implement this calcula-

tion. Let us now look at some example checks for the system in Figures 3.3
and 3.5.

1.

10.

M, so E p A ¢ holds since the atomic symbols p and ¢ are contained
in the node of sy: ™ E p A q for every path 7 beginning in s.

. M, sg E =r holds since the atomic symbol r is not contained in node

S$0-

. M, s9 E T holds by definition.
. M, sg E Xr holds since all paths from sy have either s; or sy as their

next state, and each of those states satisfies r.

. M, so EX (g Ar) does not hold since we have the rightmost compu-

tation path sy — so — s9 — so — ... in Figure 3.5, whose second
node s contains r, but not q.

. M, s0 E G=(pAr) holds since all computation paths beginning in sg

satisfy G —(p A r), i.e. they satisfy =(p A) in each state along the
path. Notice that G ¢ holds in a state if, and only if, ¢ holds in all
states reachable from the given state.

For similar reasons, M, so E G r holds (note the sy instead of sg).

. For any state s of M, we have M,s E F (=g Ar) — F Gr. This says

that if any path 7 beginning in s gets to a state satisfying (—g A 1),
then the path 7 satisfies F Gr. Indeed this is true, since if the path
has a state satisfying (=g A r) then (since that state must be s3)
the path does satisfy F Gr. Notice what F Gr says about a path:
eventually, you have continuously r.

. The formula G F p expresses that p occurs along the path in question

infinitely often. Intuitively, it’s saying: no matter how far along the
path you go (that’s the G part) you will find you still have a p in front
of you (that’s the F part). For example, the path sy — s; — sg —
s1 — ... satisfies GFp. But the path sp — s9 — s9 — s — ...
doesn’t.

In our model, if a path from sy has infinitely many ps on it then
it must be the path sy — s1 — s — s1 — ..., and in that case
it also has infinitely many rs on it. So, M,s90 F GFp — GFr.
But it is not the case the other way around! It is not the case that
M,so E GFr — GFp, because we can find a path from sy which
has infinitely many rs but only one p.

192 Verification by model checking

3.2.3 Practical patterns of specifications

What kind of practically relevant properties can we check with formulas of
LTL? We list a few of the common patterns. Suppose atomic descriptions
include some words such as busy and requested. We may require some of the
following properties of real systems:

e It is impossible to get to a state where started holds, but ready does not
hold:
G—(started A —ready)
The negation of this formula expresses that it is possible to get to such
a state, but this is only so if interpreted on paths (7 F ¢). We cannot
assert such a possibility if interpreted on states (s F ¢) since we cannot
express the existence of paths; for that interpretation, the negation of the
formula above asserts that all paths will eventually get to such a state.

e For any state, if a request (of some resource) occurs, then it will eventually
be acknowledged:
G (requested — F acknowledged).

e A certain process is enabled infinitely often on every computation path:
G F enabled.

e Whatever happens, a certain process will eventually be permanently dead-
locked:
F G deadlock.

e If the process is enabled infinitely often, then it runs infinitely often.
G F enabled — G F running.

e An upwards travelling elevator at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor:
G (floor=2 A direction=up A ButtonPressed5 — (direction=up U floor=5))
Here, our atomic descriptions are boolean expressions built from system
variables, e.g. floor=2.

There are some things which are not possible to say in LTL, however. One
big class of such things are statements which assert the existence of a path,
such as these ones:

e From any state it is possible to get to a restart state (i.e. there is a path
from all states to a state satisfying restart).

e The elevator can remain idle on the third floor with its doors closed (i.e.
from the state in which it is on the third floor, there is a path along which
it stays there).

3.2 Linear-time temporal logic 193

LTL can’t express these because it cannot directly assert the existence of
paths. In Section 3.4, we look at Computation Tree Logic (CTL) which has
operators for quantifying over paths, and can express these properties.

3.2.4 Important equivalences between LTL formulas

Definition 3.9 We say that two LTL formulas ¢ and ¢ are semantically
equivalent, or simply equivalent, writing ¢ = 1, if for all models M and all
paths min M: 7 E ¢ iff w F 9.

The equivalence of ¢ and 1 means that ¢ and 7 are semantically inter-
changeable. If ¢ is a subformula of some bigger formula x, and ¢ = ¢, then
we can make the substitution of 9 for ¢ in y without changing the meaning
of x. In propositional logic, we saw that A and V are duals of each other,
meaning that if you push a — past a A, it becomes a V, and vice versa:

~(¢AYP) =9V 9 ~(¢VYP)=-d A1

(Because A and V are binary, pushing a negation downwards in the parse
tree past one of them also has the effect of duplicating that negation.)
Similarly, F and G are duals of each other, and X is dual with itself:

Also U and R are duals of each other:
(¢ Uy)=-¢R -9 —(pRY)=—-¢U—p.

We should give formal proofs of these equivalences. But they are easy, so we
leave them as an exercise to the reader. ‘Morally’ there ought to be a dual
for W, and you can invent one if you like. Work out what it might mean,
and then pick a symbol based on the first letter of the meaning. However,
it might not be very useful.

It’s also the case that F distributes over V and G over A, i.e.

F(pvy) = FpVFy
G(pAY) = GHAGY .

Compare this with the quantifier equivalences in Section 2.3.2. But F does
not distribute over A. What this means is that there is a model with a path
which distinguishes F (¢ A ¢) and F ¢ A F 4, for some ¢,1). Take the path
S0 — $1 — Sg — $1 — ... from the system of Figure 3.3, for example; it
satisfies F p A Fr but it doesn’t satisfy F (p A 7).

194 Verification by model checking
Here are two more equivalences in LTL:
Fo=TU¢ Gop=1Ro.

The first one exploits the fact that the clause for Until states two things:
the second formula ¢ must become true; and until then, the first formula T
must hold. So, if we put ‘no constraint’ for the first formula, it boils down
to asking that the second formula holds, which is what F asks. (The formula
T represent ‘no constraint.” If you ask me to bring it about that T holds,
I need do nothing, it enforces no constraint. In the same sense, L is ‘every
constraint.” If you ask me to bring it about that L holds, I'll have to meet
every constraint there is, which is impossible.)

The second formula, that G¢ = L R ¢, can be obtained from the first by
putting a — in front of each side, and applying the duality rules. Another
more intuitive way of seeing this is to recall the meaning of ‘release:’ L
releases ¢, but L will never be true, so ¢ doesn’t get released.

Another pair of equivalences relates the strong and weak versions of Until,
U and W. Strong until may be seen as weak until plus the constraint that
the eventuality must actually occur:

dUP=¢p Wi AFp. (3.2)

To prove equivalence (3.2), suppose first that a path satisfies ¢ U 1. Then,
from clause 11, we have i > 1 such that 7’ E ¢ and forall j =1,...,i —1
we have 7/ E ¢. From clause 12, this proves ¢ W 1, and from clause 10 it
proves F . Thus for all paths 7, if 1 E ¢ U then 1 E ¢ W AF 1. As an
exercise, the reader can prove it the other way around.

Writing W in terms of U is also possible: W is like U but also allows the
possibility of the eventuality never occurring:

dWYp=¢UshpVGs. (3.3)

Inspection of clauses 12 and 13 reveals that R and W are rather similar. The
differences are that they swap the roles of their arguments ¢ and v; and the
clause for W has an ¢ — 1 where R has i. Therefore, it is not surprising that
they are expressible in terms of each other, as follows:

Wy = PpR(VY) (3-4)
¢RY = yW(pAY). (3-5)

3.2.5 Adequate sets of connectives for LTL

Recall that ¢ = v holds iff any path in any transition system which satisfies
¢ also satisfies 1, and vice versa. As in propositional logic, there is some

3.2 Linear-time temporal logic 195

redundancy among the connectives. For example, in Chapter 1 we saw
that the set {1, A, —} forms an adequate set of connectives, since the other
connectives V, —, T, etc., can be written in terms of those three.

Small adequate sets of connectives also exist in LTL. Here is a summary
of the situation.

e X is completely orthogonal to the other connectives. That is to say, its
presence doesn’t help in defining any of the other ones in terms of each
other. Moreover, X cannot be derived from any combination of the others.

e Each of the sets {U, X}, {R, X}, {W, X} is adequate. To see this, we note
that

— R and W may be defined from U, by the duality ¢ R ¢ = —(—¢ U =)
and equivalence (3.4) followed by the duality, respectively.

— U and W may be defined from R, by the duality ¢ U 9 = —(=¢ R =)
and equivalence (3.4), respectively.

— R and U may be defined from W, by equivalence (3.5) and the duality
¢ U =-(-¢ R —) followed by equivalence (3.5).

Sometimes it is useful to look at adequate sets of connectives which do not
rely on the availability of negation. That’s because it is often convenient to
assume formulas are written in negation-normal form, where all the negation
symbols are applied to proposition atoms (i.e. they are near the leaves of the
parse tree). In this case, these sets are adequate for the fragment without
X, and no strict subset is: {U,R}, {U,W}, {U,G}, {R,F}, {W,F}. But
{R,G} and {W, G} are not adequate. Note that one cannot define G with
{U,F}, and one cannot define F with {R,G} or {W,G}.
We finally state and prove a useful equivalence about U.

Theorem 3.10 The equivalence ¢ Uy = (-9 U (mdp A —9)) AF9Y
holds for all LTL formulas ¢ and .

Proof: Take any path sy — s; — sg — ... in any model.

First, suppose sop F ¢ U 1 holds. Let n be the smallest number such that
sn F 1; such a number has to exist since sg F ¢ U 9; then, for each
k < mn, sg F ¢. We immediately have sy F F 4, so it remains to show
80 E =(—=9 U (m¢ A 1)), which, if we expand, means:
() for each i > 0, if s; F —¢ A =1, then there is some j < 7 with

Sj = ’(ﬁ

Take any ¢ > 0 with s; F =¢ A —1); ¢+ > n, so we can take j < n and
have s; F 1.

196 Verification by model checking

Conversely, suppose sg F —(=% U (=¢ A —1p)) A F 1) holds; we prove sg F
¢ U . Since sy F F 1, we have a minimal n as before. We show
that, for any ¢ < n, s; F ¢. Suppose s; E —¢; since n is minimal,
we know s; F =, so by (*) there is some j < i < n with s; F 9,
contradicting the minimality of n. O

3.3 Model checking: systems, tools, properties
3.3.1 Example: mutual exclusion

Let us now look at a larger example of verification using LTL, having to do
with mutual exclusion. When concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes simultaneously
editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though it
should be as small as possible so that no unnecessary exclusion takes place).
The problem we are faced with is to find a protocol for determining which
process is allowed to enter its critical section at which time. Once we have
found one which we think works, we verify our solution by checking that it
has some expected properties, such as the following ones:

Safety: Only one process is in its critical section at any time.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it will
eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the

property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

3.3 Model checking: systems, tools, properties 197

Fig. 3.7. A first-attempt model for mutual exclusion.

3.8.1.1 The first modelling attempt

We will model two processes, each of which is in its non-critical state (n), or
trying to enter its critical state (¢), or in its critical state (c¢). Each individual
process undergoes transitions in the cycle n -t — ¢ — n — ..., but the
two processes interleave with each other. Consider the protocol given by
the transition system M in Figure 3.7. (As usual, we write pips...pn, in a
node s to denote that pi,po,...,p, are the only propositional atoms true
at s.) The two processes start off in their non-critical sections (global state
80). State sg is the only initial state, indicated by the incoming edge with
no source. Kither of them may now move to its trying state, but only one
of them can ever make a transition at a time (asynchronous interleaving).
At each step, an (unspecified) scheduler determines which process may run.
So there is a transition arrow from sy to s; and s5. From s; (i.e. process 1
trying, process 2 non-critical) again two things can happen: either process 1
moves again (we go to s3), or process 2 moves (we go to s3). Notice that
not every process can move in every state. For example, process 1 cannot
move in state s7, since it cannot go into its critical section until process 2
comes out of its critical section.

We would like to check the four properties by first describing them as
temporal logic formulas. Unfortunately, they are not all expressible as LTL
formulas. Let us look at them case-by-case.

Safety: This is expressible in LTL, as G =(c; A ¢2). Clearly, G =(cy A ¢2) is
satisfied in the initial state (indeed, in every state).

198 Verification by model checking

Liveness: This is also expressible: G (1 — F ¢1). However, it is not satis-
fied by the initial state, for we can find path starting at the initial
sate along which there is a state, namely s;, in which ¢; is true
but from there along the path c; is false. The path in question is
S0 — S1 —> 83 — ST — S1 —» 83 — S7... on which c; is always false.

Non-blocking: Let’s just consider process 1. We would like to express
the property as: for every state satisfying nj, there is a successor
satisfying ¢1. Unfortunately, this existence quantifier on paths (‘there
is a successor satisfying ... ’) cannot be expressed in LTL. It can be
expressed in the logic CTL, which we will turn to in the next section
(for the impatient, see page 224).

No strict sequencing: We might consider expressing this as saying: there
is a path with two distinct states satisfying ¢; such that no state in
between them has that property. However, we cannot express ‘there
exists a path,” so let us consider the complement formula instead.
The complement says that all paths having a ¢; period which ends
cannot have a further ¢; state until a ¢y state occurs. We write this
as: G(cg = ¢4 W (=c1 A —c1 W ¢2)). This says that anytime we
get into a c¢; state, either that condition persists indefinitely, or it
ends with a non-c¢; state and in that case there is no further ¢; state
unless and until we obtain a ¢y state.

This formula is false, as exemplified by the path sg — s5 — s3 —
S4 —> 85 —> 83 — S4.... Therefore the original condition expressing
that strict sequencing need not occur, is true.

Before further considering the mutual exclusion example, some comments
about expressing properties in LTL are appropriate. Notice that in the no-
strict-sequencing property, we overcame the problem of not being able to
express the existence of paths by instead expressing the complement prop-
erty, which of course talks about all paths. Then we can perform our check,
and simply reverse the answer; if the complement property is false, we de-
clare our property to be true, and vice versa.

Why was that tactic not available to us to express the non-blocking prop-
erty? The reason is that it says: every path to a n; state may be continued
by a one-step path to a t; state. The presence of both universal and exis-
tential quantifiers is the problem. In the no-strict-sequencing property, we
had only an existential quantifier; thus, taking the complement property
turned it into a universal path quantifier, which can be expressed in LTL.
But where we have alternating quantifiers, taking the complement property
doesn’t help in general.

3.3 Model checking: systems, tools, properties 199

Fig. 3.8. A second-attempt model for mutual exclusion. There are now two states
representing t1ts, namely s3 and sg.

Let’s go back to the mutual exclusion example. The reason liveness failed
in our first attempt at modelling mutual exclusion is that non-determinism
means it might continually favour one process over another. The problem is
that the state s3 does not distinguish between which of the processes first
went into its trying state. We can solve this by splitting s3 into two states.

3.8.1.2 The second modelling attempt

The two states s3 and sg in Figure 3.8 both correspond to the state s3 in
our first modelling attempt. They both record that the two processes are in
their trying states, but in sz it is implicitly recorded that it is process 1’s
turn, whereas in sg it is process 2’s turn. Note that states s3 and sg both
have the labelling ¢;%9; the definition of transition systems does not preclude
this. We can think of there being some other, hidden, variables which are
not part of the initial labelling, which distinguish s3 and sg.

Remark 3.11 The four properties of safety, liveness, non-blocking and no
strict sequencing are satisfied by the model in Figure 3.8. (Since the non-
blocking property has not yet been written in temporal logic, we can only
check it informally.)

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same state).
We may wish to model that a process can stay in its critical state for several

200 Verification by model checking

ticks, but if we include an arrow from sy, or s7, to itself, we will again violate
liveness. This problem will be solved later in this chapter when we consider
‘fairness constraints’ (Section 3.6.2).

3.3.2 The NuSMYV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands
for ‘New Symbolic Model Verifier.” NuSMYV is an Open Source product, is
actively supported and has a substantial user community. For details on
how to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as in-
put a text consisting of a program describing a model and some specifications
(temporal logic formulas). It produces as output either the word ‘true’ if the
specifications hold, or a trace showing why the specification is false for the
model represented by our
program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

The following input to SMV:

MODULE main
VAR
request : boolean;
status : {ready,busy};
ASSIGN
init (status) := ready;
next (status)

case
request : busy;
1 : {ready,busy};

3.3 Model checking: systems, tools, properties 201

Fig. 3.9. The model corresponding to the SMV program in the text.

esac;
LTLSPEC
G(request -> F status=busy)

consists of a program and a specification. The program has two variables,
request of type boolean and status of enumeration type {ready, busy}:
0 denotes ‘false’ and 1 represents ‘true.” The initial and subsequent values
of variable request are not determined within this program; this conserva-
tively models that these values are determined by an external environment.
This under-specification of request implies that the value of variable status
is partially determined: initially, it is ready; and it becomes busy whenever
request is true. If request is false, the next value of status is not deter-
mined.

Note that the case 1: signifies the default case, and that case statements
are evaluated from the top down: if several expressions to the left of a
‘> are true, then the command corresponding to the first, top-most true
expression will be executed. The program therefore denotes the transition
system shown in Figure 3.9; there are four states, each one corresponding
to a possible value of the two binary variables. Note that we wrote ‘busy’
as a shorthand for ‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since
variable request functions as a genuine environment in this model, the
program and the transition system are non-deterministic: i.e. the ‘next
state’ is not uniquely defined. Any state transition based on the behaviour
of status comes in a pair: to a successor state where request is false, or
true, respectively. For example, the state ‘—req, busy’ has four states it can
move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are sim-
ply LTL formulas. Notice that SMV uses &, |, => and ! for A, V, — and

202 Verification by model checking

-, respectively, since they are available on standard keyboards. We may
easily verify that the specification of our module main holds of the model in
Figure 3.9.

3.3.2.1 Modules in SMV

SMYV supports breaking a system description into several modules, to aid
readability and to verify interaction properties. A module is instantiated
when a variable having that module name as its type is declared. This
defines a set of variables, one for each one declared in the module description.
In the example below, which is one of the ones distributed with SMV, a
counter which repeatedly counts from 000 through to 111 is described by
three single-bit counters. The module counter_cell is instantiated three
times, with the names bit0, bit1l and bit2. The counter module has one
formal parameter, carry_in, which is given the actual value 1 in bit0, and
bit0.carry_out in the instance bit1l. Hence, the carry_in of module bit1
is the carry_out of module bit0. Note that we use the period ‘.” in m.v to
access the variable v in module m. This notation is also used by Alloy (see
Chapter 2) and a host of programming languages to access fields in record
structures, or methods in objects. The keyword DEFINE is used to assign the
expression value & carry_in to the symbol carry_out (such definitions are
just a means for referring to the current value of a certain expression).

MODULE main
VAR
bit0 : counter_cell(1);
bitl : counter_cell(bit0O.carry_out);
bit2 : counter_cell(bitl.carry_out);
LTLSPEC
G F bit2.carry_out

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value)

03
(value + carry_in) mod 2;

next (value)
DEFINE
carry_out := value & carry_in;

The effect of the DEFINE statement could have been obtained by declaring
a new variable and assigning its value thus:

3.3 Model checking: systems, tools, properties 203

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that, in this assignment, the current value of the variable is assigned.
Defined symbols are usually preferable to variables, since they don’t increase
the state space by declaring new variables. However, they cannot be assigned
non-deterministically since they refer only to another expression.

3.8.2.2 Synchronous and asynchronous composition

By default, modules in SMV are composed synchronously: this means that
there is a global clock and, each time it ticks, each of the modules executes in
parallel. By use of the process keyword, it is possible to compose the mod-
ules asynchronously. In that case, they run at different ‘speeds,’ interleaving
arbitrarily. At each tick of the clock, one of them is non-deterministically
chosen and executed for one cycle. Asynchronous interleaving composition
is useful for describing communication protocols, asynchronous circuits and
other systems whose actions are not synchronised to a global clock.

The bit counter above is synchronous, whereas the examples below of
mutual exclusion and the alternating bit protocol are asynchronous.

3.3.3 Running NuSMV

The normal use of NuSMYV is to run it in batch mode, from a Unix shell or
command prompt in Windows. The command line

NuSMV counter3.smv

will analyse the code in the file counter3.smv and report on the specifica-
tions it contains. One can also run NuSMYV interactively. In that case, the
command line

NuSMV -int counter3.smv

enters NuSMV’s command-line interpreter. From there, there is a variety
of commands you can use which allow you to compile the description and
run the specification checks, as well as inspect partial results and set various
parameters. See the NuSMV user manual for more details.

NuSMYV also supports bounded model checking, invoked by the command-
line option -bmc. Bounded model checking looks for counterexamples in
order of size, starting with counterexamples of length 1, then 2, etc., up
to a given threshold (10 by default). Note that bounded model checking

204 Verification by model checking

is incomplete: failure to find a counterexample does not mean that there
is none, but only that there is none of length up to the threshold. For
related reasons, this incompleteness features also in Alloy and its constraint
analyzer. Thus, while a negative answer can be relied on (if NuSMV finds a
counterexample, it is valid), a positive one cannot. References on bounded
model checking can be found in the bibliographic notes on page 264. Later
on, we use bounded model checking to prove the optimality of a scheduler.

3.3.4 Mutual exclusion revisited

Figure 3.10 gives the SMV code for a mutual exclusion protocol. This code
consists of two modules, main and prc. The module main has the vari-
able turn, which determines whose turn it is to enter the critical section if
both are trying to enter (recall the discussion about the states s3 and sg in
Section 3.3.1.2).

The module main also has two instantiations of prc. In each of these
instantiations, st is the status of a process (saying whether it is in its critical
section, or not, or trying) and other-st is the status of the other process
(notice how this is passed as a parameter in the third and fourth lines of
main).

The value of st evolves in the way described in a previous section: when it
is m, it may stay as n or move to t. When it is £, if the other one is n, it will
go straight to ¢, but if the other one is ¢, it will check whose turn it is before
going to ¢. Then, when it is ¢, it may move back to n. Each instantiation
of prc gives the turn to the other one when it gets to its critical section.

An important feature of SMV is that we can restrict its search tree to
execution paths along which an arbitrary boolean formula about the state
¢ is true infinitely often. Because this is often used to model fair access to
resources, it is called a fairness constraint and introduced by the keyword
FAIRNESS. Thus, the occurrence of FAIRNESS ¢ means that SMV, when
checking a specification 1, will ignore any path along which ¢ is not satisfied
infinitely often.

In the module prc, we restrict model checks to computation paths along
which st is infinitely often not equal to c. This is because our code allows
the process to stay in its critical section as long as it likes. Thus, there
is another opportunity for liveness to fail: if process 2 stays in its critical
section forever, process 1 will never be able to enter. Again, we ought not
to take this kind of violation into account, since it is patently unfair if a
process is allowed to stay in its critical section for ever. We are looking for

3.3 Model checking: systems, tools, properties

MODULE main
VAR
prl: process prc(pr2.st, turn, 0);
pr2: process prc(prl.st, turn, 1);
turn: boolean;

ASSIGN
init(turn) := 0;
-— safety
LTLSPEC G!((prl.st = c) & (pr2.st = c))
-- liveness

LTLSPEC G((prl.st = t) —> F (prl.st = c))

LTLSPEC G((pr2.st = t) —> F (pr2.st = c))

-- ‘negation’ of strict sequencing (desired to be false)
LTLSPEC G(prl.st=c -> (G prl.st=c | (prl.st=c U

205

(!pril.st=c & G !pril.st=c | ((!prl.st=c) U pr2.st=c)))))

MODULE prc(other-st, turn, myturn)

VAR
st: {n, t, c};

ASSIGN
init(st)
next(st)

case
(st = n) : {t,n};
(st t) & (other-st = n) 1 c;
(st = t) & (other-st = t) & (turn = myturn): c;
(st = ¢) : {c,n};
1 : st;
esac;

next (turn) :=

case
turn = myturn & st = ¢ : !turn;
1 : turn;
esac;
FAIRNESS running
FAIRNESS !(st = c)

n;

Fig. 3.10. SMV code for mutual exclusion. Because W is not supported by SMV,
we had to make use of equivalence (3.3) to write the no-strict-sequencing formula

as an equivalent but longer formula involving U.

206 Verification by model checking

more subtle violations of the specifications, if there are any. To avoid the
one above, we stipulate the fairness constraint ! (st=c).

If the module in question has been declared with the process keyword,
then at each time point SMV will non-deterministically decide whether or
not to select it for execution, as explained earlier. We may wish to ignore
paths in which a module is starved of processor time. The reserved word
running can be used instead of a formula in a fairness constraint: writing
FAIRNESS running restricts attention to execution paths along which the
module in which it appears is selected for execution infinitely often.

In prc, we restrict ourselves to such paths, since, without this restriction,
it would be easy to violate the liveness constraint if an instance of prc
were never selected for execution. We assume the scheduler is fair; this
assumption is codified by two FAIRNESS clauses. We return to the issue of
fairness, and the question of how our model-checking algorithm copes with
it, in the next section.

Please run this program in NuSMYV to see which specifications hold for it.

The transition system corresponding to this program is shown in Fig-
ure 3.11. Each state shows the values of the variables; for example, ctl
is the state in which process 1 and 2 are critical and trying, respectively,
and turn=1. The labels on the transitions show which process was selected
for execution. In general, each state has several transitions, some in which
process 1 moves and others in which process 2 moves.

This model is a bit different from the previous model given for mutual
exclusion in Figure 3.8, for these two reasons:

e Because the boolean variable turn has been explicitly introduced to distin-
guish between states s3 and sg of Figure 3.8, we now distinguish between
certain states (for example, ct0 and ct1) which were identical before. How-
ever, these states are not distinguished if you look just at the transitions
from them. Therefore, they satisfy the same LTL formulas which don’t
mention turn. Those states are distinguished only by the way they can
arise.

e We have eliminated an over-simplification made in the model of Figure 3.8.
Recall that we assumed the system would move to a different state on
every tick of the clock (there were no transitions from a state to itself).
In Figure 3.11, we allow transitions from each state to itself, representing
that a process was chosen for execution and did some private computation,
but did not move in or out of its critical section. Of course, by doing this
we have introduced paths in which one process gets stuck in its critical

3.3 Model checking: systems, tools, properties 207

section, whence the need to invoke a fairness constraint to eliminate such
paths.

3.3.5 The ferry-man

You may recall the puzzle of a ferryman, goat, cabbage, and wolf all on one
side of a river. The ferryman can cross the river with at most one passenger
in his boat. There is a behavioral conflict between

1. the goat and the cabbage; and
2. the goat and the wolf;

if they are on the same river bank but the ferryman crosses the river or stays
on the other bank.

Can the ferryman transport all goods to the other side, without any con-
flicts occurring? This is a planning problem, but it can be solved by model
checking. We describe a transition system in which the states represent
which goods are at which side of the river. Then we ask if the goal state is
reachable from the initial state: Is there a path from the initial state such
that it has a state along it at which all the goods are on the other side, and
during the transitions to that state the goods are never left in an unsafe,
conflicting situation?

We model all possible behavior (including that which results in conflicts)
as a NuSMV program (Figure 3.12). The location of each agent is modelled
as a boolean variable. 0 denotes that the agent is on the initial bank, and
1 the destination bank. Thus, ferryman = 0 means that the ferryman is
on the initial bank, ferryman = 1 that he is on the destination bank, and
similarly for the variables goat, cabbage and wolf.

The variable carry takes a value indicating whether the goat, cabbage,
wolf or nothing is carried by the ferryman. The definition of next (carry)
works as follows. It is non-deterministic, but the set from which a value is
non-deterministically chosen is determined by the values of ferryman, goat,
etc. If ferryman = goat (i.e. they are on the same side) then g is a member
of the set from which next (carry) is chosen. The situation for cabbage and
wolf is similar. Thus, if ferryman = goat = wolf # cabbage then that set
is {g,w,0}. The next value assigned to ferryman is non-deterministic: he
can choose to cross or not to cross the river. But the next values of goat,
cabbage and wolf are deterministic, since whether they are carried or not is
determined by the ferryman’s choice, represented by the non-deterministic
assignment to carry; these values follow the same pattern.

208 Verification by model checking

12

H
—

Fig. 3.11. The transition system corresponding to the SMV code in Figure 3.10.
The labels on the transitions denote the process which makes the move. The label
1,2 means that either process could make that move.

3.3 Model checking: systems, tools, properties

MODULE main
VAR
ferryman : boolean;
goat : boolean;
cabbage : boolean;
wolf : boolean;
carry : {g,c,w,O};
ASSIGN
init(ferryman) := 0; init(goat) = 0;
init(cabbage) := 0; init(wolf) := 0;

init(carry)

next (ferryman) :

0;

{0,1};

next(carry) := case
ferryman=goat : g;
1 : 0;
esac union
case
ferryman=cabbage : c;
1 : 0;
esac union
case
ferryman=wolf : w;
1 : 0;
esac union 0;
next (goat) := case
ferryman=goat & next(carry)=g : next(ferryman);
1 : goat;
esac;
next (cabbage) := case
ferryman=cabbage & next(carry)=c : next(ferryman);
1 : cabbage;
esac;
next (wolf) := case
ferryman=wolf & next(carry)=w : next(ferryman);
1 : wolf;
esac;

LTLSPEC !(((goat=cabbage | goat=wolf) -> goat=ferryman)

U (cabbage & goat & wolf & ferryman))

Fig. 3.12. NuSMV code for the ferry-man planning problem.

209

210 Verification by model checking

Note how the boolean guards refer to state bits at the next state. The
SMV compiler does a dependency analysis and rejects circular dependencies
on next values. (The dependency analysis is rather pesimistic: sometimes
NuSMYV complains of circularity even in situations when it could be resolved.
The original CMU-SMV is more liberal in this respect.)

3.8.5.1 Running NuSMV

We seek a path satisfying ¢ U 1), where 9 asserts the final goal state, and ¢
expresses the safety condition (if the goat is with the cabbage or the wolf,
then the ferryman is there, too, to prevent any untoward behaviour). Thus,
we assert that all paths satisfy —(¢ U 1), i.e. no path satisfies ¢ U 1. We
hope this is not the case, and NuSMV will give us an example path which
does satisfy ¢ U 9. Indeed, running NuSMYV gives us the path of Figure 3.13,
which represents a solution to the puzzle.

The beginning of the generated path represents the usual solution to this
puzzle: the ferryman takes the goat first, then goes back for the cabbage. To
avoid leaving the goat and the cabbage together, he takes the goat back, and
picks up the wolf. Now the wolf and the cabbage are on the destination side,
and he goes back again to get the goat. This brings us to State 1.9, where
the ferryman appears to take a well-earned break. But the path continues.
States 1.10 to 1.15 show that he takes his charges back to the original side
of the bank; first the cabbage, then the wolf, then the goat. Unfortunately
it appears that the ferryman’s clever plan up to state 1.9 is now spoiled,
because the goat meets an unhappy end in state 1.11.

What went wrong? Nothing, actually. NuSMV has given us an infinite
path, which loops around the 15 illustrated states. Along the infinite path,
the ferryman repeatedly takes his goods across (safely), and then back again
(unsafely). This path does indeed satisfy the specification ¢ U 1), which as-
serts the safety of the forward journey but says nothing about what happens
after that. In other words, the path is correct; it satisfies ¢ U 9 (with 1 oc-
curring at state 8). What happens along the path after that has no bearing
on ¢ U 1.

Invoking bounded model checking will produce the shortest possible path
to violate the property; in this case, it is states 1.1 to 1.8 of the illustrated
path. It is the shortest, optimal solution to our planning problem since
the model check NuSMV -bmc 7 ferryman.smv shows that the LTL formula
holds in that model, meaning that no solution of length < 7 is possible.

One might wish to verify whether there is a solution which involves three
journeys for the goat. This can be done by altering the LTL formula. Instead
of seeking a path satisfying ¢ U 1), where ¢ equals (goat = cabbageVgoat =

3.3 Model checking: systems, tools, properties 211
acws-0116%, nusmv ferryman.smv
x%x This is NuSMV 2.1.2 (compiled 2002-11-22 12:00:00)
*x*x For more information of NuSMV see <http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to <nusmv-users@irst.itc.it>.
-- specification !(((goat = cabbage | goat = wolf) -> goat = ferryman)

U (((cabbage & goat) & wolf) & ferryman)) is false
as demonstrated by the following execution sequence
loop starts here --

-> State 1.1 <-
ferryman = 0 -> State 1.8 <-
goat = 0 ferryman = 1
cabbage = 0 goat =1
wolf = 0 carry = g
carry = 0 -> State 1.9 <-

-> State 1.2 <- -> State 1.10 <-
ferryman = 1 ferryman = 0
goat = 1 cabbage = 0
carry = g carry = c

-> State 1.3 <- -> State 1.11 <-
ferryman = 0 ferryman = 1
carry = 0 carry = 0

-> State 1.4 <- -> State 1.12 <-
ferryman = 1 ferryman = 0
cabbage = 1 wolf = 0
carry = c carry = w

-> State 1.5 <- -> State 1.13 <-
ferryman = 0 ferryman = 1
goat = 0 carry = 0
carry = g -> State 1.14 <-

-> State 1.6 <- ferryman = 0
ferryman = 1 goat = 0
wolf = 1 carry = g
carry = w -> State 1.15 <-

-> State 1.7 <- carry = 0
ferryman = 0

carry = 0

Fig. 3.13. A solution path to the ferryman puzzle. It is unnecessarily long. Using
bounded model checking will refine it into an optimal solution.

wolf) — goat = ferryman and v equals cabbage A goat Awolf Aferryman,
we now seek a path satisfying (¢ U ¢) A G (goat — G goat). The last bit
says that once the goat has crossed, he remains across; otherwise, the goat
makes at least three trips. NuSMV verifies that the negation of this formula
is true, confirming that there is no such solution.

212 Verification by model checking

3.3.6 The alternating bit protocol

The ABP (alternating bit protocol) is a protocol for transmitting messages
along a ‘lossy line,’ i.e. a line which may lose or duplicate messages. The
protocol guarantees that, providing the line doesn’t lose infinitely many mes-
sages, communication between the sender and the receiver will be successful.
(We allow the line to lose or duplicate messages, but it may not corrupt mes-
sages; however, there is no way of guaranteeing successful transmission along
a line which can corrupt.)

The ABP works as follows. There are four entities, or agents: the sender,
the receiver, the message channel and the acknowledgement channel. The
sender transmits the first part of the message together with the ‘control’
bit 0. If, and when, the receiver receives a message with the control bit 0,
it sends 0 along the acknowledgement channel. When the sender receives
this acknowledgement, it sends the next packet with the control bit 1. If
and when the receiver receives this, it acknowledges by sending a 1 on the
acknowledgement channel. By alternating the control bit, both receiver and
sender can guard against duplicating messages and losing messages (i.e. they
ignore messages that have the unexpected control bit).

If the sender doesn’t get the expected acknowledgement, it continually
resends the message, until the acknowledgement arrives. If the receiver
doesn’t get a message with the expected control bit, it continually resends
the previous acknowledgement.

Fairness is also important for the ABP. It comes in because, although
we want to model the fact that the channel can lose messages, we want to
assume that, if we send a message often enough, eventually it will arrive.
In other words, the channel cannot lose an infinite sequence of messages. If
we did not make this assumption, then the channels could lose all messages
and, in that case, the ABP would not work.

Let us see this in the concrete setting of SMV. We may assume that the
text to be sent is divided up into single-bit messages, which are sent sequen-
tially. The variable messagel is the current bit of the message being sent,
whereas message? is the control bit. The definition of the module sender is
given in Figure 3.14. This module spends most of its time in st=sending,
going only briefly to st=sent when it receives an acknowledgement corre-
sponding to the control bit of the message it has been sending. The variables
messagel and message2 represent the actual data being sent and the con-
trol bit, respectively. On successful transmission, the module obtains a new
message to send and returns to st=sending. The new messagel is obtained
non-deterministically (i.e. from the environment); message2 alternates in

3.3 Model checking: systems, tools, properties 213

MODULE sender (ack)
VAR
st : {sending,sent};
messagel : boolean;
message2 : boolean;
ASSIGN
init(st) := sending;
next(st) := case
ack = message2 & !(st=sent) : sent;
1 : sending;
esac;
next (messagel) :=
case
st = sent : {0,1};
1 : messagel;
esac;
next (message2) :=
case
st = sent : !message2;
1 . message2;
esac;
FAIRNESS running
LTLSPEC G F st=sent

Fig. 3.14. The ABP sender in SMV.

value. We impose FAIRNESS running, i.e. the sender must be selected to
run infinitely often. The LTLSPEC tests that we can always succeed in send-
ing the current message. The module receiver is programmed in a similar
way, in Figure 3.15.

We also need to describe the two channels, in Figure 3.16. The acknowl-
edgement channel is an instance of the one-bit channel one-bit-chan be-
low. Tts lossy character is specified by the non-deterministic assignment: the
input may be transmitted to the output, but it need not (in which case out-
put retains its old value). However, the second fairness constraint ensures
that the channel doesn’t continually lose the same message: eventually, a
bit will get through (so if input is 1, then eventually output will be 1 t00).

The two-bit channel two-bit-chan, used to send messages, is similar.
The non-deterministic variable forget determines whether the current bit
is lost or not. Either both parts of the message get through, or neither of
them does (the channel is assumed not to corrupt messages).

A fairness constraint models the fact that, although channels can lose
messages, even infinitely often, we assume that they infinitely often transmit

214 Verification by model checking

MODULE receiver(messagel,message2)

VAR
st : {receiving,received};
ack : boolean;
expected : boolean;
ASSIGN
init(st) := receiving;
next(st) := case
message2=expected & ! (st=received) : received;
1 : receiving;
esac;
next(ack) :=
case
st = received : message2;
1 : ack;
esac;
next (expected) :=
case
st = received : !expected;
1 : expected;
esac;

FAIRNESS running
LTLSPEC G F st=received

Fig. 3.15. The ABP receiver in SMV.

the message correctly. (If this were not the case, then we could find an
uninteresting violation of the liveness constraint, for example a path along
which all messages from a certain time onwards get lost.)

Finally, we tie it all together with the module main (Figure 3.17). Its
role is to connect together the components of the system, which it does by
instantiating the four processes. It also specifies the initial values. Since the
first control bit is 0, we also initialise the receiver to expect a 0. The receiver
should start off by sending 1 as its acknowledgement, so that sender does
not think that its very first message is being acknowledged before anything
has happened. For the same reason, the output of the channels is initialised
to 1.

The specifications for ABP. Our SMV program satisfies the following
specifications:

Safety: If the message bit 1 has been sent and the correct acknowledge-
ment has been returned, then a 1 was received by the receiver: G
(S.st=sent & S.messagel=1 -> msg_chan.outputl=1).

3.3 Model checking: systems, tools, properties 215
MODULE one-bit-chan(input)

VAR
output : boolean;
ASSIGN
next (output) := {input,output};

FAIRNESS running
FAIRNESS (input=0 -> AF output=0) & (input=1 -> AF output=1)

MODULE two-bit-chan(inputl,input2)
VAR

forget : boolean;

outputl : boolean;

output2 : boolean;

ASSIGN

next (outputl) := case
forget : outputil;
1: inputl;

esac;

next (output2) := case
forget : output?2;
1: input2;

esac;

FAIRNESS running
FAIRNESS !forget

Fig. 3.16. The two modules for the two ABP channels in SMV.

MODULE main

VAR
S : process sender(ack_chan.output);

R : process receiver (msg_chan.outputl,msg_chan.output2);
msg_chan : process two-bit-chan(S.messagel,S.message?2);
ack_chan : process one-bit-chan(R.ack);

ASSIGN
init(S.message2) :=
init(R.expected) :
init (R.ack) = 1;
init(msg_chan.output2) := 1;
init(ack_chan.output) := 1;

0;
0;

LTLSPEC G (S.st=sent & S.messagel=1 -> msg_chan.outputi=1)

Fig. 3.17. The main ABP module.

216 Verification by model checking

Liveness: Messages get through eventually. Thus, for any state there is in-
evitably a future state in which the current message has got through.
In the module sender, we specified G F st=sent. (This specifica-
tion could equivalently have been written in the main module, as G
F S.st=sent.)
Similarly, acknowledgements get through eventually. In the mod-
ule receiver, we write G F st=received.

3.4 Branching-time logic

In our analysis of LTL (linear-time temporal logic) in the preceding sections,
we noted that LTL formulas are evaluated on paths. We defined that a state
of a system satisfies an LTL formula if all paths from the given state satisfy
it. Thus, LTL implicitly quantifies universally over paths. Therefore, prop-
erties which assert the existence of a path cannot be expressed in LTL. This
problem can partly be alleviated by considering the negation of the prop-
erty in question, and interpreting the result accordingly. To check whether
there exists a path from s satisfying the LTL formula ¢, we check whether
all paths satisfy —¢; a positive answer to this is a negative answer to our
original question, and vice versa. We used this approach when analysing the
ferryman puzzle in the previous section. However, as already noted, proper-
ties which miz universal and existential path quantifiers cannot in general
be model checked using this approach, because the complement formula still
has a mix.

Branching-time logics solve this problem by allowing us to quantify ex-
plicitly over paths. We will examine a logic known as Computation Tree
Logic, or CTL. In CTL, as well as the temporal operators U, F, G and X of
LTL we also have quantifiers A and E which express ‘all paths’ and ‘exists
a path’ respectively. For example, we can write

e There is a reachable state satisfying ¢: this is written EF ¢

e From all reachable states satisfying p, it is possible to maintain p continu-
ously until reaching a state satisfying ¢: this is written AG (p — E[p U ¢]).

e Whenever a state satisfying p is reached, the system can exhibit ¢ contin-
uously forevermore: AG (p — EGgq).

e There is a reachable state from which all reachable states satisfy p: EF AG p.

3.4.1 Syntax of CTL

Computation tree logic, or CTL for short, is a branching-time logic, meaning

3.4 Branching-time logic 217

that its model of time is a tree-like structure in which the future is not
determined; there are different paths in the future, any one of which might
be the ‘actual’ path that is realised.

As before, we work with a fixed set of atomic formulas/descriptions (such

as Py Gy Ty ..., OF P1,P2, ...).

Definition 3.12 We define CTL formulas inductively via a Backus Naur
form as done for LTL:

pu= L[TIp|l(=9) | (Ad)[(¢V)| (—¢)|AXd|EXS]
AF ¢ |EF¢ | AG¢ [EG4 | Alp U ¢] | E[¢ U ¢

where p ranges over a set of atomic formulas.

Notice that each of the CTL temporal connectives is a pair of symbols.
The first of the pair is one of A and E. A means ‘along All paths’ (inevitably)
and E means ‘along at least (there Exists) one path’ (possibly). The second
one of the pair is X, F, G, or U, meaning ‘neXt state,” ‘some Future state,’
‘all future states (Globally)’ and Until, respectively. The pair of symbols
in E[¢1 U ¢, for example, is EU. In CTL, pairs of symbols like EU are
indivisible. Notice that AU and EU are binary. The symbols X, F, G and
U cannot occur without being preceded by an A or an E; similarly, every A
or E must have one of X, F, G and U to accompany it.

Usually weak-until (W) and release (R) are not included in CTL, but they
are derivable (see Section 3.4.5).

Convention 3.13 We assume similar binding priorities for the CTL con-
nectives to what we did for propositional and predicate logic. The unary
connectives (consisting of — and the temporal connectives AG, EG, AF, EF,
AX and EX) bind most tightly. Next in the order come A and V; and after
that come —, AU and EU.

Naturally, we can use brackets in order to override these priorities. Let us
see some examples of well-formed CTL formulas and some examples which
are not well-formed, in order to understand the syntax. Suppose that p, ¢
and r are atomic formulas. The following are well-formed CTL formulas:

e AG (¢ — EGr), note that this is not the same as AGqg — EGr, for
according to Convention 3.13, the latter formula means (AG q) — (EGr)

e EFE[r U ¢

o A[p UEF1]

218 Verification by model checking

e EFEGp — AFr, again, note that this binds as (EF EGp) — AFr, not
EF (EGp — AFr) or EFEG (p — AFr)

e Alp1 U Alps U p3]]

e E[A[p1 U ps] U ps]

¢ AG(p = Alp U (=p A A[=p U g])]).

It is worth spending some time seeing how the syntax rules allow us to
construct each of these. The following are not well-formed formulas:

e EFGr

e A-G—p

FlrUq]

EF (r Ug)

e AEFTr

A[(rUg) A(pUr)].

It is especially worth understanding why the syntax rules don’t allow us to
construct these. For example, take EF (r U q). The problem with this string
is that U can occur only when paired with an A or an E. The E we have is
paired with the F. To make this into a well-formed CTL formula, we would
have to write EF E[r U ¢] or EF A[r U q].

Notice that we use square brackets after the A or E, when the paired
operator is a U. There is no strong reason for this; you could use ordinary
round brackets instead. However, it often helps one to read the formula
(because we can more easily spot where the corresponding close bracket is).
Another reason for using the square brackets is that SMV insists on it.

The reason A[(r U ¢) A (p U r)] is not a well-formed formula is that
the syntax does not allow us to put a boolean connective (like A) directly
inside A[] or E[]. Occurrences of A or E must be followed by one of G,
F, X or U; when they are followed by U, it must be in the form A[¢ U 9.
Now, the ¢ and the 1 may contain A, since they are arbitrary formulas; so
Al(p A q) U (=r — q)] is a well-formed formula.

Observe that AU and EU are binary connectives which mix infix and
prefix notation. In pure infix, we would write ¢y AU ¢o, whereas in pure
prefix we would write AU(¢1, ¢2).

As with any formal language, and as we did in the previous two chapters,
it is useful to draw parse trees for well-formed formulas. The parse tree for
A[AX —p UE[EX (p A q) U —p]] is shown in Figure 3.18.

Definition 3.14 A subformula of a CTL formula ¢ is any formula 1/ whose
parse tree is a subtree of ¢’s parse tree.

3.4 Branching-time logic 219

A

AX /

O &

OREONNO
OO

Fig. 3.18. The parse tree of a CTL formula without infix notation.

3.4.2 Semantics of computation tree logic

CTL formulas are interpreted over transition systems (Definition 3.4). Let
M = (S,—, L) be such a model, s € S and ¢ a CTL formula. The definition
of whether M, s E ¢ holds is recursive on the structure of ¢, and can be
roughly understood as follows:

If ¢ is atomic, satisfaction is determined by L.

If the top-level connective of ¢ (i.e. the connective occurring top-most in
the parse tree of ¢) is a boolean connective (A, V, =, T etc.) then the
satisfaction question is answered by the usual truth-table definition and
further recursion down ¢.

If the top level connective is an operator beginning A, then satisfaction
holds if all paths from s satisfy the ‘LTL formula’ resulting from removing
the A symbol.

Similarly, if the top level connective begins with E, then satisfaction holds
if some path from s satisfy the ‘LTL formula’ resulting from removing the
E.

In the last two cases, the result of removing A or E is not strictly an LTL
formula, for it may contain further As or Es below. However, these will be

dealt with by the recursion.

The formal definition of M, s E ¢ is a bit more verbose:

220

Verification by model checking

Definition 3.15 Let M = (S,—, L) be a model for CTL, s in S, ¢ a CTL
formula. The relation M, s F ¢ is defined by structural induction on ¢:

NS oR e

10.

11.

12.

13.

14.

M,sET and M,s i L.

M,sEpiff p € L(s).

M,sE =g iff M,sH ¢.

M, s E ¢1 A ¢y iff M,sE ¢y and M, s E ¢o.

M,sE 1V oo iff M,sE ¢ or M, s E ¢a.

M,sE 1 — ¢o it M,sH ¢ or M, s E ¢po.

M, s E AX ¢ iff for all s; such that s — s; we have M, s1 F ¢. Thus,
AX says: ‘in every next state.’

M, s E EX ¢ iff for some s; such that s — s; we have M,s1 F ¢.
Thus, EX says: ‘in some next state.” E is dual to A — in exactly the
same way that 3 is dual to V in predicate logic.

. M, s E AG ¢ holds iff for all paths s; — so — s3 — ..., where s1

equals s, and all s; along the path, we have M, s; F ¢. Mnemoni-
cally: for All computation paths beginning in s the property ¢ holds
Globally. Note that ‘along the path’ includes the path’s initial state
S.
M, s E EG ¢ holds iff there is a path s; — so — s3 — ..., where s1
equals s, and for all s; along the path, we have M, s; F ¢. Mnemon-
ically: there Exists a path beginning in s such that ¢ holds Globally
along the path.

M, s E AF ¢ holds iff for all paths sy — so — ..., where s1 equals
s, there is some s; such that M,s; F ¢. Mnemonically: for All
computation paths beginning in s there will be some Future state
where ¢ holds.

M, s E EF ¢ holds iff there is a path s; — s9 — s3 — ..., where
s1 equals s, and for some s; along the path, we have M,s; F ¢.
Mnemonically: there Exists a computation path beginning in s such
that ¢ holds in some Future state;

M, s E Alp1 U ¢o] holds iff for all paths s; — so — s3 — ..., where
s1 equals s, that path satisfies ¢1 U ¢o, i.e. there is some s; along the
path, such that M, s; F ¢2, and, for each j < i, we have M, s; F ¢1.
Mnemonically: All computation paths beginning in s satisfy that ¢
Until ¢o holds on it.

M, s E E[¢p1 U ¢9] holds iff there is a path s; — so = s3 — ...,
where s equals s, and that path satisfies ¢1 U ¢o as specified in 13.
Mnemonically: there Exists a computation path beginning in s such
that ¢; Until ¢2 holds on it.

3.4 Branching-time logic 221

@

Fig. 3.19. A system whose starting state satisfies EF ¢.

Clauses 8-14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state s

by unwinding the transition system to obtain an infinite computation tree,

whence ‘computation tree logic.” The diagrams in Figures 3.19-3.22 show

schematically systems whose starting states satisfy the formulas EF ¢, EG ¢,
AG ¢ and AF ¢, respectively. Of course, we could add more ¢ to any of these
diagrams and still preserve the satisfaction — although there is nothing to
add for AG . The diagrams illustrate a ‘least’ way of satisfying the formulas.

Recall the transition system of Figure 3.3 (page 187) for the designated
starting state sg, and the infinite tree illustrated in Figure 3.5. Let us now
look at some example checks for this system.

1.

M, sp E p A ¢q holds since the atomic symbols p and ¢ are contained
in the node of s.

. M, sp E —r holds since the atomic symbol r is not contained in node

50-

. M, sp E T holds by definition.
. M,sp E EX (¢ A r) holds since we have the leftmost computation

path sg — s1 — sg — s1 — ... in Figure 3.5, whose second node s;
contains ¢ and r.

. M, so E =AX (g Ar) holds since we have the rightmost computation

path sg — sa — s9 — s9 — ... in Figure 3.5, whose second node so
only contains r, but not q.

222 Verification by model checking

Q/E

Fig. 3.20. A system whose starting state satisfies EG ¢.

Fig. 3.21. A system whose starting state satisfies AG ¢.

6. M,so F —EF (p A7) holds since there is no computation path begin-
ning in sg such that we could reach a state where p A r would hold.
This is so, because there is simply no state whatsoever in this system,
where p and r hold at the same time.

7. M, sy E EGr holds since there is a computation path so — s9 —
89 — ... beginning in sy such that r holds in all future states of

3.4 Branching-time logic 223

Fig. 3.22. A system whose starting state satisfies AF ¢.

that path; this is the only computation path beginning at se and so
M, s9 E AGr holds as well.

8. M, sg E AF r holds since, for all computation paths beginning in s,
the system reaches a state (s; or s2) such that r holds.

9. M, so F E[(pAg) U r] holds since we have the rightmost computation

path sg — so — s3 = so — ... in Figure 3.5, whose second node s9
(1 = 1) satisfies 7, but all previous nodes (only j = 0, i.e. node sg)
satisfy p A q.

10. M, so E A[p U r] holds since p holds at sy and r holds in any possible
successor state of sg, so p U r is true for all computation paths
beginning in sy (so we may choose i = 1 independently of the path).

11. M,s0 E AG (pVgVr — EF EG r) holds since in all states reachable
from sy and satisfying p V ¢ V r (all states in this case) the system
can reach a state satisfying EG r (in this case state s2).

3.4.3 Practical patterns of specifications

It’s useful to look at some typical examples of formulas, and compare the
situation with LTL (Section 3.2.3). Suppose atomic descriptions include
some words such as busy and requested.

e It is possible to get to a state where started holds, but ready doesn’t:
EF (started A —ready). To express impossibility, we simply negate the
formula.

224 Verification by model checking

e For any state, if a request (of some resource) occurs, then it will eventually
be acknowledged:

AG (requested — AF acknowledged).

e The property that if the process is enabled infinitely often, then it runs
infinitely often, is not expressible in CTL. In particular, it is not expressed
by AG AF enabled — AG AF running, or indeed any other insertion of A
or E into the corresponding LTL formula. The CTL formula just given
expresses that if every path has infinitely often enabled, then every path
is infinitely often taken; this is much weaker than asserting that every
path which has infinitely often enabled is infinitely often taken.

e A certain process is enabled infinitely often on every computation path:
AG (AF enabled).

e Whatever happens, a certain process will eventually be permanently dead-
locked:

AF (AG deadlock).

e From any state it is possible to get to a restart state:
AG (EF restart).

e An upwards travelling elevator at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor:

AG (floor=2 A direction=up A ButtonPressed5 —

Aldirection=up U floor=5])
Here, our atomic descriptions are boolean expressions built from system
variables, e.g. floor=2.

e The elevator can remain idle on the third floor with its doors closed:

AG (floor=3 A idle A door=closed — EG (floor=3 A idle A door=closed)).

e A process can always request to enter its critical section. Recall that this
was not expressible in LTL. Using the propositions of Figure 3.8, this may
be written AG (ny — EXt;) in CTL.

e Processes need not enter their critical section in strict sequence. This
was also not expressible in LTL, though we expressed its negation. CTL
allows us to express it directly: EF (¢c; A E[c1 U (=e1 A E[-ea U ¢1])]).

3.4.4 Important equivalences between CTL formulas

Definition 3.16 Two CTL formulas ¢ and 1 are said to be semantically
equivalent if any state in any model which satisfies one of them also satisfies
the other; we denote this by ¢ = 1.

We have already noticed that A is a universal quantifier on paths and E
is the corresponding existential quantifier. Moreover, G and F are also uni-

3.4 Branching-time logic 225

versal and existential quantifiers, ranging over the states along a particular
path. In view of these facts, it is not surprising to find that de Morgan rules
exist:

—AF ¢ EG —¢ (3.6)
—lEF ¢ AG _|¢
-AX ¢ = EX —|¢ .

We also have the equivalences
AF ¢ = A[T U ¢] EF¢ = E[T U ¢]

which are similar to the corresponding equivalences in LTL.

3.4.5 Adequate sets of CTL connectives

As in propositional logic and in LTL, there is some redundancy among the
CTL connectives. For example, the connective AX can be written —EX —;
and AG, AF, EG and EF can be written in terms of AU and EU as follows:
first, write AG ¢ as -EF —¢ and EG ¢ as =AF —¢, using (3.6), and then use
AF¢ = A[T U ¢] and EF¢ = E[T U ¢|. Therefore AU, EU and EX
form an adequate set of temporal connectives.

Also EG, EU, and EX form an adequate set, for we have the equivalence

AlpUy] = =(E[-9 U (=¢ A =¢)] VEG —) (3.7)
which can be proved as follows:
Alp Uyl = Al=(=p U (m¢ A —¢)) AF 9]
= —E-[~(-% U (¢ A =) AF 9]
—E[(-¢ U (= A =¢)) V G)]
= ~(E[-9 U (¢ A—¢)]VEG) .

The first line is by Theorem 3.10, and the remainder by elementary ma-

nipulation. (This proof involves intermediate formulas which violate the
syntactic formation rules of CTL; however, it is valid in the logic CTL*
introduced in the next section.) More generally, we have:

Theorem 3.17 A set of temporal connectives in CTL is adequate if, and
only if, it contains at least one of {AX ,EX }, at least one of {EG,AF,AU }
and EU.

226 Verification by model checking

This theorem is proved in a paper referenced in the bibliographic notes at
the end of the chapter. The connective EU plays a special role in that
theorem because neither weak-until W nor release R are primitive in CTL
(Definition 3.12). The temporal connectives AR, ER, AW and EW are all
definable in CTL:

* AlpRy] = -E[-¢ U 9]

e E[p R 9] = -A[-¢ U —9)]

e Alp W)] = A[¢p R (¢ V 9)], and then use the first equation above
e E[¢ W] =E[¢) R (¢ V)], and then use the second one.

These definitions are justified by LTL equivalences in Sections 3.2.4 and 3.2.5.
Some other noteworthy equivalences in CTL are the following:

AGd = $AAXAG ¢

EG¢ = ¢ AEXEG ¢

AF¢ = ¢VAXAF ¢

EF¢ = ¢VEXEF ¢
Alp U] = 9V ($AAXA[SU ¢))
El¢ Uyl = %V (6 AEXE[Ud)) .

For example, the intuition for the third one is the following: in order to have
AF ¢ in a particular state, ¢ must be true at some point along each path
from that state. To achieve this, we either have ¢ true now, in the current
state; or we postpone it, in which case we must have AF ¢ in each of the next
states. Notice how this equivalence appears to define AF in terms of AX
and AF itself, an apparently circular definition. In fact, these equivalences
can be used to define the six connectives on the left in terms of AX and
EX, in a non-circular way. This is called the fixed-point characterisation of
CTL; it is the mathematical foundation for the model-checking algorithm
developed in Section 3.6.1; and we return to it later (Section 3.7).

3.5 CTL* and the expressive powers of LTL and CTL

CTL allows explicit quantification over paths, and in this respect it is more
expressive than LTL, as we have seen. However, it does not allow one to
select a range of paths by describing them with a formula, as LTL does.
In that respect, LTL is more expressive. For example, in LTL we can say
‘all paths which have a p along them also have a ¢ along them,’ by writing
Fp — Fgq. It is not possible to write this in CTL because of the constraint
that every F has an associated A or E. The formula AF p — AF ¢ means
something quite different: it says ‘if all paths have a p along them, then

3.5 CTL* and the expressive powers of LTL and CTL 227

all paths have a ¢ along them.” One might write AG (p — AF g¢), which is
closer, since it says that every way of extending every path to a p eventually
meets a ¢, but that is still not capturing the meaning of Fp — Fgq.

CTL* is a logic which combines the expressive powers of LTL and CTL,
by dropping the CTL constraint that every temporal operator (X, U, F, G)
has to be associated with a unique path quantifier (A, E). It allows us to
write formulas such as

e Al(p Ur) V(g U r)]: along all paths, either p is true until r, or ¢ is true
until 7.

e A[X pVXXp]: along all paths, p is true in the next state, or the next but
one.

e E[GFp|: there is a path along which p is infinitely often true.

These formulas are not equivalent to, respectively, A[(pV ¢) U r)], AXpV
AX AXp and EG EF p. It turns out that the first of them can be written
as a (rather long) CTL formula. The second and third do not have a CTL
equivalent.

The syntax of CTL* involves two classes of formulas:

e state formulas, which are evaluated in states:

¢p==TI[p[(=9) [(#Ad)]Ale]|E[a]

where p is any atomic formula and « any path formula; and
e path formulas, which are evaluated along paths:

az=¢|(ma)[(aAha)|(aUa)|(Ga)[(Fa)|(Xa)

where ¢ is any state formula. This is an example of an inductive definition
which is mutually recursive: the definition of each class depends upon the
definition of the other, with base cases p and T.

3.5.0.1 LTL and CTL as subsets of CTL*

Although the syntax of LTL does not include A and E, the semantic view-
point of LTL is that we consider all paths. Therefore, the LTL formula « is
equivalent to the CTL* formula A[a]. Thus, LTL can be viewed as a subset
of CTL*.

CTL is also a subset of CTL*, since it is the fragment of CTL* in which
we restrict the form of path formulas to

a:=(pU¢)|(Go)|(Fg)|(Xe)

228 Verification by model checking

CTL*

LTL

CTL Pa

Fig. 3.23. The expressive powers of CTL, LTL and CTL*.

Figure 3.23 shows the relationship among the expressive powers of CTL,
LTL and CTL*. Here are some examples of formulas in each of the subsets
shown:

def

In CTL but not in LTL: 9, = AGEF p. This expresses: wherever we
have got to, we can always get to a state in which p is true. This is
also useful, e.g. in finding deadlocks in protocols.

The proof that AG EF p is not expressible in LTL is as follows.
Let ¢ be an LTL formula such that A[¢] is allegedly equivalent to
AGEFp. Since M,s E AGEF p in the left-hand diagram below,
we have M, s E A[¢]. Now let M’ be as shown in the right-hand
diagram. The paths from s in M’ are a subset of those from s in M,
so we have M’ s E A[4]. Yet, it is not the case that M', s E AG EF p;

a contradiction.

VY i

-p p -p
In CTL*, but neither in CTL nor in LTL: ¢4 & E[GF p|, saying that
there is a path with infinitely many p.
The proof that this is not expressible in CTL is quite complex
and may be found in the papers co-authored by E. A. Emerson with

others, given in the references. (Why is it not expressible in LTL?)
def

In LTL but not in CTL: 93 = A[GFp — F¢|, saying that if there are
infinitely many p along the path, then there is an occurrence of
g. This is an interesting thing to be able to say; for example, many
fairness constraints are of the form ‘infinitely often requested implies
eventually acknowledged.’

3.5 CTL* and the expressive powers of LTL and CTL 229

def

In LTL and CTL: ¢, = AG(p —» AF¢q) in CTL, or G(p — Fgq) in LTL:
any p is eventually followed by a gq.

Remark 3.18 We just saw that some (but not all) LTL formulas can be
converted into CTL formulas by adding an A to each temporal operator.
For a positive example, the LTL formula G (p — F¢) is equivalent to the
CTL formula AG (p — AF gq). We discuss two more negative examples:

e FGp and AF AG p are not equivalent, since F G p is satisfied, whereas
AF AG p is not satisfied, in the model

Y

p -p p

In fact, AF AG p is strictly stronger than F G p.

e While the LTL formulas XFp and F Xp are equivalent, and they are
equivalent to the CTL formula AX AF p, they are not equivalent to
AF AX p. The latter is strictly stronger, and has quite a strange meaning
(try working it out).

Remark 3.19 There is a considerable literature comparing linear-time and
branching-time logics. The question of which one is ‘better’ has been de-
bated for about 20 years. We have seen that they have incomparable ex-
pressive powers. CTL* is more expressive than either of them, but is com-
putationally much more expensive (as will be seen in Section 3.6). The
choice between LTL and CTL depends on the application at hand, and on
personal preference. LTL lacks CTL’s ability to quantify over paths, and
CTL lacks LTL’s finer-grained ability to describe individual paths. To many
people, LTL appears to be more straightforward to use; as noted above, CTL
formulas like AF AX p seem hard to understand.

3.5.1 Boolean combinations of temporal formulas in CTL

Compared with CTL*, the syntax of CTL is restricted in two ways: it
does not allow boolean combinations of path formulas and it does not allow
nesting of the path modalities X, F and G. Indeed, we have already seen
examples of the inexpressibility in CTL of nesting of path modalities, namely
the formulas 13 and 14 above.

In this section, we see that the first of these restrictions is only apparent;
we can find equivalents in CTL for formulas having boolean combinations

230 Verification by model checking

of path formulas. The idea is to translate any CTL formula having boolean
combinations of path formulas into a CTL formula that doesn’t. For exam-
ple, we may see that E[F pAFq] = EF [pAEF ¢]VEF [¢ AEF p| since, if we
have F p A F ¢ along any path, then either the p must come before the g, or
the other way around, corresponding to the two disjuncts on the right. (If
the p and ¢ occur simultaneously, then both disjuncts are true.)

Since U is like F (only with the extra complication of its first argument),
we find the following equivalence:

El(pr Ua)A(p2Ug)] = E[(p1Ap2) U (g1 AE[p2 U go])]
VE[(p1 Ap2) U (2 AE[p1 U q1])] -

And from the CTL equivalence A[p U g] = —(E[-q U (=p A =q)] V EG —q)
(see Theorem 3.10) we can obtain E[—(p U q)] = E[-q U (=pA—¢q)]VEG —gq.
Other identities we need in this translation include E[-Xp] = EX -p.

3.5.2 Past operators in LTL

The temporal operators X, U, F, etc. which we have seen so far refer to the
future. Sometimes we want to encode properties that refer to the past, such
as: ‘whenever g occurs, then there was some p in the past.” To do this, we
may add the operators Y, S, O, H. They stand for yesterday, since, once, and
historically, and are the past analogues of X, U, F, G, respectively. Thus,
the example formula may be written G (¢ — O p).

NuSMYV supports past operators in LTL. One could also add past opera-
tors to CTL (AY, ES etc.) but NuSMV does not support them.

Somewhat counter-intuitively, past operators do not increase the expres-
sive power of LTL. That is to say, every LTL formula with past operators
can be written equivalently without them. The example formula above can
be written —p W ¢, or equivalently —(—¢ U (p A —q)) if one wants to avoid
W. This result is surprising, because it seems that being able to talk about
the past as well as the future allows more expressivity than talking about
the future alone. However, recall that LTL equivalence is quite crude: it
says that the two formulas are satisfied by exactly the same set of paths.
The past operators allow us to travel backwards along the path, but only
to reach points we could have reached by travelling forwards from its begin-
ning. In contrast, adding past operators to CTL does increase its expressive
power, because they can allow us to examine states not forward-reachable
from the present one.

3.6 Model checking algorithms 231

3.6 Model checking algorithms

The semantic definitions for LTL and CTL presented in Sections 3.2 and 3.4
allow us to test whether the initial states of a given system satisfy an LTL
or CTL formula. This is the basic model-checking question. In general,
interesting transition systems will have a huge number of states and the
formula we are interested in checking may be quite long. It is therefore well
worth trying to find efficient algorithms.

Although LTL is generally preferred by specifiers, as already noted, we
start with CTL model checking because its algorithm is simpler.

3.6.1 The CTL model-checking algorithm

Humans may find it easier to do model checks on the unwindings of models
into infinite trees, given a designated initial state, for then all possible paths
are plainly visible. However, if we think of implementing a model checker
on a computer, we certainly cannot unwind transition systems into infinite
trees. We need to do checks on finite data structures. For this reason, we
now have to develop new insights into the semantics of CTL. Such a deeper
understanding will provide the basis for an efficient algorithm which, given
M, s € § and ¢, computes whether M, s F ¢ holds. In the case that ¢ is not
satisfied, such an algorithm can be augmented to produce an actual path
(= run) of the system demonstrating that M cannot satisfy ¢. That way,
we may debug a system by trying to fix what enables runs which refute ¢.
There are various ways in which one could consider

M, s0E ¢

as a computational problem. For example, one could have the model M, the
formula ¢ and a state sg as input; one would then expect a reply of the form
‘yes’ (M, sg9 F ¢ holds), or ‘no’ (M, sy E ¢ does not hold). Alternatively,
the inputs could be just M and ¢, where the output would be all states s
of the model M which satisfy ¢.

It turns out that it is easier to provide an algorithm for solving the second
of these two problems. This automatically gives us a solution to the first
one, since we can simply check whether s(is an element of the output set.

3.6.1.1 The labelling algorithm

We present an algorithm which, given a model and a CTL formula, outputs
the set of states of the model that satisfy the formula. The algorithm does
not need to be able to handle every CTL connective explicitly, since we have

232 Verification by model checking

already seen that the connectives |, — and A form an adequate set as far as
the propositional connectives are concerned; and AF, EU and EX form an
adequate set of temporal connectives. Given an arbitrary CTL formula ¢,
we would simply pre-process ¢ in order to write it in an equivalent form in
terms of the adequate set of connectives, and then call the model-checking
algorithm. Here is the algorithm:

INPUT: a CTL model M = (S,—, L) and a CTL formula ¢.
OUTPUT: the set of states of M which satisfy ¢.

First, change ¢ to the output of TRANSLATE (¢), i.e. we write ¢ in terms
of the connectives AF, EU, EX, A, = and L using the equivalences given
earlier in the chapter. Next, label the states of M with the subformulas of ¢
that are satisfied there, starting with the smallest subformulas and working
outwards towards ¢.

Suppose 9 is a subformula of ¢ and states satisfying all the immediate sub-

formulas of 9 have already been labelled. We determine by a case analysis
which states to label with . If 1) is

L: then no states are labelled with L.

p: then label s with p if p € L(s).

1 A o: label s with 91 A 19 if s is already labelled both with 7 and

with .

—1p1: label s with =) if s is not already labelled with 1);.

AF ¢1:

— If any state s is labelled with 1)1, label it with AF ;.

— Repeat: label any state with AF 1 if all successor states are labelled
with AF 41, until there is no change. This step is illustrated in Fig-
ure 3.24.

E[t1 U tho]:

— If any state s is labelled with 1), label it with E[¢ U 45).

— Repeat: label any state with E[1; U 4] if it is labelled with 4, and at
least one of its successors is labelled with E[¢; U], until there is no
change. This step is illustrated in Figure 3.25.

e EX 1 label any state with EX ¢; if one of its successors is labelled with

Y1

Having performed the labelling for all the subformulas of ¢ (including ¢
itself), we output the states which are labelled ¢.

The complexity of this algorithm is O(f - V - (V + E)), where f is the
number of connectives in the formula, V' is the number of states and F is

3.6 Model checking algorithms 233
Repeat ...

/
= G —
\

b

until no change.

Fig. 3.24. The iteration step of the procedure for labelling states with subformulas
of the form AF .

/
= @w—C D
\

M
JUG

Fig. 3.25. The iteration step of the procedure for labelling states with subformulas
of the form E[’Lﬁl U 'sz]

the number of transitions; the algorithm is linear in the size of the formula
and quadratic in the size of the model.

3.6.1.2 Handling EG directly

Instead of using a minimal adequate set of connectives, it would have been
possible to write similar routines for the other connectives. Indeed, this
would probably be more efficient. The connectives AG and EG require a
slightly different approach from that for the others, however. Here is the
algorithm to deal with EG 1)y directly:

e EG:

— Label all the states with EG ;.

— If any state s is not labelled with 1, delete the label EG ;.

— Repeat: delete the label EG 1, from any state if none of its successors
is labelled with EG 4)1; until there is no change.

Here, we label all the states with the subformula EG1; and then whittle
down this labelled set, instead of building it up from nothing as we did in

234 Verification by model checking
states satisfying 1

hEGw@@

Fig. 3.26. A better way of handling EG.

the case for EU. Actually, there is no real difference between this procedure
for EG 9 and what you would do if you translated it into —AF —1) as far as
the final result is concerned.

3.6.1.8 A variant which is more efficient

We can improve the efficiency of our labelling algorithm by using a cleverer
way of handling EG. Instead of using EX, EU and AF as the adequate set,
we use EX, EU and EG instead. For EX and EU we do as before (but take
care to search the model by backwards breadth-first search, for this ensures
that we won’t have to pass over any node twice). For the EG v case:

e Restrict the graph to states satisfying 1, i.e. delete all other states and
their transitions;

e Find the maximal strongly connected components (SCCs); these are max-
imal regions of the state space in which every state is linked with (= has
a finite path to) every other one in that region.

e Use backwards breadth-first search on the restricted graph to find any
state that can reach an SCC; see Figure 3.26.

The complexity of this algorithm is O(f - (V + E)), i.e. linear both in the
size of the model and in the size of the formula.

Example 3.20 We applied the basic algorithm to our second model of mu-
tual exclusion with the formula E[—cy U ¢1]; see Figure 3.27. The algorithm
labels all states which satisfy ¢; during phase 1 with E[-cz U ¢;]. This
labels so and s4. During phase 2, it labels all states which do not satisfy
c2 and have a successor state that is already labelled. This labels states s;
and s3. During phase 3, we label sy because it does not satisfy co and has
a successor state (s1) which is already labelled. Thereafter, the algorithm
terminates because no additional states get labelled: all unlabelled states
either satisfy co, or must pass through such a state to reach a labelled state.

3.6 Model checking algorithms 235
S0

S1 S5
S
.
S4 S

Fig. 3.27. An example run of the labelling algorithm in our second model of mutual
exclusion applied to the formula E[-¢c; U ¢1].

S6

3.6.1.4 The pseudo-code of the CTL model checking algorithm

We present the pseudo-code for the basic labelling algorithm. The main
function SAT (for ‘satisfies’) takes as input a CTL formula. The program
SAT expects a parse tree of some CTL formula constructed by means of
the grammar in Definition 3.12. This expectation reflects an important
precondition on the correctness of the algorithm SAT. For example, the
program simply would not know what to do with an input of the form
X (T AEF p3), since this is not a CTL formula.

The pseudo-code we write for SAT looks a bit like fragments of C or Java
code; we use functions with a keyword return that indicates which result
the function should return. We will also use natural language to indicate
the case analysis over the root node of the parse tree of ¢. The declara-
tion local var declares some fresh variables local to the current instance
of the procedure in question, whereas repeat until executes the command
which follows it repeatedly, until the condition becomes true. Additionally,
we employ suggestive notation for the operations on sets, like intersection,
set complement and so forth. In reality we would need an abstract data
type, together with implementations of these operations, but for now we

236 Verification by model checking

function SAT (¢)

/* determines the set of states satisfying ¢ */

begin

case
¢is T : return S
¢is L : return ()
¢ is atomic: return {s € S| ¢ € L(s)}
¢ is ¢y : return S — SAT (¢1)
@ is @1 A ¢o : Teturn SAT (¢1) N SAT (¢2)
¢ is @1 V ¢a : return SAT (¢p1) U SAT (¢2)
@ is 1 — ¢o : return SAT (- V ¢s)
¢ is AX ¢y : return SAT (-EX —¢;)
¢ is EX ¢ : return SATex(¢)
¢ is Algp1 U ¢s] : return SAT(—(E[-¢2 U (=1 A ¢2)] V EG —¢2))
¢ is E[¢1 U ¢2] : return SATey(¢1, ¢2)
¢ is EF ¢1 : return SAT (E(T U ¢1))
¢ is EG ¢ : return SAT(—AF —¢,)
¢ is AF ¢y : return SATr (¢1)
¢ is AG ¢ : return SAT (—EF —¢,)
end case
end function

Fig. 3.28. The function SAT. It takes a CTL formula as input and returns the
set of states satisfying the formula. It calls the functions SATgx, SATgy and SATyF,
respectively, if EX |, EU or AF is the root of the input’s parse tree.

function SATgx (¢)
/* determines the set of states satisfying EX ¢ */
local var X,Y

begin
X := SAT (¢);
Y := pres(X);
return Y
end

Fig. 3.29. The function SATgy. It computes the states satisfying ¢ by calling SAT.
Then, it looks backwards along — to find the states satisfying EX ¢.

are interested only in the mechanism in principle of the algorithm for SAT;
any (correct and efficient) implementation of sets would do and we study
such an implementation in Chapter 6. We assume that SAT has access to all
the relevant parts of the model: S, — and L. In particular, we ignore the
fact that SAT would require a description of M as input as well. We simply
assume that SAT operates directly on any such given model. Note how SAT
translates ¢ into an equivalent formula of the adequate set chosen.

The algorithm is presented in Figure 3.28 and its subfunctions in Fig-

3.6 Model checking algorithms 237

function SAT,r (¢)
/* determines the set of states satisfying AF ¢ */
local var X,Y
begin
X :=85;
Y :=SAT (¢);
repeat until X =Y
begin
X :=Y;
Y :=Y Uprey(Y)
end
return Y
end

Fig. 3.30. The function SAT,r. It computes the states satisfying ¢ by calling SAT.
Then, it accumulates states satisfying AF ¢ in the manner described in the labelling
algorithm.

function SATgy (¢, 1))
/* determines the set of states satisfying E[¢ U ¢] */
local var W, XY
begin
W := SAT (¢);
X:=5;
Y := SAT (v);
repeat until X =Y
begin
X :=Y;
Y :=YU(W npres(Y))
end
return Y
end

Fig. 3.31. The function SATgy. It computes the states satisfying ¢ by calling SAT.
Then, it accumulates states satisfying E[¢ U ¢] in the manner described in the
labelling algorithm.

ures 3.29-3.31. They use program variables X, Y, V and W which are sets
of states. The program for SAT handles the easy cases directly and passes
more complicated cases on to special procedures, which in turn might call
SAT recursively on subexpressions. These special procedures rely on imple-
mentations of the functions

pres(Y) = {s € S |exists ¢, (s > s’ and ' €Y)}
prey(Y) = {s€ S|forall ¢, (s — s implies ' € Y)} .

238 Verification by model checking

‘Pre’ denotes travelling backwards along the transition relation. Both func-
tions compute a pre-image of a set of states. The function pres (instrumental
in SATgx and SATgy) takes a subset Y of states and returns the set of states
which can make a transition into Y. The function prey, used in SAT,g, takes
a set Y and returns the set of states which make transitions only into Y.
Observe that prey can be expressed in terms of complementation and pres,
as follows:

prey(Y) =S — pre3(S —Y) (3.8)

where we write S — Y for the set of all s € § which are not in Y.
The correctness of this pseudocode and the model checking algorithm is
discussed in Section 3.7.

3.6.1.5 The ‘state explosion’ problem

Although the labelling algorithm (with the clever way of handling EG) is
linear in the size of the model, unfortunately the size of the model is itself
more often than not exponential in the number of variables and the number
of components of the system which execute in parallel. This means that,
for example, adding a boolean variable to your program will double the
complexity of verifying a property of it.

The tendency of state spaces to become very large is known as the state
ezplosion problem. A lot of research has gone into finding ways of overcom-
ing it, including the use of:

e Efficient data structures, called ordered binary decision diagrams (OBDDs),
which represent sets of states instead of individual states. We study these
in Chapter 6 in detail. SMV is implemented using OBDDs.

e Abstraction: one may interpret a model abstractly, uniformly or for a
specific property.

e Partial order reduction: for asynchronous systems, several interleavings of
component traces may be equivalent as far as satisfaction of the formula
to be checked is concerned. This can often substantially reduce the size
of the model-checking problem.

e Induction: model-checking systems with (e.g.) large numbers of identical,
or similar, components can often be implemented by ‘induction’ on this
number.

e Composition: break the verification problem down into several simpler
verification problems.

The last four issues are beyond the scope of this book, but references may
be found at the end of this chapter.

3.6 Model checking algorithms 239

3.6.2 CTL model checking with fairness

The verification of M, sy F ¢ might fail because the model M may con-
tain behaviour which is unrealistic, or guaranteed not to occur in the actual
system being analysed. For example, in the mutual exclusion case, we ex-
pressed that the process prc can stay in its critical section (st=c) as long
as it needs. We modelled this by the non-deterministic assignment

next (st)
case

(st = ¢) : {c,n};

esac;

However, if we really allow process 2 to stay in its critical section as
long as it likes, then we have a path which violates the liveness constraint
AG (t1 — AF ¢1), since, if process 2 stays forever in its critical section, 1
can be true without c¢; ever becoming true.

We would like to ignore this path, i.e. we would like to assume that the
process can stay in its critical section as long as it needs, but will eventually
exit from its critical section after some finite time.

In LTL, we could handle this by verifying a formula like FG—cy — ¢, where
¢ is the formula we actually want to verify. This whole formula asserts that
all paths which satisfy infinitely often —co also satisfy ¢. However, we cannot
do this in CTL because we cannot write formulas of the form FG-cy — ¢
in CTL. The logic CTL is not expressive enough to allow us to pick out
the “fair” paths, i.e., those in which process 2 always eventually leaves its
critical section.

It is for that reason that SMV allows us to impose fairness constraints
on top of the transition system it describes. These assumptions state that
a given formula is true infinitely often along every computation path. We
call such paths fair computation paths. The presence of fairness constraints
means that, when evaluating the truth of CTL formulas in specifications,
the connectives A and E range only over fair paths.

We therefore impose the fairness constraint that !'st=c be true infinitely
often. This means that, whatever state the process is in, there will be a
state in the future in which it is not in its critical section. Similar fairness
constraints were used for the Alternating Bit Protocol.

Fairness constraints of the form (where ¢ is a state formula)

Property ¢ is true infinitely often.

240 Verification by model checking

are known as simple fairness constraints. Other types include those of the
form

If ¢ is true infinitely often, then ¢ is also true infinitely often.

SMV can deal only with simple fairness constraints; but how does it do that?
To answer that, we now explain how we may adapt our model-checking
algorithm so that A and E are assumed to range only over fair computation
paths.

def

Definition 3.21 Let C' = {41,2,...,%,} be a set of n fairness constraints.
A computation path sy — s; — ... is fair with respect to these fairness
constraints iff for each 7 there are infinitely many j such that s; F 1);, that
is, each 1; is true infinitely often along the path. Let us write A¢ and E¢
for the operators A and E restricted to fair paths.

For example, M, sy F AcG ¢ iff ¢ is true in every state along all fair
paths; and similarly for AcF, AcU, etc. Notice that these operators explic-
itly depend on the chosen set C' of fairness constraints. We already know
that EcU, EcG and E¢X form an adequate set; this can be shown in the
same manner as was done for the temporal connectives without fairness
constraints (Section 3.4.4). We also have that

Eclp U¢] = E[¢U (¢ AEcGT)]
EcX¢ = EX(¢ANEcGT) .

To see this, observe that a computation path is fair iff any suffix of it is fair.
Therefore, we need only provide an algorithm for EcG ¢. It is similar to
Algorithm 2 for EG, given earlier in this chapter:

e Restrict the graph to states satisfying ¢; of the resulting graph, we want
to know from which states there is a fair path.

¢ Find the maximal strongly connected components (SCCs) of the restricted
graph;

e Remove an SCC if, for some 1;, it does not contain a state satisfying ;.
The resulting SCCs are the fair SCCs. Any state of the restricted graph
that can reach one has a fair path from it.

e Use backwards breadth-first search to find the states on the restricted
graph that can reach a fair SCC.

See Figure 3.32. The complexity of this algorithm is O(n - f - (V + E)), i.e.
still linear in the size of the model and formula.

It should be noted that writing fairness conditions using SMV’s FAIR-
NESS keyword is necessary only for CTL model checking. In the case of LTL,

3.6 Model checking algorithms 241
states satisfying ¢

Fig. 3.32. Computing the states satisfying EcG ¢. A state satisfies E¢G ¢ iff, in
the graph resulting from the restriction to states satisfying ¢, the state has a fair
path from it. A fair path is one which leads to an SCC with a cycle passing through
at least one state that satisfies each fairness constraint; in the example, C' equals

{¢17¢2a¢3}‘

we can assert the fairness condition as part of the formula to be checked.
For example, if we wish to check the LTL formula 1 under the assumption
that ¢ is infinitely often true, we check GF ¢ — 1. This means: all paths
satisfying infinitely often ¢ also satisfy 1. It is not possible to express this
in CTL. In particular, any way of adding As or Es to GF ¢ — 1 will result
in a formula with a different meaning from the intended one. For example,
AG AF ¢ — 1 means that if all paths are fair then v holds, rather than
what was intended: 1 holds along all paths which are fair.

3.6.3 The LTL model checking algorithm

The algorithm presented in the sections above for CTL model checking is
quite intuitive: given a system and a CTL formula, it labels states of the
system with the subformulas of the formula which are satisfied there. The
state-labelling approach is appropriate because subformulas of the formula
may be evaluated in states of the system. This is not the case for LTL:
subformulas of the formula must be evaluated not in states but along paths
of the system. Therefore, LTL model checking has to adopt a different
strategy.

There are several algorithms for LTL model checking described in the lit-
erature. Although they differ in detail, nearly all of them adopt the same
basic strategy. We explain that strategy first; then, we describe some algo-
rithms in more detail.

3.6.3.1 The basic strategy

Let M = (S,—, L) be a model, s € S, and ¢ an LTL formula. We determine
whether M, s E ¢, i.e. whether ¢ is satisfied along all paths of M starting

242 Verification by model checking

q1
init(a) := 1;
init(b) := 0; ab
next(a) := case
ta : 0;
b : 1;
1 : {0,1};
esac;
next(b) := case
a & next(a) : !b;
ta : 1; (ab
1 : {0,1};
esac; q4

Fig. 3.33. An SMV program and its model M.

at s. Almost all LTL model checking algorithms proceed along the following
three steps.

Step 1. Construct an automaton, also known as a tableau, for the formula
—¢. The automaton for 1 is called Ay. Thus, we construct A-4. The
automaton has a notion of accepting a trace. A trace is a sequence of
valuations of the propositional atoms. From a path, we can abstract
its trace. The construction has the property that for all paths
m F 1 iff the trace of m is accepted by Ay. In other words, the
automaton A, encodes precisely the traces which satisfy .

Thus, the automaton A-y which we construct for —¢ has the prop-
erty that it encodes all the traces satisfying —¢; i.e. all the traces
which do not satisfy ¢.

Step 2. Combine the automaton A_4 with the model M of the system. The
combination operation results in a transition system whose paths are
both paths of the automaton and paths of the system.

Step 3. Discover whether there is any path from a state derived from s in
the combined transition system. Such a path, if there is one, can be
interpreted as a path in M beginning at s which does not satisfy ¢.

If there was no such path, then output: ‘Yes, M, s F ¢.” Otherwise,
if there is such a path, output ‘No, M, s ¥ ¢.” In the latter case, the
counterexample can be extracted from the path found.

Let us consider an example. The system is described by the SMV program
and its model M, shown in Figure 3.33. We consider the formula —(a U b).
Since it is not the case that all paths of M satisfy the formula (for example,
the path g3, ¢2,q2 ... does not satisfy it) we expect the model check to fail.

3.6 Model checking algorithms 243

In accordance with Step 1, we construct an automaton A,y; which char-
acterises precisely the traces which satisfy a U b. (We use the fact that
——(a U b) is equivalent to a U b.) Such an automaton is shown in Figure
3.34. We will look at how to construct it later; for now, we just try to
understand how and why it works.

def

Fig. 3.34. Automaton accepting precisely traces satisfying ¢ = a U b. The transi-
tions with no arrows can be taken in either direction. The acceptance condition is
that the path of the automaton cannot loop indefinitely through gs.

A trace t is accepted by an automaton like the one of Figure 3.34 if there
exists a path 7 through the automaton such that:

7 starts in an initial state (i.e. one containing ¢);

it respects the transition relation of the automaton;

t is the trace of 7; matches the corresponding state of m;

the path respects a certain ‘accepting condition.” For the automaton
of Figure 3.34, the accepting condition is that the path should not end
43, 93,43 - - - , indefinitely.

For example, suppose t is ab,ab,ab,ab,ab,@b,ab,ab,..., eventually re-
peating forevermore the state ab. Then we choose the path g3, g3, g3, ¢4, ¢s,
q1,05,d5 - .. We start in g3 because the first state is ab and it is an initial
state. The next states we choose just follow the valuation of the states of
7. For example, at ¢; the next valuation is a b and the transitions allow us
to choose g3 or g5. We choose ¢}, and loop there forevermore. This path
meets the conditions, and therefore the trace ¢ is accepted. Observe that
the definition states ‘there exists a path.” In the example above, there are
also paths which don’t meet the conditions:

244 Verification by model checking

e Any path beginning g3, g5, ... doesn’t meet the condition that we have to
respect the transition relation.

e The path ¢s3,93,93,94,94,91,93, 93 - .. doesn’t meet the condition that we
must not end on a loop of g3.

These paths need not bother us, because it is sufficient to find one which
does meet the conditions in order to declare that = is accepted.

Why does the automaton of Figure 3.34 work as intended? To understand
it, observe that it has enough states to distinguish the values of the propo-
sitions — that is, a state for each of the valuations {@b,@b,ab,ab}, and in
fact two states for the valuation ab. One state for each of {ab,ab,ab} is
intuitively enough, because those valuations determine whether a U b holds.
But a U b could be false or true in ab, so we have to consider the two
cases. The presence of ¢ &' 2 U b in a state indicates that either we are still
expecting ¢ to become true, or we have just obtained it. Whereas ¢ indi-
cates we no longer expect ¢, and have not just obtained it. The transitions
of the automaton are such that the only way out of ¢3 is to obtain b, i.e.
to move to go or q4. Apart from that, the transitions are liberal, allowing
any path to be followed; each of q1,¢o, g3 can transition to any valuation,
and so can g3, g5 taken together, provided we are careful to choose the right
one to enter. The acceptance condition, which allows any path except one
looping indefinitely on g3, guarantees that the promise of a U b to deliver b
is eventually fulfilled.

Using this automaton A,yp, we proceed to step 2. To combine the au-
tomaton A,yp with the model of the system M shown in Figure 3.33, it is
convenient first to redraw M with two versions of g3; see Figure 3.35(left).
It is an equivalent system; all ways into g3 now non-deterministically choose
g3 or g4, and which ever one we choose leads to the same successors. But it
allows us to superimpose it on A,y and select the transitions common to
both, obtaining the combined system of Figure 3.35(right).

Step 3 now asks whether there is a a path from g of the combined automa-
ton. As can be seen, there are two kinds of path in the combined system:
43, (04,43,)*q2, 42 - - -, and g3, qu, (43,94,)* 45, G1, 42, G2, - - - Where (g3, qs)* de-
notes either the empty string or g3, g4 or gs, qs, g3, g4 etc. Thus, according
to Step 3, and as we expected, =(a U b) is not satisfied in all paths of the
original system M.

3.6.3.2 Constructing the automaton

Let us look in more detail at how the automaton is constructed. Given an
LTL formula ¢, we wish to construct an automaton Ay such that A, accepts

3.6 Model checking algorithms 245

q1 g2

Fig. 3.35. Left: the system M of Figure 3.33, redrawn with an expanded state
space; right: the expanded M and A,y combined.

precisely those runs on which ¢ holds. We assume that ¢ contains only the
temporal connectives U and X; recall that the other temporal connectives
can be written in terms of these two.

Define the closure C(¢) of formula ¢ as the set of subformulas of ¢ and
their complements, identifying ——1 and . For example, C(a U b) =
{a,b,—a,=b,a U b,~(a U b)}. The states of Ay, denoted by ¢, ¢’ etc, are the
maximal subsets of C(¢) which satisfy the following conditions:

e For all (non-negated) 9 € C(¢), either ¢ € g or =) € ¢, but not both.
11 V 1he € q holds iff 91 € g or 99 € q, whenever 11 V 1y € C(P).
Conditions for other boolean combinations are similar.

If 41 U p € ¢q, then 9p9 € q or Y1 € q.

If =(¢1 U o) € g, then —¢hy € ¢.

Intuitively, these conditions imply that the states of A4 are capable of saying
which subformulas of ¢ are true.

The initial states of Ay are those states containing ¢. For transition
relation ¢ of A, we have (g,¢') € § iff all of the following conditions hold:

If X1 € g then 9 € ¢’

If =X € q then) € ¢

If 41 U tpo € g and 1o ¢ g then 1 Uy € ¢'.

If =(¢)1 U ths) € g and 91 € g then —(1p1 U 1h9) € ¢'.

246 Verification by model checking

These last two conditions are justified by the recursion laws

Y1 Usps = 9oV (1 AX (31 U o))
(1 Uhe) = 9o A(=th1 VX (th1 Uhe)) .

In particular, they ensure that whenever some state contains 11 U 19, sub-
sequent states contain 1; for as long as they do not contain)s.

As we have defined Ay so far, not all paths through Ay satisfy ¢. We use
additional acceptance conditions to guarantee the ‘eventualities’ 1/ promised
by the formula ¢ U 1), namely that Ay cannot stay for ever in states satis-
fying ¢ without ever obtaining 1. Recall that, for the automaton of Figure
3.34 for a U b, we stipulated the acceptance condition that the path through
the automaton should not end g3, 4¢3,

The acceptance conditions of Ay are defined so that they ensure that
every state containing some formula x U 1 will eventually be followed by
some state containing %. Let x1 U 91, ..., xx U 9 be all subformulas of
this form in C(¢). We stipulate the following acceptance condition: a run
is accepted if, for every i such that 1 < i < k, the run has infinitely many
states satisfying —(x; U 9;) V 9;. To understand why this condition has the
desired effect, imagine the circumstances in which it is false. Suppose we
have a run having only finitely many states satisfying —(x; U ;) V);. Let us
advance through all those finitely many states, taking the suffix of the run
none of whose states satisfies =(x; U ;) V 1, i.e. all of whose states satisfy
(xi U ;) A —1p;. That is precisely the sort of run we want to eliminate.

If we carry out this construction on a U b, we obtain the automaton shown
in Figure 3.34. Another example is shown in Figure 3.36, for the formula
(p U gq)V (=p U gq). Since that formula has two U subformulas, there are
two sets specified in the acceptance condition, namely, the states satisfying
p U ¢ and the states satisfying -p U gq.

3.6.3.3 How LTL model checking is implemented in NuSMV

In the sections above, we described an algorithm for LTL model checking.
Given an LTL formula ¢ and a system M and a state s of M, we may check
whether M, s F ¢ holds by constructing the automaton A-4, combining it
with M, and checking whether there is a path of the resulting system which
satisfies the acceptance condition of A .

It is possible to implement the check for such a path in terms of CTL
model checking, and this is in fact what NuSMV does. The combined system
M x A_4 is represented as the system to be model checked in NuSMV, and
the formula to be checked is simply EGT. Thus, we ask the question:
does the combined system have a path. The acceptance conditions of A

3.7 The fixed-point characterisation of CTL 247

~(pUg),
'('p U q)a
D, _'qa_'¢

q3 g4

Fig. 3.36. Automaton accepting precisely traces satisfying ¢ = (p U ¢) V (—=p U g).
The transitions with no arrows can be taken in either direction. The accep-
tance condition asserts that every run must pass infinitely often through the set

{491, 43,494,95,9 }, and also the set {q1, 92,93, 75,6 }-

are represented as implicit fairness conditions for the CTL model checking
procedure. Explicitly, this amounts to asserting ‘FAIRNESS —(x U) V ¢’
for each formula x U 9 occurring in C(¢).

3.7 The fixed-point characterisation of CTL

On page 236, we presented an algorithm which, given a CTL formula ¢ and
a model M = (S, —, L), computes the set of states s € S satisfying ¢. We
write this set as [¢]. The algorithm works recursively on the structure of
¢. For formulas ¢ of height 1 (L, T or p), [¢] is computed directly. Other
formulas are composed of smaller subformulas combined by a connective of
CTL. For example, if ¢ is 91 V 12, then the algorithm computes the sets
[#1] and [12] and combines them in a certain way (in this case, by taking
the union) in order to obtain [V 12].

The more interesting cases arise when we deal with a formula such as
EX 1), involving a temporal operator. The algorithm computes the set [¢]
and then computes the set of all states which have a transition to a state in
[#]. This is in accord with the semantics of EX ¢: M, s E EX) iff there is
a state s’ with s — s’ and M, s’ E 9.

248 Verification by model checking

function SATgG (@)
/* determines the set of states satisfying EG ¢ */
local var X,Y
begin
Y :=SAT (¢);
X :=0;
repeat until X =Y
begin
X :=Y;
Y :=Y Nnprez(Y)
end
return Y
end

Fig. 3.37. The pseudo-code for SATgG.

For most of these logical operators, we may easily continue this discussion
to see that the algorithms work just as expected. However, the cases EU,
AF and EG (where we needed to iterate a certain labelling policy until it
stabilised) are not so obvious to reason about. The topic of this section
is to develop the semantic insights into these operators that allow us to
provide a complete proof for their termination and correctness. Inspecting
the pseudo-code in Figure 3.28, we see that most of these clauses just do the
obvious and correct thing according to the semantics of CTL. For example,
try out what SAT does when you call it with ¢; — ¢o.

Our aim in this section is to prove the termination and correctness of
SAT,r and SATgy. In fact, we will also write a procedure SATgg and prove its
termination and correctness'. The procedure SATgg is given in Figure 3.37
and based on the intuitions given in Section 3.6.1.2: note how deleting the
label if none of the successor states is labelled is coded as intersecting the
labelled set with the set of states which have a labelled successor.

The semantics of EG ¢ says that sqg F EG ¢ holds iff there exists a com-
putation path sy — s; — so — ... such that s; F ¢ holds for all i > 0. We
could instead express it as follows: EG ¢ holds if ¢ holds and EG ¢ holds
in one of the successor states to the current state. This suggests the equiv-
alence EG ¢ = ¢ A EXEG ¢ which can easily be proved from the semantic
definitions of the connectives.

Observing that [EX 9] = pres([¢]) we see that the equivalence above
can be written as [EG ¢] = [¢] N pre3([EG ¢])). This does not look like a
very promising way of calculating EG ¢, because we need to know EG ¢ in

1 Section 3.6.1.4 handles EG ¢ by translating it into —AF —¢, but we already noted in Sec-
tion 3.6.1.2 that EG could be handled directly.

3.7 The fixed-point characterisation of CTL 249

order to work out the right-hand side. Fortunately, there is a way around
this apparent circularity, known as computing fixed points, and that is the
subject of this section.

3.7.1 Monotone functions

Definition 3.22 Let S be a set of states and F: P(S) — P(S) a function
on the power set of S.

1. We say that F' is monotone iff X C Y implies F'(X) C F(Y) for all
subsets X and Y of S.
2. A subset X of S is called a fixed point of F' iff F(X) = X.

def

For an example, let § & {s0,51} and F(Y) £ Y U {s} for all subsets Y
of S. Since Y C Y’ implies Y U{so} C Y'U{s¢}, we see that F' is monotone.
The fixed points of F' are all subsets of S containing sg. Thus, F' has two
fixed points, the sets {so} and {sg, s1}. Notice that F' has a least (= {so})
and a greatest (= {so,s1}) fixed point.

An example of a function G: P(S) — P(S), which is not monotone, is
given by

G(Y)E if Y = {so} then {s;} else {sq} .

So G maps {so} to {s1} and all other sets to {sp}. The function G is
not monotone since {so} C {so,s1} but G({so}) = {s1} is not a subset of
G({s0,51}) = {s0}- Note that G has no fixed points whatsoever.

The reasons for exploring monotone functions on P(S) in the context of
proving the correctness of SAT are

1. that monotone functions always have a least and a greatest fixed
point,

2. that the meanings of EG, AF and EU can be expressed via greatest,
respectively least, fixed points of monotone functions on P(.S),

3. that these fixed-points can be easily computed and

4. that the procedures SATgy and SAT,r code up such fixed-point com-
putations, and are correct by item 2.

Notation 3.23 F'(X) means

i times

Thus, the function F* is just ‘F applied 4 many times.’

250 Verification by model checking

def

For example, for the function F(Y) = Y U {so}, we obtain F?(Y) =
F(F(Y)) = (YU{so})U{so} =Y U{so} = F(Y). In this case, F? = F and
therefore F* = F for all i > 1. It is not always the case that the sequence of
functions (F', F2, F3,...) stabilises in such a way. For example, this won’t
happen for the function G defined above (see exercise 1(d) on page 263).
The following fact is a special case of a fundamental insight, often referred
to as the Knaster-Tarski Theorem.

Theorem 3.24 Let S be a set {sg,S1,...,5,} with n + 1 elements. If
F: P(S) — P(S) is a monotone function, then F"*1((}) is the least fixed
point of F and F"*1(S) is the greatest fixed point of F.

Proof: Since () C F(0), we get F(0) C F(F(0)), i.e. F*(0) C F?(0), for F is
monotone. We can now use mathematical induction to show that

FH(0) CF*(0) CF*(0) C... C F'(0)

for all 4 > 1. In particular, taking 3 o+ 1, we claim that one of the

expressions F*((})) above is already a fixed point of F. Otherwise, F'(()
needs to contain at least one element (for then § # F(0)). By the same
token, F2(()) needs to have at least two elements since it must be bigger
than F'(()). Continuing this argument, we see that F™2(}}) would have
to contain at least n + 2 many elements. The latter is impossible since
S has only n + 1 elements. Therefore, F(F*(})) = F*(§) for some 0 <
k < n 4+ 1, which readily implies that F"*1(()) is a fixed point of F as
well.

Now suppose that X is another fixed point of F. We need to show that
F™1(0) is a subset of X; but, since § C X, we conclude F(()) C F(X) = X,
for F' is monotone and X a fixed point of F. By induction, we obtain
Fi(0) C X for all i > 0. So, for i & n + 1, we get F"1(0) C X.

The proof of the statements about the greatest fixed point is dual to the
one above. Simply replace C by D, () by S and ‘bigger’ by ‘smaller.’ O

This theorem about the existence of least and greatest fixed points of
monotone functions F': P(S) — P(S) not only asserted the existence of
such fixed points; it also provided a recipe for computing them, and cor-
rectly so. For example, in computing the least fixed point of F', all we have
to do is apply F to the empty set () and keep applying F to the result un-
til the latter becomes invariant under the application of F. The theorem
above further ensures that this process is guaranteed to terminate. More-
over, we can specify an upper bound n + 1 to the worst-case number of

3.7 The fixed-point characterisation of CTL 251

iterations necessary for reaching this fixed point, assuming that S has n+1
elements.

3.7.2 The correctness of SATgg

We saw at the end of the last section that [EG ¢] = [¢]Npre3([EG ¢]). This
implies that EG ¢ is a fixed point of the function F(X) = [¢] Nprez(X). In
fact, F' is monotone, EG ¢ is its greatest fixed point and therefore EG ¢ can
be computed using Theorem 3.24.

Theorem 3.25 Let F' be as defined above and let S have n + 1 elements.
Then F' is monotone, [EG ¢] is the greatest fixed-point of F', and [EG ¢] =
FHL(9).

Proof:

1. In order to show that F' is monotone, we take any two subsets X and
Y of S such that X CY and we need to show that F(X) is a subset
of F(Y). Given sg such that there is some s; € X with s9 — s, we
certainly have sy — s1, where s; € Y, for X is a subset of Y. Thus,
we showed preg(X) C pres(Y) from which we readily conclude that
F(X) = [¢] N pres(X) C [4] N pres(Y) = F(Y).

2. We have already seen that [EG ¢] is a fixed point of F. To show
that it is the greatest fixed point, it suffices to show here that any
set X with F(X) = X has to be contained in [EG ¢]. So let sy be
an element of such a fixed point X. We need to show that sg is in
[EG ¢] as well. For that we use the fact that

so € X = F(X) = [¢] N pres(X)

to infer that sg € [¢] and sy — s; for some s; € X; but, since s;
is in X, we may apply that same argument to s; € X = F(X) =
[¢] Npre3(X) and we get s1 € [¢] and s; — s, for some so € X. By
mathematical induction, we can therefore construct an infinite path
80 —» 81 — +++ —> S — Spy1 — ... such that s; € [#] for all 7 > 0.
By the definition of [EG ¢], this entails sy € [EG ¢].

3. The last item is now immediately accessible from the previous one
and Theorem 3.24.

O
Now we can see that the procedure SATg; is correctly coded and termi-
nates. First, note that the line Y := Y N pre3(Y) in the procedure SATgg

252 Verification by model checking

(Figure 3.37) could be changed to Y := SAT(¢) N pre3(Y) without changing
the effect of the procedure. To see this, note that the first time round the
loop, Y is SAT(¢); and in subsequent loops, Y C SAT(¢), so it doesn’t matter
whether we intersect with Y or SAT(¢)!. With the change, it is clear that
SATgg is calculating the greatest fixed point of F'; therefore its correctness
follows from Theorem 3.25.

3.7.3 The correctness of SATgy

Proving the correctness of SATgy is similar. We start by noting the equiv-
alence E[¢p U ¢] = ¢ V (¢ ANEXE[¢ U 9]) and we write it as [E[¢ U ¢]] =
[#] U ([¢] N pres[E[¢ U 9]]). That tells us that [E[¢ U +]] is a fixed point
of the function G(X) = [¢] U ([¢] N prea(X)). As before, we can prove
that this function is monotone. It turns out that [E[¢ U 4] is its least fixed
point and that the function SATgy is actually computing it in the manner of
Theorem 3.24.

Theorem 3.26 Let G be defined as above and let S have n + 1 elements.
Then G is monotone, [E(¢ U)] is the least fixed-point of G, and we have

[E(¢ U 9)] = G"*1(0).
Proof:

1. Again, we need to show that X C Y implies G(X) C G(Y); but
that is essentially the same argument as for F', since the function

L If you are sceptical, try computing the values Yp, Y1, Y3,..., where Y; represents the value of
Y after ¢ iterations round the loop. The program before the change computes as follows:

Yo = SAT(¢)

Y1 = Yo Nprea(Yop)

Y> = YiNprea(Y1)
= Yo Npreg(Yo) N pre3(Yp N pres(Yo))
= Yo N pres(Yo N pres(Yo)).

The last of these equalities follows from the monotonicity of pres.

Ys = Y2 Npres(Ys)
= Yp N preg (Yo N pre3(Yo)) N preg(Yo N pre3(Yo N pre3(Yo)))
= Yo N preg(Yp N pre3(Yo N pre3(Yo))).

Again the last one follows by monotonicity. Now look at what the program does after the
change:

Yo = SAT(¢)
Y7 = SAT(¢) Npre3(Yo)
= Yo Nprea(Yp)
Yo = Yo Nprea(Yr)
Y3 = Yp Npreg (Y1)
= Yo N pres(Yo N pres(Yo)).

A formal proof would follow by induction on 3.

3.7 The fixed-point characterisation of CTL 253

which sends X to preg(X) is monotone and all that G now does is to
perform the intersection and union of that set with constant sets [¢]
and [¢].

2. If S has n+1 elements, then the least fixed point of G equals G™*1(()
by Theorem 3.24. Therefore it suffices to show that this set equals
[E(¢ U 4)]. Simply observe what kind of states we obtain by it-
erating G on the empty set 0: G'(0) = [¢] U ([¢] N prea([¢])) =
[¥] U ([¢] N ®) = [¢]U® = [¢], which are all states s € [E(¢ U)],

where we chose 7 = 0 according to the definition of Until. Now,

G*(0) = [¥] U ([¢] N pres(G1(9)))

tells us that the elements of G?()) are all those so € [E(¢ U)] where
we chose 4 < 1. By mathematical induction, we see that G¥T1(() is
the set of all states sy for which we chose i < k to secure sy €
[E(¢ U 9)]. Since this holds for all k, we see that [E(¢ U %)] is
nothing but the union of all sets G¥*1() with k& > 0; but, since
G™t1(0) is a fixed point of G, we see that this union is just G™*1(0).

O

The correctness of the coding of SATgy follows similarly to that of SATgg.
We change the line Y := YU(W Npre3(Y)) into Y := SAT(¢)) U(W Npres(Y))
and observe that this does not change the result of the procedure, because
the first time round the loop, Y is SAT(4)); and, since Y is always increasing,
it makes no difference whether we perform a union with Y or with SAT(%).
Having made that change, it is then clear that SATgy is just computing the
least fixed point of G using Theorem 3.24.

We illustrate these results about the functions F' and G above through
an example. Consider the system in Figure 3.38. We begin by comput-
ing the set [EF p]. By the definition of EF this is just [E(T U p)]. So
we have ¢; & T and ¢ & p. From Figure 3.38, we obtain [p] = {s3}
and of course [T] = S. Thus, the function G above equals G(X) =
{s3} U pres(X). Since [E(T U p)] equals the least fixed point of G, we
need to iterate G' on () until this process stabilises. First, G'(f)) = {s3} U
preg(0) = {s3}. Second, G*(0) = G(G'(0)) = {s3} U prea({ss}) = {s1,s3}-
Third, G3(0) = G(G*(0)) = {s3} Upres({s1,s3}) = {s0, 51,52, s3}. Fourth,
G*(0) = G(G*(0)) = {s3} U pres({so, 51, 52,53}) = {s0,51,52,53}. There-
fore, {so, s1, s2, s3} is the least fixed point of G, which equals [E(T U p)] by
Theorem 3.20. But then [E(T U p)] = [EF p] = [EF p].

The other example we study is the computation of the set [EG¢]. By
Theorem 3.25, that set is the greatest fixed point of the function F' above,

254 Verification by model checking

S0

Fig. 3.38. A system for which we compute invariants.

where ¢ & ¢. From Figure 3.38 we see that [¢] = {s0,s4} and so F(X) =
[q] N prea(X) = {so,s4} Npres(X). Since [EG g] equals the greatest fixed
point of F', we need to iterate F on S until this process stabilises. First,
F(S) = {s0,84} N pre3(S) = {s0,54} N S since every s has some s’ with
s — s'. Thus, F1(S) = {s¢, 54}

Second, F%(S) = F(F*(S)) = {s0, 54} N pres({so,s4}) = {s0,s4}. There-
fore, {sg, s4} is the greatest fixed point of F', which equals [EG ¢] by Theo-
rem 3.25.

3.8 Exercises
Exercises 3.1

1. Read Section 2.7 in case you have not yet done so and classify Alloy
and its constraint analyzer according to the classification criteria for
formal methods proposed on page 180.

2. Visit and browse the web sites ! and ? to find formal methods that
interest you for whatever reason. Then classify them according to
the criteria from page 180.

Exercises 3.2
1. Draw parse trees for the LTL formulas:

(a) FpAGg—=pWr
(b) F(p—>Gr)V-qUp
(c) pW (g Wr)
(d) GFp—>F(¢qVs)
2. Consider the system of Figure 3.39. For each of the formulas ¢:

1
2

www.afm.sbu.ac.uk
www.cs.indiana.edu/formal-methods-education/

3.8 Exercises 255

g4

Fig. 3.39. A model M.

)
)

(¢c) aUX(aA-b)
)

(e) X(aAb)AF (—aA-b)

(i) Find a path from the initial state g3 which satisfies ¢.
(ii) Determine whether M, g3 F ¢.

3. Working from the clauses of Definition 3.1 (page 184), prove the
equivalences

dUY = ¢WAFy

dWY = ¢UpVGs
Wy = PR ($VY)
dRY = Yy W (pAY).

4. Prove that ¢ Uy =9 R (¢ V) AF .

. List all subformulas of the LTL formula —p U (FrVG —-q — ¢ W —r).

6. ‘Morally’ there ought to be a dual for W. Work out what it might
mean, and then pick a symbol based on the first letter of the meaning.

7. Prove that for all paths 7 of all models, 7 F ¢ W 9 A F 1 implies
m E ¢ U 1. That is, prove the remaining half of equivalence (3.2) on
page 194.

8. Recall the algorithm NNF on page 64 which computes the negation

ot

normal form of propositional logic formulas. Extend this algorithm to
LTL: you need to add program clauses for the additional connectives

256 Verification by model checking

X, F, G and U, R and W; these clauses have to animate the semantic
equivalences that we presented in this section.

Exercises 3.3
1. Consider the model in Figure 3.9 (page 201).

* (a) Verify that G(req -> F busy) holds in all initial states.

(b) Does —(req U —busy) hold in all initial states of that model?

(¢) NuSMYV has the capability of referring to the next value of a
declared variable v by writing next (v). Consider the model
obtained from Figure 3.9 by removing the self-loop on state
'req & busy. Use the NuSMV feature next(...) to code
that modified model as an NuSMV program with the specifi-
cation G(req -> F busy). Then run it.

2. Verify Remark 3.11 from page 199.
* 3. Draw the transition system described by the ABP program.

Remarks: There are 28 reachable states of the ABP program.
(Looking at the program, you can see that the state is described
by nine boolean variables, namely S.st, S.messagel, S.message2,
R.st, R.ack, R.expected, msg_chan.outputl, msg_chan.output2
and finally ack_chan.output. Therefore, there are 2° = 512 states in
total. However, only 28 of them can be reached from the initial state
by following a finite path.)

If you abstract away from the contents of the message (e.g. by
setting S.messagel and msg_chan.outputl to be constant 0), then
there are only 12 reachable states. This is what you are asked to
draw.

Exercises 3.4
1. Write the parse trees for the following CTL formulas:
*(a) EGr
*(b) AG (¢ — EGr)
*(c) Alp UEFr]
*(d) EFEGp — AF r, recall Convention 3.13
)
)

o,

(e) Alp U AqgUr]]
(f) E[A[p U ¢] Ur]
(&) AG(p—= Alp U (=pAA[-p U g))]).
2. Explain why the following are not well-formed CTL formulas:
*(a) FGr

3.8 Exercises 257

()AFWWMHA@UTH

. State which of the strings below are well-formed CTL formulas. For
those which are well-formed, draw the parse tree. For those which
are not well-formed, explain why not.

@)ﬁ(p) V (rAs)
(b

*(c —|AXq
(

(e E[(AXq) U (=(-=p) V(T As))]

f) (Fr) A (AGg)
(8) ~(AGq) Vv (EGq).
. List all subformulas of the formula AG (p — A[p U (-pAA[—p U q])]).
. Does E[req U —busy] hold in all initial states of the model in Fig-
ure 3.9 on page 2017
. Consider the system M in Figure 3.40.

) X
)
d) pU (AX 1)
)
)

(a) Beginning from state s, unwind this system into an infinite
tree, and draw all computation paths up to length 4 (= the
first four layers of that tree).

(b) Determine whether M, sg F ¢ and M, so F ¢ hold and justify
your answer, where ¢ is the LTL or CTL formula:

258 Verification by model checking

7. Let M = (S, —, L) be any model for CTL and let [¢] denote the set
of all s € S such that M, s E ¢. Prove the following set identities by
inspecting the clauses of Definition 3.15 from page 220.

*(£) [¢1 = ¢2] = (S —[¢1]) Ul
*(g) [AX¢] =S5 - [EX~¢]
(h) [A(g2 U ¢2)] = [-(E(=¢1 U (—¢1 A =¢2)) V EG =¢)].
8. Consider the model M in Figure 3.41. Check whether M, sg E ¢ and
M, s9 E ¢ hold for the CTL formulas ¢:

(a) AFq

(b) AG (BF (pv 1))
(¢) EX(EXT)

(d) AG (AFgq).

*(a) [T] =S5,
(b) [L] =10
(c) [-¢] =S — 1[4l
(d) [¢1 A ¢o] = [¢1] N [¢2]
() [#1V 2] =[¢1] U2l
()
)

*9.

10.

11.

12.

13.
*14.

3.8 Exercises 259

The meaning of the temporal operators F, G and U in LTL and AU,
EU, AG, EG, AF and EF in CTL was defined to be such that ‘the
present includes the future.” For example, EF p is true for a state if
p is true for that state already. Often one would like corresponding
operators such that the future excludes the present. Use suitable
connectives of the grammar on page 217 to define such (six) modified
connectives as derived operators in CTL.

Which of the following pairs of CTL formulas are equivalent? For
those which are not, exhibit a model of one of the pair which is not
a model of the other:

(a) EF ¢ and EG ¢
*(b) EF ¢ VEF ¢ and EF (¢ V 9)
*(c) AF ¢V AF ¢ and AF (¢ V 9)
) AF —¢ and -EG ¢
e) EF ¢ and —AF ¢
f) A1 U Alpz U ¢3]] and A[A[py U 3] U ¢3], hint: it might
make it simpler if you think first about models that have just

C

ol

*

(
(
(
(

one path
(g) T and AG¢p — EG ¢
*(h) T and EG ¢ — AG ¢.
Find operators to replace the 7 marks, to make the following equiv-
alences.

*(a) AG(pANY) = AG¢p 7?7 AG .
(b) EF—¢ = —77¢
State explicitly the meaning of the temporal connectives AR etc., as
defined on page 226.
Prove the equivalences (3.6) on page 225.
Write pseudo-code for a recursive function TRANSLATE which
takes as input an arbitrary CTL formula ¢ and returns as output

an equivalent CTL formula ¢ whose only operators are among the
set {L,-,A\,AF ,EU,EX }.

Exercises 3.5

1.

Express the following properties in CTL and LTL whenever possible.
If neither is possible, try to express the property in CTL*:

* (a) Whenever p is followed by ¢ (after finitely many steps), then
the system enters an ‘interval’ in which no r occurs until £.

260

Verification by model checking

(b) Event p precedes s and ¢ on all computation paths. (You may
find it easier to code the negation of that specification first.)
(c) After p, q is never true. (Where this constraint is meant to
apply on all computation paths.)
(d) Between the events ¢ and r, event p is never true.
(e) Transitions to states satisfying p occur at most twice.
* (f) Property p is true for every second state along a path.

. Explain in detail why the LTL and CTL formulas for the practical

specification patterns of pages 192 and 223 capture the stated ‘infor-
mal’ properties expressed in plain English.

. Consider the set of LTL/CTL formulas ¥ = {Fp — Fq¢,AF p —

AF q,AG (p — AF ¢)}.

(a) Is there a model such that all formulas hold in it?

(b) For each ¢ € F, is there a model such that ¢ is the only
formula in F satisfied in that model?

(¢) Find a model in which no formula of F holds.

. Consider the CTL formula AG (p — AF (s A AX(AFt))). Explain

what exactly it expresses in terms of the order of occurrence of events
p, s and t.

. Extend the algorithm NNF from page 64 which computes the negation

normal form of propositional logic formulas to CTL*. Since CTL*
is defined in terms of two syntactic categories (state formulas and
path formulas), this requires two separate versions of NNF which call
each other in a way that is reflected by the syntax of CTL* given on
page 227.

. Find a transition system which distinguishes the following pairs of

CTL* formulas, i.e. show that they are not equivalent:

(a) AFGp and AF AGp
*(b) AGFp and AGEFp
(©) Al(pUr) v (g U)] and Al(p v) U r)]
*(d) Al XpvXXp]and AXpVAXAXp
(e) E[GF p] and EGEF p.

~— '~

. The translation from CTL with boolean combinations of path formu-

las to plain CTL introduced in Section 3.5.1 is not complete. Invent
CTL equivalents for:

*(a) E[FpA(qUr)]

*(b) E[FpAGgl.

3.8 Exercises 261

In this way, we have dealt with all formulas of the form E[¢ A 1].
Formulas of the form E[¢ V 9] can be rewritten as E[¢] V E[¢] and
A[¢] can be written —E[-d)].

Use this translation to write the following in CTL:

(c) E[(p U q) NFp]
*(d) AllpUgq) AGp]
*(e) AlFp— Fyql.
8. The aim of this exercise is to demonstrate the expansion given for AW
at the end of the last section, i.e. A[p Wgq|] = —-E[-q U —(pV ¢q)].

(a) Show that the following LTL formulas are valid (i.e. true in
any state of any model):

(i) =¢U (=p A —~q) = =Gp
(i) G-gAF-p— =g U (-p A —q).

(b) Expand —((p U ¢q) V G p) using de Morgan rules and the LTL
equivalence =(¢ U ¢) = (= U (=d A —)) V =F 1.

(c) Using your expansion and the facts (i) and (ii) above, show
-((pUq)VGp) = —qU —(pAq) and hence show that the
desired expansion of AW above is correct.

Exercises 3.6
* 1. Verify ¢ to ¢4 for the transition system given in Figure 3.11 on
page 208. Which of them require the fairness constraints of the SMV
program in Figure 3.107
2. Try to write a CTL formula that enforces non-blocking and no strict
sequencing at the same time, for the SMV program in Figure 3.10
(page 205).
* 3. Apply the labelling algorithm to check the formulas ¢1, ¢2, ¢3 and
¢4 of the mutual exclusion model in Figure 3.7 (page 197).
4. Apply the labelling algorithm to check the formulas ¢1, ¢2, ¢3 and
¢4 of the mutual exclusion model in Figure 3.8 (page 199).
5. Prove that (3.8) on page 238 holds in all models. Does your proof
require that for every state s there is some state s’ with s — s'?
6. Inspecting the definition of the labelling algorithm, explain what hap-
pens if you perform it on the formula p A —p (in any state, in any
model).

262 Verification by model checking

7. Modify the pseudo-code for SAT on page 236 by writing a special
procedure for AG 91, without rewriting it in terms of other formulas'.

* 8. Write the pseudo-code for SATgg, based on the description in terms
of deleting labels given in Section 3.6.1.2.

* 9. For mutual exclusion, draw a transition system which forces the two
processes to enter their critical section in strict sequence and show
that ¢4 is false of its initial state.

10. Use the definition of F between states and CTL formulas to explain
why s E AG AF ¢ means that ¢ is true infinitely often along every
path starting at s.

*11. Show that a CTL formula ¢ is true on infinitely many states of a
computation path s3 — s1 — s9 — ... iff for all n > 0 there is some
m > n such that s,, F ¢.

12. Run the NuSMV system on some examples. Try commenting out, or
deleting, some of the fairness constraints, if applicable, and see the
counter examples NuSMV generates. NuSMYV is very easy to run.

13. In the one-bit channel, there are two fairness constraints. We could
have written this as a single one, inserting ‘&’ between running and
the long formula, or we could have separated the long formula into
two and made it into a total of three fairness constraints.

In general, what is the difference between the single fairness con-
straint ¢1 Ada A+ A ¢y, and the n fairness constraints ¢1, ¢2,...,¢n?
Write an SMV program with a fairness constraint a & b which is not
equivalent to the two fairness constraints a and b. (You can actually
do it in four lines of SMV.)

14. Explain the construction of formula ¢4, used to express that the pro-
cesses need not enter their critical section in strict sequence. Does it
rely on the fact that the safety property ¢; holds?

*15. Compute the EcG T labels for Figure 3.11, given the fairness con-
straints of the code in Figure 3.10 on page 205.

Exercises 3.7
1. Consider the functions

H,,H,,H3: P({1,2,3,4,5,6,7,8,9,10}) — P({1,2,3,4,5,6,7,8,9,10})

1 Question: will your routine be more like the routine for AF, or more like that for EG on
page 2337 Why?

3.8 Exercises 263

A

>
O OnOn®
S~

Fig. 3.42. Another system for which we compute invariants.

defined by

H(Y) € Y-{1,47}
Hy(Y) ¥ {2,5,9}-Y
H3(Y) = {1125 3,4, 5} n ({2145 8} U Y)
for all Y C {1,2,3,4,5,6,7,8,9,10}.
* (a) Which of these functions are monotone; which ones aren’t?

Justify your answer in each case.

*(b) Compute the least and greatest fixed points of Hs using the
iterations H§ with ¢ =1,2,... and Theorem 3.24.

(c) Does Hy have any fixed points?
(d) Recall G: P({s0,51}) = P({s0,s1}) with

G(Y) ¥ if Y = {50} then {s;} else {so}.

Use mathematical induction to show that G* equals G for all

odd numbers i > 1. What does G* look like for even numbers
1?7

. Let A and B be two subsets of S and let F': P(S) — P(S) be a
monotone function. Show that

(a) Fi: P(S) — P(S) with Fi(Y) = AN F(Y) is monotone

(b) Fy: P(S) — P(S) with F5(Y) £ AU(BNF(Y)) is monotone.
. Use Theorems 3.25 and 3.26 to compute the following sets (the un-
derlying model is in Figure 3.42):

(a) [EF p]

(b) [EGq].

264 Verification by model checking

4. Using the function F'(X) = [¢] U prey(X) prove that [AF ¢] is the
least fixed point of F'. Hence argue that the procedure SAT,r is correct
and terminates.

* 5. One may also compute AG ¢ directly as a fixed point. Consider the

function H: P(S) — P(S) with H(X) = [¢] N prey(X). Show that
H is monotone and that [AG ¢] is the greatest fixed point of H. Use
that insight to write a procedure SAT .

6. Similarly, one may compute Afp; U ¢] directly as a fixed point,
using K: P(S) — P(S), where K(X) = [¢2] U ([¢1] N prey(X)).
Show that K is monotone and that [A[¢; U ¢2]] is the least fixed
point of K. Use that insight to write a procedure SAT,y. Can you
use that routine to handle all calls of the form AF ¢ as well?

7. Prove that [A[¢1 U ¢2]] = [d2 V (1 A AX (A[¢1 U ¢2]))]-

. Prove that [AG ¢] = [¢ A AX (AG ¢)].

9. Show that the repeat-statements in the code for SATgy and SATgg
always terminate. Use this fact to reason informally that the main
program SAT terminates for all valid CTL formulas ¢. Note that some
subclauses, like the one for AU, call SAT recursively and with a more
complex formula. Why does this not affect termination?

o

3.9 Bibliographic notes

Temporal logic was invented by the philosopher A. Prior in the 1960s; his
logic was similar to what we now call LTL. The first use of temporal logic
for reasoning about concurrent programs was by A. Pnueli [Pnu81]. The
logic CTL was invented by E. Clarke and E. A. Emerson (during the early
1980s); and CTL* was invented by E. A. Emerson and J. Halpern (in 1986)
to unify CTL and LTL.

CTL model checking was invented by E. Clarke and E. A. Emerson [CE81]
and by J. Quielle and J. Sifakis [QS81]. The technique we described for LTL
model checking was invented by M. Vardi and P. Wolper [VW84]. Surveys
of some of these ideas can be found in [CGL93] and [CGP99]. The theorem
about adequate sets of CTL connectives is proved in [Mar01].

The original SMV system was written by K. McMillan [McM93] and is
available with source code from Carnegie Mellon University!. NuSMV? is a
reimplementation, developed in Trento by A. Cimatti, and M. Roveri and
is aimed at being customisable and extensible. Extensive documentation

1
2

www.cs.cmu.edu/ "modelcheck/
nusmv.irst.itc.it

3.9 Bibliographic notes 265

about NuSMV can be found at that site. NuSMV supports essentially the
same system description language as CMU SMV, but it has an improved
user interface and a greater variety of algorithms. For example, whereas
CMU SMYV checks only CTL specification, NuSMV supports LTL and CTL.
NuSMYV implements bounded model checking [BCCZ99]. Cadence SMV? is
an entirely new model checker focused on compositional systems and ab-
straction as ways of addressing the state explosion problem. It was also
developed by K. McMillan and its description language resembles but much
extends the original SMV.

A WWW site which gathers frequently used specification patterns in var-
ious frameworks (such as CTL, LTL and regular expressions) is maintained
by M. Dwyer, G. Avrunin, J. Corbett and L. Dillon®.

Current research in model checking includes attempts to exploit abstrac-
tions, symmetries and compositionality [CGL94, Lon83, Dam96] in order to
reduce the impact of the state explosion problem.

The model checker Spin, which is geared towards asynchronous systems
and is based on the temporal logic LTL, can be found at the Spin website?. A
model checker called FDR2 based on the process algebra CSP is available.
The Edinburgh Concurrency Workbench? and the Concurrency Workbench
of North Carolina® are similar software tools for the design and analysis of
concurrent systems. An example of a customisable and extensible modular
model checking frameworks for the verification of concurrent software is
Bogor®.

There are many textbooks about verification of reactive systems; we men-
tion [MP91, MP95, Ros97, Hol90]. The SMV code contained in this chapter
can be downloaded from www.cs.bham.ac.uk/research/lics/.

www-cad.eecs.berkeley.edu/“kenmcmil/
www.cis.ksu.edu/"dwyer/spec-patterns.html
netlib.bell-labs.com/netlib/spin/whatispin.html
www.formal .demon.co.uk/FDR2.html
www.dcs.ed.ac.uk/home/cwb
www.csc.ncsu.edu/eos/users/r/rance/WWW/cwb-nc.html
http://bogor.projects.cis.ksu.edu/

DA W N =W

Bibliography

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509-516, 1978.

[AO91] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Springer-Verlag, 1991.

[Bac86] R. C. Backhouse. Program Construction and Verification. Prentice Hall,
1986.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Proceedings of Tools and
Algorithms for the Analysis and Construction of Systems (TACAS’99),
volume 1579 of Lecture Notes in Computer Science, pages 193207, 1999.

[BCM+90] J. R. Burch, J. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 102° states and beyond. In IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 1990.

[BEKV94] K. Broda, S. Eisenbach, H. Khoshnevisan, and S. Vickers. Reasoned
Programming. Prentice Hall, 1994.

[BJ80] G. Boolos and R. Jeffrey. Computability and Logic. Cambridge University
Press, 2nd edition, 1980.

[Boo54] George Boole. An Investigation of the Laws of Thought. Dover, New York,
1854.

[Bra91] J. C. Bradfield. Verifying Temporal Properties of Systems. Birkh&user,
Boston, 1991.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Compilers, C-35(8), 1986.

[Bry91] R. E. Bryant. On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Applications to Integer
Multiplication. IEEE Transactions on Computers, 40(2):205-213, February
1991.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered
Binary-decision Diagrams. ACM Computing Surveys, 24(3):293-318,
September 1992.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In D. Kozen, editor, Logic of Programs
Workshop, number 131 in LNCS. Springer Verlag, 1981.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state
concurrent systems. In A Decade of Concurrency, number 803 in Lecture

433

434 Bibliography

Notes in Computer Science, pages 124-175. Springer Verlag, 1993.

[CGLY94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and
Abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[Che80] B. F. Chellas. Modal Logic — an Introduction. Cambridge University Press,
1980.

[Dam96] D. R. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Institute for Programming Research and Algorithmics.
Eindhoven University of Technology, July 1996.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DP96] R. Davies and F. Pfenning. A Modal Analysis of Staged Computation. In
23rd Annual ACM Symposium on Principles of Programming Languages.
ACM Press, January 1996.

[EJCO03] S. Eisenbach, V. Jurisic, and C.Sadler. Modeling the evolution of .NET
programs. In IFIP International Conference on Formal Methods for Open
Distributed Systems, LNCS. Springer Verlag, 2003.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings, 1994.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge, 1995.

[Fit93] M. Fitting. Basic modal logic. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 1. Oxford University Press, 1993.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
2nd edition, 1996.

[Fra92] N. Francez. Program Verification. Addison-Wesley, 1992.

[Fre03] G. Frege. Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. 1903.
Volumes T and IT (Jena).

[Gal87] J. H. Gallier. Logic for Computer Science. John Wiley, 1987.

[Gen69] G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, chapter 3, pages 68—129.
North-Holland Publishing Company, 1969.

[Gol87] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes, 1987.

[Gri82] D. Gries. A note on a standard strategy for developing loop invariants and
loops. Science of Computer Programming, 2:207-214, 1982.

[Ham78] A. G. Hamilton. Logic for Mathematicians. Cambridge University Press,
1978.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576-580, 1969.

[Hod77] W. Hodges. Logic. Penguin Books, 1977.

[Hod83] W. Hodges. Elementary predicate logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 1. Dordrecht: D. Reidel,
1983.

[Hol90] G. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1990.

[JSS01] D. Jackson, I. Shlyakhter, and M. Sridharan. A Micromodularity
Mechanism. In Proceedings of the ACM SIGSOFT Conference on the
Foundations of Software Engineering/European Software Engineering

Bibliography 435

Conference (FSE/ESEC’01), September 2001.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333-354, 1983.

[Lee59] C.Y. Lee. Representation of switching circuits by binary-decision
programs. Bell System Technical Journal, 38:985-999, 1959.

[Lon83] D. E. Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, School of Computer Science, Carnegie Mellon University, July
1983.

[Mar01] Alan Martin. Adequate sets of temporal connectives in CTL. Electronic
Notes in Theoretical Computer Science, 2001.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1991.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[MvdH95] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and
Computer Science, volume 41 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[Pau9l] L.C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[Pnu81] A. Pnueli. A temporal logic of programs. Theoretical Computer Science,
13:45-60, 1981.

[Pop94] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.

[Pra65] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist &
Wiksell, 1965.

[QS81] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the Fifth International Symposium on
Programming, 1981.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997.

[SA91] V. Sperschneider and G. Antoniou. Logic, A Foundation for Computer
Science. Addison Wesley, 1991.

[Sch92] U. Schoening. Logik fiir Informatiker. B. I. Wissenschaftsverlag, 1992.

[Sch94] D. A. Schmidt. The Structure of Typed Programming Languages.
Foundations of Computing. The MIT Press, 1994.

[Sim94] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal
Logic. PhD thesis, The University of Edinburgh, Department of Computer
Science, 1994.

[SS90] G. Stalmarck and M. Saflund. Modeling and verifying systems and software
in propositional logic. In B. K. Daniels, editor, Safety of Computer Control
Systems (SAFECOMP’90), pages 31-36. Pergamon Press, 1990.

[Tay98] R. G. Taylor. Models of Computation and Formal Languages. Oxford
University Press, 1998.

[Ten91] R. D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[Tur91] R. Turner. Constructive Foundations for Functional Languages. McGraw
Hill, 1991.

[vD89] D. van Dalen. Logic and Structure. Universitext. Springer-Verlag, 3rd
edition, 1989.

436 Bibliography

[VW84] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. In Proc. 16th ACM Symposium on Theory of
Computing, pages 446-456, 1984.

[Wei98] M. A. Weiss. Data Structures and Problem Solving Using Java.
Addison-Wesley, 1998.

Index

ABP, 211 limitations, 161
acknowledgement channel, 211 modifiers, 155
alternating the control bit, 211 module, 150
fairness, 211 opening module, 161
main SMV program, 214 polymorphism, 161

absorption laws, 92 postcondition, 156

abstract data type precondition, 156
sets, 234 reflexive, transitive closure, 176

abstraction, 182, 237, 255 run directive, 150
and non-determinism, 199 signature, 149

accessibility relation, 321, 332, 349 instance, 149

adequate set of connectives small scope hypothesis, 148, 176
for CTL, 224, 231, 239, 412 transitive closure, 161
for LTL, 194 universal quantification, 152
for propositional logic, 71, 91, 96 alternating bit protocol, 211

agent, 319, 331, 340
algebraic specification, 177
algorithm

deterministic, 60
algorithm apply, 388

complexity, 396

control structure, 390

recursive descent, 390
algorithm CNF, 60
algorithm reduce, 387

complexity, 396
algorithm restrict, 391

complexity, 396
algorithm reduce

example execution, 388
Alloy

[, 157

fun-statement, 160

with, 152

assertion, 149

check directive, 149

consistency check, 149

constrain signature, 155

counterexample, 149

dot operator, 149

extending signature, 176

implication, 152

let-expression, 157

always in the future, 331
and-elimination, 6, 353
and-introduction, 6, 353
application domain, 180, 266
approach
model-based, 180
proof-based, 180
approximants
umZ.f, 408
vmZ.f, 409
arity, 103
array, 310
bounds, 141, 298
field, 298
of integers, 298
section, 298
artificial intelligence, 318
artificial language, 97
assertion checking, 148
assignment, 199
initial, 302
non-deterministic, 212, 238
program notation, 270
statement, 270
associativity laws, 57, 91
assumption, 4
discharging, 28, 342
temporary, 11, 126

437

438 Index

asynchronous two-bit channel, 212
circuit, 373 blocks of code, 270
interleaving, 196 Boole, G., 96, 389
atomic formula, 348 boolean algebra, 19
of modal logic, 319 boolean connective, 217, 322
of predicate logic boolean existential quantification, 392
meaning, 129 boolean expression, 270, 282
axiom boolean forall quantification, 395
5, 344 boolean formula
T, 355 independent of a variable, 390
4, 340, 343, 353 semantically equivalent, 389
5, 343, 353 truth table, 374
T, 340, 343, 353, 357 boolean function
for assignment, 280 ‘don’t care’ conditions, 420
for equality, 112 as a binary decision tree, 376
instance, 281 symbolic representation, 373
boolean guard, 293
Backus Naur form (BNF), 34 boolean variable, 373
backwards breadth-first search, 233, 239 bottom-elimination, 21
base case, 42, 43, 89 bottom-introduction (see ‘not-elimination’), 21
basic modal logic, 319 box-elimination, 342
BDD, 379 box-introduction, 342
hi(n), 387 branching-time logic, 181
lo(n), 387
as boolean function, 380 case
complement, 381 overlap, 63
consistent path, 380 case analysis, 62, 63, 117
edge, 376 case-statement, 18, 200
examples, 380 characteristic function, 399
has an ordering, 382 Church, A., 138
layer of variables, 376 circuit
line 2-bit comparator, 425
dashed, 376, 379 asynchronous, 202, 405
solid, 376, 379 sequential, 374
ordered, 382 synchronous, 202, 373, 404, 429
read-1, 422 circular definition, 225
reduced, 380 Clarke, E., 263
removal of duplicate non-terminals, 378 classical logic, 30, 341
removal of duplicate terminals, 378 client, 268
removal of redundant tests, 378 clock tick, 198
satisfiable, 380 CNF, 56
subBDD, 378 code
which is not a read-1-BDD, 393 specification, 266
which is not an OBDD, 383 verification, 266
with duplicated subBDDs, 378 coding
belief, 331 AF, 411
binary decision diagram, 379 EF, 410
binary decision tree, 376 EG, 411
redundancies in, 377 EU, 411
binding priorities, 183, 216 EX, 410
for basic modal logic, 319 examples of symbolic evaluation, 411
for integer expressions, 270 fair EG, 413
for KT45™, 348 fair EU, 413
for predicate logic, 105 fair EX, 413
for propositional logic, 5 set of fair states, 413
for relational mu-calculus, 406 command, 270
bit, 138 atomic, 270
control, 211 compound, 271
least significant, 397 common knowledge, 345, 349
most significant, 397 as invariant, 406

one-bit channel, 212 communicating processes, 265

Index 439

communication protocol, 202
Compactness Theorem, 142
completeness
of natural deduction for predicate logic, 100
of natural deduction for propositional logic,
55
complexity
exponential, 237
of apply, 421
of brute force minimal-sum section
algorithm, 299
of fairness, 413
of labelling algorithm, 231, 233
of labelling EG¢, 239
composition
sequential, 289
synchronous, 202
compositional semantics, 39
compositionality
in model checking, 237
computability, 136
computation
intractable, 50
computation path, 187, 220
fair, 239
computation trace, 295
computation tree logic, 182
computation tree logic, 318, 331
computational behaviour, 318
computer program, 106
concatenation, 130, 137
conclusion, 4, 283
concurrency, 266
conjunct, 57
conjunction, 4, 301
infinite, 349
connective
adequate set, 235
unary, 183, 216
consistency, 320, 329
consistency checking, 148
constant symbol, 162
constraints
inconsistent, 76
SAT solver, 71
contradiction, 20, 122, 331, 337
control structure, 270, 271
controlling value, 421
copy rule, 20, 342
core programming language, 269, 298
correspondence theory, 338
counter example, 128, 135, 329, 369
counter trace, 181
critical section, 195
CTL, 182, 263, 318, 331
as a subset of CTL*, 226
expressive power, 228
modalities, 318
with boolean combinations of path
formulas, 228, 259
CTL connectives

fair, 413
CTL formula

square brackets, 217
CTL*, 263

DAG, 73
dag, 379
dashed box
flavour, 353
data structure, 128
de Morgan laws, 59, 224, 260
for modalities, 326
deadlock, 186, 191, 223, 227
debugging systems, 230
debugging systems, 266
decision problem, 136
of validity in predicate logic, 138
decision procedure, 56
declarative explanation, 26
declarative sentence, 2, 97
truth value, 37
default case, 200
definition
inductive, 33
description
informal, 267
language, 179, 181
Dijkstra, E., 294
directed graph, 141, 185, 379
acyclic, 71, 379
cycle, 379
disjunction, 4
of literals, 56, 58
distributivity laws
of box modality, 326
of F connective, 192
of propositional logic, 19, 61, 92
dividend, 313
domain assumption, 153
double negation-elimination, 367
double negation-introduction, 367

elimination rule, 6, 111
Emerson, E. A., 263
encoding, 133
entailment
in program logics, 288
environment
and non-determinism, 199
for concurrent programs, 180
for predicate logic formulas, 132
equality, 272
intentional, 111
program notation, 270
structural, 158
symbol, 111
equivalence relation, 334, 340, 353
equivalent formulas
of basic modal logic, 327
of CTL, 223-225
of KT4, 341

440

of KT45, 340

of LTL, 192

of predicate logic, 121

of propositional logic, 16

of relational mu-calculus, 427
exclusive-or, 397, 414
existential quantifier, 223
existential second-order logic, 144, 161
exists-elimination, 117
exists-introduction, 116

factorial
of a natural number, 271
program, 271, 295
fairness
nested fixed points, 413
symbolic model checking, 412
fairness constraint, 199, 203
simple, 239, 261
FAIRNESS running, 212
Fibonacci numbers, 89
field index, 298
finite automata, 422
finite data structure, 230
first-order logic, 97
fixed point, 248
greatest, 248, 249
least, 248, 249
semantics for CTL, 225, 246
flow of control, 271
Floyd, R., 279
for-statement, 310
forall-elimination, 113
forall-introduction, 114
formal
path, 226
formula
atomic, 182
height, 44, 89
Horn, 67
ill-formed, 184
immediate subformula, 231
of basic modal logic, 326
of CTL, 216
atomic, 216
ill-formed, 217
well-formed, 216
of LTL
valid, 260
of predicate logic, 104
of propositional logic, 34, 50
well-formed, 33, 44
of relational mu-calculus, 406
positive, 341, 357, 362
scheme, 324, 330
K, 327
in propositional logic, 324
instance, 324
subformula, 35
frame, 335
free for x in ¢, 109, 113

Index

Frege, G., 177
function
in predicate logic, 129
monotone, 248
a non-example, 248
nullary, 103
recursive, 258
SAT, 234, 235
termination, 263
SATaf, 236
SATag, 263
SATeg, 261
SATeu, 236
SATex, 235
symbol, 100, 102, 162
binary, 102
translate, 258
function prey(X), 236
function preg(X), 236, 401
function prey(X), 401
function SAT
correctness, 248
future
excludes the present, 258, 367
includes the present, 189, 258, 367
whether it includes the present, 331

G-reachable, 351
in k steps, 351
Godel, K., 100
Gentzen, G., 96
Global Assembly Cache, 154
grammar, 34
clause, 279
guided simulation, 160

Halpern, J., 263
higher-order logic, 146
Hoare triple, 273

Hoare, C. A. R., 273, 279
Hodges, W., 177

Horn clause, 67, 144
hybrid rule, 357

if-statement, 291
implementation
compliant, 148
implication, 4
logical, 288
implies-elimination, 9
implies-introduction, 12
in-order representation, 36
inconsistency, 268
index, 137
induction
course-of-values, 44
hypothesis, 42, 43
in model checking, 237
mathematical, 41
inductive step, 42
infix notation, 130, 217

information
negative, 357
input parameter, 62
integer
expression, 269
integer label, 387
integer multiplication, 397
interface between logics, 287
interleaving
formulas with code, 285
transitions, 196, 202
introduction rules, 6, 111
introspection
negative, 332, 340
positive, 332, 340
intuitionistic logic, 30, 124, 341
invariants, 283
discovering, 294
SAT solver, 70
iterative squaring, 430

Jape, 178
justification, 286, 287, 342

Knaster-Tarski Theorem, 249
knowledge
common, 346
distributed, 349
domain-specific, 106
false, 334
formula
positive, 357
idealised, 332, 340
in a multi-agent system, 319
modality, 348
of agent, 319, 332
Kozen, D., 431
Kripke model, 174, 321
as a counter example, 369
for KT45™, 350
Kripke, S., 321, 327

Lowenheim-Skolem Theorem, 143
label

adding, 231

deleting, 232
labelling

AF, 231

EG, 232

EG¢, 239

EU, 231

EX, 231
labelling algorithm, 230
labelling function

coding subsets, 399

for Kripke model, 321

for LTL model, 185

frame does not have one, 335
language construct, 310
law of excluded middle, 25
LEM

Index

instance, 341
linear-time logic, 181
linear-time temporal logic, 183
Linear-time temporal logic (LTL), 182
literal, 56, 63
liveness, 198, 203
property, 195, 197, 215, 238
logic engineering, 319, 328
logic programming, 50, 177
logical level, 288
logical variables
of Hoare triple, 279
look-up table, 132, 145
up-dated, 132
LTL, 183
LTLSPEC, 200, 212

machine state, 272
McMillan, K., 263
memoisation
of computed OBDDs, 390
midcondition, 280, 286
minimal-sum section, 299
minimal-sum-section problem, 317
modal connective
Cga, 349
K;, 348
modal logic, 318
K, 339
KT4, 340
KT45, 339, 340
normal, 339
S4, 340
S5, 339
modality, 320
diamond, 320
path, 228
model
for propositional logic, 38
of KT45™, 349
of basic modal logic, 321, 337
of CTL, 322
pictorial representation, 256, 257
of intuitionistic propositional logic, 341
of KT45, 350
of KT45™, 351
of LTL
pictorial representation, 186
of predicate logic, 100, 129
under-specified, 148
model checker, 181
model checking, 146, 180, 182, 265
algorithm, 225, 234, 239, 331
debugging, 410
example, 190, 220
with fairness constraints, 238
model-based verification, 179, 181
module, 275
modulo 8 counter, 426
modus ponens, 9
modus tollens, 10, 367

441

442

muddy-children puzzle, 356, 359
multiplicity constraint, 157
Mutex model

pictorial representation, 196
mutual exclusion, 195

natural deduction
extension to predicate logic, 99
for modal logic, 345
for temporal logic, 181
inventor, 96
natural deduction rules
for basic modal logic, 342
for KT45", 354, 370
for predicate logic, 111
for propositional logic, 27
necessity
logical, 320, 330
physical, 330
negation, 4
negation-elimination (see
‘bottom-elimination’), 21
negation-introduction, 22
nested boolean quantification, 410
network
synchronous, 182
no strict sequencing, 195, 197, 223
node
initial, 379
leaf, 107
non-terminal, 376
shared, 72
terminal, 376, 379
non-blocking protocol, 195, 197, 223
non-determinism, 198
non-termination, 271
normal form, 55, 56
conjunctive, 56, 375
disjunctive, 375
negation, 61
CTL*, 259
LTL, 194, 255
product-of-sums, 423
sum-of-products, 421
not-elimination, 21
not-introduction, 22

OBDD, 382
absence of redundant variables, 385
canonical form, 384
complementation, 401
definition, 382
extensions, 397
for preg(X), 403
for prey(X), 403
integer multiplication, 397
intersection, 401
limitations, 397
memoisation, 390
nested boolean quantification, 396
of a transition relation, 402

Index

of an even parity function, 385
of the odd parity function, 416
optimal ordering, 424
reduced, 383
unique representation, 383
reduced one for logical ‘iff’, 416
representing subsets, 399
running time of algorithms
upper bounds, 396
sensitivity of size, 385
synthesis of boolean formula, 396
test
for implication, 387
for satisfiability, 387
for semantic equivalence, 385
for validity, 387
union, 401
variations, 397
odd parity function, 416
omniscience
logical, 331, 332
or-elimination, 17
or-introduction, 17
overloading
of F, 134
of proof rules, 111

parity function
even, 384
as OBDD, 385
parity OBDD, 397
parse tree
for a predicate logic formula, 106
of a term, 164
of a basic modal logic formula, 319
of a CTL formula, 217
of propositional logic formula, 34
root, 35
subtree, 35
underspecified, 324
partial correctness, 275
partial order reduction, 237
pattern
checkEU (f, g), 413
checkEX (f), 413
pattern matching, 6, 115, 290
place holder, 98
possibility, 328
logical, 320
possible world
semantics, 327
Post correspondence problem, 137
postcondition, 156
in program logic, 273
Prawitz, D., 96
precondition, 156
in program logic, 273
weakest, 286
of algorithm, 64
predicate, 97
binary, 99

number of arguments, 99
unary, 99
predicate logic, 97

consistent set of formulas, 134

satisfiability, 134
semantic entailment, 134
validity, 134
prefix, 130
notation, 217
ordering, 130
premise, 280
Prior, A., 263
problem
instance, 137
reduction, 137
procedural interpretation, 26
process
concurrent, 195
instantiation, 213
processor, 266
program
behaviour, 274
bug, 266
code, 286
construct, 270
correctness, 64, 69, 234
derived, 310
diverging, 276
documentation, 266
environment, 268
finite-state, 373
fragment, 272
logic, 285
methodology, 268
procedures, 272
sequential, 265
termination, 69, 93, 249, 275
variable, 236, 277
verification, 279
formal, 269
program execution, 328, 332
programming by contract, 307
Eiffel, 307
programming language
imperative, 269
proof
box
for —i, 11
for forall-introduction, 114
for modal logic, 342
opening, 28
side by side, 22
by contradiction, 25
calculus, 265, 269
construction, 279
constructive, 124
dashed box, 342, 353
fragment, 289
indirect, 30
of correctness, 247
of termination, 276

Index 443

partial, 292
partial correctness, 279, 311
search, 50
solid box, 342
strategy, 119, 274
subproof, 282
tableaux, 279
theory, 97, 127, 181
total correctness, 303
proof rules, 5
for implication, 283
for assignment, 279
for conjunction, 6
for disjunction, 17
for double negation, 8
for equality, 112
for existential quantification, 116
for if-statements, 282, 291
modified, 292
for implication, 12, 287
for KT45", 353
for negation, 20
for quantifiers, 116
for sequential composition, 279, 285
for universal quantification, 113
for while-statements, 283, 293, 298
schema, 115
subformula property, 117
proof tableaux
complete, 302
proof-based verification, 179, 265
proposition, 2
propositional logic, 97
protocol, 195, 196
provability
undecidability of predicate logic, 141

quantifier, 322, 326
equivalences, 192
in predicate logic, 98
binding priorities, 105
equivalences, 134
meaning, 128
Quielle, J., 263

reachability, 141, 142
reasoning
about knowledge, 339, 345
constructive, 30
in an arbitrary accessible world, 342
informal, 357
quantitative, 268
unsound, 291
record
field, 201
recursion
mutual, 226
recursive call, 291
reductio ad absurdum, 25, 123
reduction to absurdity, 25
reflexive, transitive closure, 174

444

regular language, 422
relation
binary, 185
Euclidean, 333, 340
functional, 333
linear, 333
reflexive, 145, 333, 336
as formula, 113
serial, 333, 368
symmetric, 333
as formula, 113
total, 334
transition, 185
transitive, 145, 333, 337
as formula, 113
relational mu-calculus
fixed-point operators, 408
requirement
informal, 267, 272, 299
requirements, 147
restriction, 389
right-associative, 5
root of a parse tree, 140

rule
derived, 24
hybrid, 10

Russell’s paradox, 172

safety property, 195, 196, 213
SAT solver

cubic, 77

forcing rules, 73

permanent marks, 77

temporary marks, 76
satisfaction

in a frame, 335

in a frame for KT45™, 351
satisfaction relation

for relational mu-calculus, 407

for basic modal logic, 322

for KT45, 350

for LTL, 187

for partial correctness, 275

for predicate logic, 132

for relational mu-calculus, 407

for total correctness, 275
satisfiability, 375

3SAT, 423

deciding, 67

of a propositional logic formula, 83
undecidability of predicate logic, 140

SCC
fair, 239
scheduler
fair, 205
scope
of a dummy variable, 121
of a variable, 107, 117

Index

semantic entailment
for predicate logic, 147
for basic modal logic, 325
for KT4, 341
for normal modal logics, 339
for predicate logic, 100
for propositional logic, 46
for relational mu-calculus, 427
semantic equivalence, 39
semantics
of uZ.f, 408
of vZ.f, 409
of basic modal logic, 322
of boolean quantification, 408
of CTL, 218
of EG, 247
of equality, 136
of predicate logic, 127
of propositional logic, 39
of relational mu-calculus, 407
of Until, 188
sentence
atomic, 4
components, 97
declarative, 97
in predicate logic, 133
sequent, 5
invalid, 120
Shannon expansion, 390
side condition, 112, 114
Sifakis, J., 263
small scope hypothesis, 148
SMV, 263
main program for ABP, 214
module, 201
receiver, 213
sender, 212
for channel, 214
instantiation, 201
process, 405
program
example, 199
for Mutex, 203
specification, 200
software
life-cycle, 147
micromodel, 147
reliability, 154
requirements, 147
specification, 147
validation, 147
soundness
of forall-elimination, 113
of natural deduction
basic modal logic, 369
predicate logic, 100, 127
propositional logic, 46
of program logics, 277

of an assumption, 28, 117, 342 of proof rule for while-statements, 293
search space, 117, 138 of the substitution principle, 112
second-order logic, 146 specification

for ABP, 213
formal, 268
informal, 268
language, 179
of a predicate, 162
patterns, 264
practical pattern, 191, 222
truth table, 59
specifications, 199
Spin, 264
state
critical, 196
explosion, 237
explosion problem, 264
fair, 413
final, 147
formula, 226
global, 196
graph, 187
initial, 147, 196, 230, 255, 261, 274
non-critical, 196
of a system, 278
of core program, 273
reachable, 255
resulting, 273, 310
space, 237
splitting states, 198
transition, 147
trying, 196
state machine, 147
storage
location, 299
state, 271
store
of core program, 273
string, 256, 319
binary, 130, 137
empty, 130
strongly connected component, 233
structural equality, 158
structural induction, 44, 52
subformula, 184
substitution
in predicate logic, 109
instance, 336
instance of tautology, 326
principle, 112
symbolic model checking, 398
syntactic
domain, 269, 270
syntax
of basic modal logic, 319
of boolean expressions, 270
of boolean formulas, 414
of CTL, 215, 216
of CTL*, 226
of KT45™, 349
of LTL, 183
of predicate logic, 104
of propositional logic, 34
of relational mu-calculus, 406

Index 445

of terms, 103
system

asynchronous, 264
interleaving model, 405
simultaneous model, 405

axiomatic, 96

commercially critical, 179, 266

component, 213

concurrent, 180

debugging, 181

description, 201

design, 181

development, 180

elevator, 191, 223

finite-state, 265

hybrid, 287

infinite-state, 265

mission-critical, 179

multi-agent, 345

physical, 182

reactive, 180, 266, 373

safety-critical, 179, 266

transition, 181

verification, 265

tautology, 50
temporal connective
AF, 219
AG, 219
AU, 219
AX, 219
EF, 219
EG, 219
EU, 219
EX, 219
temporal connectives, 183
temporal logic, 181, 318
term, 103
interpretation, 132
term-rewriting system, 178
termination
Collatz 3n + 1, 306
proof, 276
tertium non datur, 25
theorem, 13
prover, 110, 141
proving, 178
time
continuous, 181
discrete, 181
top
marking, 68
total correctness, 275
transition relation, 185
for SMV programs, 404
transition system, 181
of ABP program, 255
of Mutex code, 207
of SMV program, 200
unwinding, 187, 220, 230
translation

446 Index

English into predicate logic, 99, 105 variant, 304
tree verification
infinite, 187, 220 full, 180
truth method, 179
dynamic, 181 of communication protocols, 182
mode, 318, 320 of hardware, 182
of knowledge, 339 of software, 182
static, 181 of systems, 265
value post-development, 180, 266
for predicate logic, 132 pre-development, 180, 266
for propositional logic, 3 process, 281
truth table program, 279
for conjunction, 38 property, 180
truth tables, 39 property-oriented, 265
type, 12, 340 semi-automatic, 265
checking, 12 techniques, 179
theory, 177
weakest precondition, 286
unary connective, 319 while-statement, 270, 271
undecidability body, 283, 293, 296
of provability, 141 non-termination, 303
of satisfiability, 140 wise-men puzzle, 356
of validity in predicate logic, 138 Wolper, P., 263
universal quantification, 278 word
universal quantifier, 223 empty, 130

world
accessible, 321
possible, 321, 349

universal second-order logic, 145, 161
universe of concrete values, 129
unreachability, 145
unsound sequent, 171
Until year-2000 problem, 267
in natural language, 189
negating, 194
updated valuation, 407

valid sequent

of modal logic, 343

partial correctness, 277

total correctness, 277
validity

in basic modal logic, 326

in KT45", 352

in propositional logic, 88

undecidability in predicate logic, 138
valuation

for propositional logic, 38

in predicate logic, 127

in relational mu-calculus, 407

value
initial, 213, 278
Vardi, M., 263

variable, 98, 269
boolean, 237, 255, 373
bound, 107
capture, 109
dummy, 114
free, 107
local, 272
logical, 278, 301

variable ordering
compatible, 383
list, 382

