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This Course
• Algorithms!

Real-time Rendering

Understanding of 
Ray Tracing



Course Info
• Study Period 2 (lp2)
• Real Time Rendering, 4th edition

– Available on Cremona
at discount.

• Schedule: 
– Mon 13-15,  w2 only
– Tues 10-12,
– Fri 9-12,

• ~14 lectures in total, ~2 / week
– Labs: 

• Mon: 17-21
• Tues: 13-21
• Wed: 13-21
• Thur:  9-12 + 17-21

• Homepage:
– Google “TDA362” or
– “Computer Graphics Chalmers”

https://se.timeedit.net/web/chalmers/db1/public/ri.html?h=f&sid=3&p=20151102.x,20160110.x&objects=201968.182&ox=0&types=0&fe=0&h2=f
http://www.cse.chalmers.se/edu/course/TDA361/index.html


Tutorials
� All laborations are in C++ and OpenGL
◦ Industry standard
◦ No previous (C++) knowledge required

� Six shorter tutorials that go through basic concepts
◦ Basics, Textures, Camera&Animation, Shading, Render-to-texture, 

Shadow Mapping

� One slightly longer lab where you put everything 
together
◦ Real-time rendering

or
◦ Path tracer



Tutorials 1-6

Rendering a 
triangle

Textures Animation

Shading Render to 
textures

Shadow maps



Screen-space 
ambient occlusion

Particle System Height field

Path Tracing

Project

Real-time rendering Offline rendering

or or or

Project
Choose at least 1 from:



Tutorials
• Info: http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html
• Rooms 4225, 4th floor EDIT-building

– Or your favorite place/home
• Time slots available every day. 

– No booking. First come first served.
• To pass the tutorials:

– Show your solutions to lab assistants in lab rooms (bring your computer if
done at home)

– Deadlines:
• Lab 1+2+3: Thursday week 2.
• Lab 4 + 5: Thursday week 3.
• Lab 6: Thursday week 4
• Lab 7 / Project: Thursday week 7.

• Do the tutorials in groups (Labgrupper) of two, or individually if you
prefer.

– If you want a lab partner
• Write your name + email on list at desk in the break

http://www.cse.chalmers.se/edu/course/TDA362/tutorials.html


Tracing Photons

One way to form an image is to
follow rays of light from a
point source finding which
rays enter the lens of the
camera. However, each 
ray of light may have 
multiple interactions with objects
before being absorbed or going to infinity.



Other Physical Approaches
• Ray tracing: follow rays of light from center of 

projection until they either are absorbed by 
objects or go off to infinity

–Can handle global effects
• Multiple reflections
• Translucent objects

–Faster but still rather slow



Overview of the 
Graphics Rendering Pipeline 

and OpenGL

Real-Time Rendering
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3D-models: surfaces are constructed by triangles.

4926 triangles
Why triangles?
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(x,y,z)-position

Each triangle is projected onto the image plane using a 
virtual camera.
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The graphics card draws the triangles onto the screen.
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(x,y,z) Light source

At rendering (for each frame): 
• The graphics card computes, per 

pixel (or per vertex and using
interpolation per pixel), the amount
of reflected light towards the camera, 
w.r.t. the light sources in the scene. 

(x,y,z)-position

E.g., adding lighting
light

blue

red green

Exaggerated example
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• And adds textures (=images) on the 
triangles (modulated with the light
intensity) to simulate surface details
and different materials.

E.g., adding textures – to simulate details and materials

At rendering (for each frame): 
• The graphics card computes, per 

pixel (or per vertex and using
interpolation per pixel), the amount
of reflected light towards the camera, 
w.r.t. the light sources in the scene. 

+ =



Z

X

Y

Textures (a.k.a. Texture Maps)
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Textures (a.k.a. Texture Maps)

Each triangle’s layout in texture space



Summary of this very common type of appearance 
modeling.

Z

X

Y

triangles + lighting + texturing



The Graphics Rendering 
Pipeline 

The Application stage, geometry stage, and rasterizer stage



You say that you render a            
”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera – a 
virtual one.
– Decides what should end up in the final image

• A 3D scene is:
– Geometry (triangles, lines, points, and more)
– Light sources
– Material properties of geometry

• Colors, shader code ,
• Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices
– A vertex is 3D position, and may                              

include a normal, color, texture coordinate, ….



Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

• The pipeline is the ”engine” that creates 
images from 3D scenes

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)
– Geometry
– Rasterizer

Application Geometry Rasterizer

3D
sceneinput

Image

output



The APPLICATION stage

• Executed on the CPU
– Means that the programmer decides what 

happens here
• Examples:

– Collision detection
– Speed-up techniques
– Animation

• Most important task: feed geometry stage 
with the primitives (e.g. triangles) to render 

Application Geometry Rasterizer



The GEOMETRY stage

•

• Allows:
– Move objects (matrix multiplication)
– Move the camera (matrix multiplication)
– Lighting computations per triangle vertex
– Project onto screen (3D to 2D)
– Clipping (avoid triangles outside screen)
– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations 
on the input data (e.g. triangles)



The GEOMETRY stage

• (Instances)
• Vertex Shader

– A program executed
per vertex

• Transformations
• Projection
• E.g., color per vertex

• Clipping
• Screen Mapping

Application Geometry Rasterizer

Model & View 
Transform

Vertex 
Shading

Projection Clipping Screen 
Mapping



The RASTERIZER stage
• Main task: take output from GEOMETRY 

and turn into visible pixels on screen

Application Geometry Rasterizer

l Computes color per pixel, using fragment 
shader (=pixel shader)
- textures, (light sources, normal), colors and various 
other per-pixel operations

l And visibility is resolved here: sorts the 
primitives in the z-direction



The rasterizer stage

Triangle 
Setup

Triangle 
Traversal

Pixel 
Shading

Merging

Triangle Setup: 
• collect three vertices + vertex shader output (incl. normals) and 

make one triangle.

Triangle Traversal
• Scan conversion

Pixel Shading
• Compute pixel color

Merging: 
• output color to screen



The three stages’ 
correlation to hardware

The Application stage, geometry stage, and rasterizer stage



Rendering Pipeline and 
Hardware

Application Stage Geometry Stage Rasterization Stage

CPU GPU



Tomas Akenine-Mőller © 200329

Rendering Pipeline and 
Hardware

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage Rasterization Stage

GPU



Tomas Akenine-Mőller © 200330

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage



Tomas Akenine-Mőller © 200331

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage



Tomas Akenine-Mőller © 200332

Hardware design Clips triangles against
the unit cube (i.e., 
”screen borders”)

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage



Tomas Akenine-Mőller © 200333

Hardware design Maps window size to
unit cube

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry stage always operates inside 
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a 
draw area corresponding to window 
dimensions.

Geometry Stage



Hardware design

Tomas Akenine-Mőller © 200334

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangle

Rasterizer Stage



Hardware design

Tomas Akenine-Mőller © 200335

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the 
fragments/pixels for the 
triangle

Rasterizer Stage



blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 200336

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color 
using:
•Textures
•Interpolated data 
(e.g. Colors + 
normals) from 
vertex shader



Hardware design

Tomas Akenine-Mőller © 200337

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
• Color buffers

• Depth buffer

• Stencil buffer

The merge units update
the frame buffer with the 
pixel’s color

Rasterizer Stage



Graphics Pipeline BONUS

77

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

We focus on:

Full pipeline of today:
Tesselation shaders

Next step by NVIDIA: Mesh shaders



• Vertex shader: reads from textures
Writes output data per vertex, which
are interpolated and input to each
fragment shader invocation.

• Fragment shader: reads from 
textures, writes to pixel color

• Memory: Texture memory (read + 
write) typically 4 GB – 16 GB 

• Program size: the smaller the faster

What is vertex and fragment (pixel) 
shaders?



Department of Computer Engineering

// Fragment Shader:
#version 420
precision highp float;

in  vec3 outColor;
layout(location = 0) out vec4 fragColor;
// Here, location=0 means that we draw to 

frameBuffer[0], i.e., the screen.

void main() 
{

fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 420

layout(location = 0) in vec3 vertex;
layout(location = 1) in vec3 color;
out vec3 outColor;
uniform mat4 modelViewProjectionMatrix; 

void main() 
{

gl_Position = modelViewProjectionMatrix *
vec4(vertex,1);

outColor = color;
}

Shaders



Department of Computer Engineering
Shaders

vec3 compute_color()
{

vec4 gbuffer = texture2D(tex0, uv_0);
int intColor = int(gbuffer.x);
int r = (intColor/256)/256;
intColor -= r*256*256;
int g = intColor/256;
intColor -= g*256;
int b = intColor;
vec3 color = vec3(float(r)/255.0, float(g)/255.0, 
float(b)/255.0 );

normal = vec3(sin(gbuffer.g) * cos(gbuffer.b),
sin(gbuffer.g)*sin(gbuffer.b), cos(gbuffer.g));
vec2 ang = gbuffer.gb*2.0-vec2(1.0);
vec2 scth = vec2( sin(ang.x * PI), cos(ang.x * PI);
vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);
normal = -vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y);
roughness = 0.05;
specularity = 1.0;
fresnelR0 = 0.3;
return color;

}

precision highp float;

uniform sampler2D tex0;
uniform sampler2D tex1;
uniform sampler2D tex2;
uniform sampler2D tex3;

uniform float val;

varying vec2 uv_0;
varying vec3 n;

void main(void) {
gl_FragColor.rgb = compute_color();
gl_FragColor.a = 1.0;

}

Example of a more advanced fragment shader: 



OpenGL
(Open Graphics Library)



CPU-side
Language:          C++
API: OpenGL (Direct3D)
Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = { 
// X Y Z   per vertex

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer;    // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram; 

GPU-side
Language: GLSL 

used for vertex- ,geometry-, and
fragment shaders

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;

out vec3 outColor; // r,g,b

void main()
{

gl_Position = vec4(position, 1.0);
outColor = color;

}

Fragment Shader:
#version 420

precision highp float; // required by GLSL spec Sect 4.5.3
// (though nvidia does not, amd does) 

layout(location = 0) out vec4 fragmentColor;
in vec3 outColor;

void main()
{

// fragmentColor = vec4(1,1,1,1);
fragmentColor.rgb = outColor;
fragmentColor.a = 1.0;

}

Per-pixel-interpolated value

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)



CPU-side
Language:          C++
API: OpenGL (Direct3D)
Window system: SDL (Cocoa, Win32,…)
C++:
float positions[] = {
// X Y Z

0.0f, 0.5f, 1.0f, // v0
-0.5f, -0.5f, 1.0f, // v1
0.5f, -0.5f, 1.0f // v2
... // ... vn

};
// and any other per-vertex data, e.g.:
float colors[] = {
// R G B

1.0f, 0.0f, 0.0f, // c0
-0.0f, 1.0f, 0.0f, // c1
0.0f, 0.0f, 1.0f // c2
... // ... cn

};
float normals[] = {...};
float textureCoords[] = {...};

OpenGL:
Vertex-buffer objects

uint32 positionBuffer; // x,y,z per vertex
uint32 colorBuffer;    // r,g,b per vertex

Vertex-Array object // groups the arrays
uint32 vertexArrayObject;

Shaders
uint32 vertexShader;
uint32 fragmentShader;
uint32 shaderProgram;

GPU-side
Language: GLSL 

used for vertex- ,geometry-, and
fragment shaders

Vertex Shader:
#version 420

layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color;

out vec3 outColor;

void main()
{

gl_Position = vec4(position, 1.0);
outColor = color;

}

(0,0) (1,0)

(1,1)(0,1)

(u0,v0)

(u1,v1)

(u2,v2)

glGenVertexArrays(1, &vertexArrayObject);
// Following commands now affect this vertex array object.
glBindVertexArray(vertexArrayObject);

// Makes positionBuffer the current array buffer for subse
quent commands.
glBindBuffer( GL_ARRAY_BUFFER, positionBuffer );
// Attach positionBuffer to vertexArrayObject,
// in location 0. 3 floats per vertex
glVertexAttribPointer(0, 3, GL_FLOAT, …);

// Makes colorBuffer the current array buffer for subseque
nt commands.
glBindBuffer( GL_ARRAY_BUFFER, colorBuffer );
// Attaches colorBuffer to vertexArrayObject,
// in location 1. 3 floats per vertex
glVertexAttribPointer(1, 3, GL_FLOAT, … );

glEnableVertexAttribArray(0); // Enable attribute array 0
glEnableVertexAttribArray(1); // Enable attribute array 1

How to connect the 
vertexArrayObject as vertex 
shader input (position, color):



A Simple Program
Computer Graphics version of “Hello World”
Generate a triangle on a solid background



int main(int argc, char *argv[])
{

// open window of size 512x512 with double buffering, RGB colors, and Z-buffering 
g_window = labhelper::init_window_SDL("OpenGL Lab 1”, 512, 512);
initGL(); // Set up our shaderProgram and our vertexArrayObject
while (true) {

display(); // render our geometry

SDL_GL_SwapWindow(g_window); // swap front/back buffer. Ie., displays the frame.

SDL_Event event;
while (SDL_PollEvent(&event)) {

if (event.type == SDL_QUIT || (event.type == SDL_KEYUP &&
event.key.keysym.sym == SDLK_ESCAPE)) {

labhelper::shutDown(g_window);
return 0;

}
}

}
return 0;          

}

Simple Application...



void display(void)
{

// The viewport determines how many pixels we are rasterizing to
int w, h;
SDL_GetWindowSize(g_window, &w, &h);
glViewport(0, 0, w, h); // Set viewport

// Clear background
glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color  - for background
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

glDisable(GL_CULL_FACE); // Both front and back face of triangles should be visible

// DRAW OUR TRIANGLE(S)
glUseProgram( shaderProgram ); // Shader Program. Sets what vertex/fragment shaders to use.
// Bind the vertex array object that contains all the vertex data.
glBindVertexArray(vertexArrayObject);
// Submit triangles from currently bound vertex array object.
glDrawArrays( GL_TRIANGLES, 0, 3 ); // Render 1 triangle (i.e., 3 vertices), starting at vertex 0.

glUseProgram( 0 ); // "unsets" the current shader program. Not really necessary.
}

Lab 1 will teach you this, i.e., setting up 
a shader program and vertex arrays.



Example of a simple GfxObject class
class GfxObject {
public:

load(“filename”); // Creates m_shaderProgram + m_vertexArrayObject
render() 
{

/* You may want to initiate more OpenGL states, e.g., for 
textures (more on that in further lectures) */

glUseProgram(m_shaderProgram);
glBindVertexArray(m_vertexArrayObject);
glDrawArrays( GL_TRIANGLES, 0, numVertices);

}; 
private:

uint numVertices;
Gluint m_shaderProgram;
GLuint m_vertexArrayObject;

};

Example:
GfxObject myCoolObject;
myCoolObject.load(“filename”);

In display(): 
myCoolObject.render();48



The Geometry stage and 
Rasterizer stage
in more detail



Rewind! 
Let’s take a closer look
• The programmer ”sends” down primtives to

be rendered through the pipeline (using API 
calls)

• The geometry stage does per-vertex 
operations 

• The rasterizer stage does per-pixel 
operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer



GEOMETRY Stage
Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection
clip space

(or unit space)

clip map to screen
screen space

Done in vertex shader
Fixed hardware function

Per-vertex computations



Virtual Camera
• Defined by position, direction vector, up 

vector, field of view, near and far plane.

point
dir

near
far

fov
(angle)

l Create image of geometry inside gray region
l Used by OpenGL, DirectX, ray tracing, etc.



GEOMETRY - The view transform
• You can move the camera in the same 

manner as objects
• But apply inverse transform to objects, so 

that camera looks down negative z-axis

z x

Application Geometry Rasterizer



GEOMETRY - Lighting
• Compute ”lighting” at vertices

Application Geometry Rasterizer

light

Geometry

blue

red green

Rasterizer

l Try to mimic how light in nature behaves
– Hard so uses empirical models, hacks, and some real 

theory
l Much more about this in later lecture



GEOMETRY - Projection
Application Geometry Rasterizer

• Two major ways to do it
– Orthogonal (useful in few applications)
– Perspective (most often used)

• Mimics how humans perceive the world, i.e., 
objects’ apparent size decreases with distance



• Also done with a matrix multiplication!
• Pinhole camera (left), analog used in CG 

(right)

Application Geometry Rasterizer

GEOMETRY - Projection



GEOMETRY 
Clipping and Screen Mapping
• Square (cube) after projection
• Clip primitives to square

Application Geometry Rasterizer

l Screen mapping, scales and translates the 
square so that it ends up in a rendering window

l These ”screen space coordinates” together 
with Z (depth) are sent to the rasterizer stage



The RASTERIZER 
in more detail

• Scan-conversion
– Find out which pixels are inside the primitive

• Fragment shaders
– E.g. put textures on triangles
– Use interpolated data over triangle
– and/or compute per-pixel lighting 

• Z-buffering
– Make sure that what is visible from the camera 

really is displayed
• Doublebuffering

Application Geometry Rasterizer

blue

red green

+ =



The RASTERIZER 
Z-buffering

• A triangle that is covered by a more closely 
located triangle should not be visible

• Assume two equally large tris at different 
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct



• Would be nice to avoid sorting…
• The Z-buffer (aka depth buffer) solves this
• Idea:

– Store z (depth) at each pixel
– When rasterizing a triangle, compute z at each 

pixel on triangle
– Compare triangle’s z to Z-buffer z-value
– If triangle’s z is smaller, then replace Z-buffer and 

color buffer
– Else do nothing

• Can render in any order

Application Geometry RasterizerThe RASTERIZER 
Z-buffering



Z-buffer

The color buffer The z-buffer
(or depth buffer)

The RASTERIZER 



The RASTERIZER 
Z-buffer



Painter’s Algorithm
• Render polygons a back to front order so that polygons behind 

others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons 
first 

–O(n log n) calculation for ordering
–Not every polygon is either in 
front or behind all other polygons

I.e., : Sort all triangles and  
render them back-to-front. 



Z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store the 
depth of the closest object at each pixel found so far

• As we render each polygon, compare the depth of 
each new fragment, dnew, to depth in z buffer, dzb

• If dnew < dzb (new fragment is closer to cam), replace 
pixel’s color and z-buffer value.



• The monitor displays one image at a time
• Top of screen – new image

Bottom – old image
No control of split position

• And even worse, we often clear the screen 
before generating a new image

• A better solution is ”double buffering”
– (Could instead keep track of rasterpos and 

vblank).

Application Geometry RasterizerThe RASTERIZER 
double-buffering



• Use two buffers: one front and one back
• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in back 

buffer, swap front and back

Application Geometry RasterizerThe RASTERIZER 
double-buffering

Remedies screen-tearing problems but not completely…



Screen Tearing
Swapping 
back/front buffers

Screen tearing is solved by using V-Sync.
V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank



Screen Tearing
• Despite the gorgeous graphics seen in many of today's games, there are 

still some highly distracting artifacts that appear in gameplay despite 
our best efforts to suppress them. The most jarring of these is screen 
tearing. Tearing is easily observed when the mouse is panned from 
side to side. The result is that the screen appears to be torn between 
multiple frames with an intense flickering effect. Tearing tends to be 
aggravated when the framerate is high since a large number of frames 
are in flight at a given time, causing multiple bands of tearing.

• Vertical sync (V-Sync) is the traditional remedy to this problem, 
but as many gamers know, V-Sync isn't without its problems. The 
main problem with V-Sync is that when the framerate drops below the 
monitor's refresh rate (typically 60 fps), the framerate drops 
disproportionately. For example, dropping slightly below 60 fps results 
in the framerate dropping to 30 fps. This happens because the monitor 
refreshes at fixed internals (although an LCD doesn't have this 
limitation, the GPU must treat it as a CRT to maintain backward 
compatibility) and V-Sync forces the GPU to wait for the next refresh 
before updating the screen with a new image. This results in notable 
stuttering when the framerate dips below 60, even if just momentarily.



What is important:

• Understand the Application-, Geometry- and 
Rasterization Stage

• Correlation to hardware
• Z-buffering, double buffering, screen tearing



Simple Application...
#ifdef WIN32
#include <windows.h>
#endif

#include <GL/glut.h> // This also includes gl.h

static void drawScene(void)
{

glColor3f(1,1,1); 

glBegin(GL_POLYGON);
glVertex3f( 4.0, 0, 4.0);
glVertex3f( 4.0, 0,-4.0);
glVertex3f(-4.0, 0,-4.0);

glEnd();
}

Usually this and next 2 
slides are put in the 
same file main.cpp

BONUS



void display(void)
{

glClearColor(0.2, 0.2, 0.8, 1.0); // Set clear color
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer 

and the z-buffer
int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);
int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);
glViewport(0, 0, w, h); // Set viewport

glMatrixMode(GL_PROJECTION); // Set projection matrix 
glLoadIdentity();
gluPerspective(45.0,w/h, 0.2, 10000.0); // FOV, aspect ratio, near, far 

glMatrixMode(GL_MODELVIEW); // Set modelview matrix 
glLoadIdentity(); 

gluLookAt(10, 10, 10, // look from
0, 0, 0, // look at
0, 0, 1); // up vector

drawScene();
glutSwapBuffers();  // swap front and back buffer. This frame will now been displayed.

}

Simple Application
BONUS
Old way
OpenGL 1.1



Changing Color per Vertex
static void drawScene(void)
{

// glColor3f(1,1,1);  
glBegin(GL_POLYGON);

glColor3f(1,0,0);
glVertex3f( 4.0, 0, 4.0);

glColor3f(0,1,0);
glVertex3f( 4.0, 0,-4.0);

glColor3f(0,0,1);
glVertex3f(-4.0, 0,-4.0);

glEnd();
}

BONUS
Old way
OpenGL 1.1


