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Graphics hardware — why?

e About 100x faster!
e Another reason: about 100x faster!
e Simple to pipeline and parallelize

e Current hardware based on triangle rasterization with
programmable shading (e.g., OpenGL acceleration)

e Ray tracing: there are research architetures, and few
commercial products

— Renderdrive, RPU, (Gelato), NVIDIA RTX (via OptiX or DXR api)
— Or write your own GPU ray-tracer



Perspective-correct
interpolation of texture
coordinates

(and actually all screen-space-interpolated per-
vertex data)
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Perspective-correct texturing

e How is texture coordinates interpolated over a triangle?
e Linearly?
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Linear interpolation Perspective-correct interpolation

>

e Perspective-correct interpolation gives foreshortening effect!

e Hardware does this for you, but you need to understand this
anyway!






Vertices are projected onto
screen by non-linear

Recall the fO"OWing transform. Hence, tex coords

cannot be linearly interpolated
in screen space (just like a 3D-
position cannot be).

e Perspective projection introduces a non-linear
transform by the homogenization step:
— Projection: p=Myv
— After projection p,, is not 1!
- Homogenization: (p,/p,,., p,/p,,, P./P\s» 1)

— Gives (x, y, z, 1), where x, y are the screen-space coordinates and z is depth




Mathematic derivation:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.
211 &rep=repl &type=pdf

Texture coordinate interpolation

e Linear interpolation does not work

e Rational linear interpolation does:

— u(x)=(ax+b) /(cx+d) (along a scanline where y=constant)

- a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,v)

e Not really efficient to compute a,b,c,d per scan line

e Smarter:

- Compute (u/w,viw,1/w) per vertex

- These quantities can be linearly interpolated!

— Then at each pixel, compute 1/(1/w)=w

-~ And obtain: (w*u/w,w*v/iw)=(u,v)

- The (u,v) are perspectively-correct interpolated
e Need to interpolate shading this way too
- Though, not as annoying as textures

e Since linear interpolation now is OK, compute, e.g.,
A(u/w)/Ax, and use this to update u/w when stepping in the
x-direction (similarly for other parameters)
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Put differently: 33T B33
e Linear interpolation in screen space does not work for u,v

e Why:
- We have applied a non-linear transform to each vertex position

(x/w, yiw, zIw, wiw).
e Non-linear due to 1/w — factor from the homogenisation

e Solution:

- We must apply the same non-linear transform to u,v
e E.g. (u/w, v/iw). This can now be correctly screenspace interpolated since

it/fo)llows the same non-linear (1/w) transform (and interpolation) as (x/w, y/w,
z/w).

e When doing the texture lookups, we still need (u,v) and not (u/w, viw).

e So, multiply by w. But we don’t have w at the pixel.

e So, linearly interpolate (u/w, v/iw, 1/w), which is computed in screenspace at each

vertex.
e Then at each pixel:
i\ 1/(1/W)|

- U = (uiw) " w,
- Vi= (VIw) *w
For a formal proof, see Jim Blinn,”"W Pleasure, W Fun”, IEEE Computer Graphics
and Applications, p78-82, May/June 1998

Need to interpolate shading this way too, though, not as annoying as textures



Overview of GPU architecture

-History / evolution

- GPU design: Several corgconsisting of many ALUs
(NVIDIA terminology: Streaming Multiprocessors (SMMs) of many Cores

- GPU vs CPU

Take-away: bandwidth (cost of memory accesses)
IS @ major problem



Background:
Graphics hardware architectures

e Evolution of graphics hardware has started
from the end of the pipeline

— Rasterizer was put into hardware first (most
performance to gain from this)

- Then the geometry stage
— Application will not be put into GPU hardware (?)

e Two major ways of getting better
performance:
— Pipelining
- Parallellization
- Combinations of these are often used



Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e Not always simple
- Try to parallelize a sorting algorithm...

- But vertices are independent of each other, and also pixels, so
simpler for graphics hardware

e Can parallellize both geometry and rasterizer stage:

Application (A)

Geometry Rasterizer
stage




CHALMERS Department of Computer Engineering

The graphics-pipeline’s funcional
blocks and their relation to hardware

(for modern graphis card)

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader ¢ e* shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader O 00 shader
Fragment Fragment e o o Fragment
Merge Merge Merge

» Fixed function hardware




| GeForce 7800

Older architecture (2006_)
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Graphics Processing Unit - GPU

» NVIDIA Geforce GTX 580

Beyond Programmable Shading

GPU

15
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PCl Express 3.0 Host Interface
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NVIDIA Pascal GP100 2016
(GTX 1080 / T1tan X)

LLLLAE LELL L B

ok - mle - - bmlas c amigm

) ) e (el —d o et —) | o
e y
- - -

4000600 § SOUNEIE Y & SINENSIIG # SES0NNE Y

M » M
fe N - .

2 : : :

H : : :

. . . .

H : H :

L : : :
grovesvend SO innied o ¥ =S -
LER L R R EEL PR L R EE T T I

3584 ALUs
F 11 Tflops
—. 15.3Btrans.
16 GB Ram
4MB L2
~64KB L1
256KB regs/SM
224 tex units

* SANN99 A9 qEER

o L s s L S L S L S L am




Department of Computer 7016 ng

PCI Express 3.0 Host Interface
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NVIDIA Volta GV100 2018

SM ‘
© WarpScheduler (32threadiclk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Dispatch Unit (32 thread/clk)

FP64  [INT [INT .- FP64  INT INT ..
FP64  INT INT .. FP64  INT INT ..
FP64  INT INT .. FP64  INT INT ..
ot [N T RS FRE 1ensoR TENSOR FPoe T T EBR2ER 1ovsor TENSOR
| .. CORE = CORE [ .. CORE | CORE
FP64  INT INT .. FP64  INT INT ..
FP64  |INT 'INT .- FP64  INT INT ..
FP64  INT INT .. FP64 | INT INT ..

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Register File (16,384 x 32-bit)

FP64 INT INT

1 madd

FP64  INT INT

FP64 INT INT

FP64  INT INT .. TENSOR TENSOR
FP64 INT INT .. | 5
FP64  INT INT ..
FP64 INT INT ..
FP64 INT INT ..

b/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
5T ST ST ST ST ST ST ST

Dispatch Unit (32 thread/cik) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

Core:
64 32-bit fp/int ALUs e et

[ 0 NT INT ..
S1216-bit ALUs 7 B S BRAN BEES

by >
FP64  INT INT .. KRDRES B0 RH FP64  INT INT .. CORE | | CORE

Tensor core

T ros I wr RS R per clock:
FP64 INT INT .. FP64 INT INT .. I
FP64  INT INT .. FP64  INT INT .- D —

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU SFU

ST ST ST ST ST ST ST ST

FP16 or FP32 FP16 or FP32
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NVIDIA Turing TU102 2018

TURING TU102

PCI Express 3.0 Host Interface
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Graphics Hardware History

e 80’s:
- linear interpolation of color over a scanline
— Vector graphics
e 91’ Super Nintendo, Neo Geo,
- Rasterization of 1 single 3D rectangle per frame (FZero)
e 95-96’: Playstation 1, 3dfx Voodoo 1
- Rasterization of whole triangles (Voodoo 2, 1998) ;
e 99 Geforce (256) =
- Transforms and Lighting (geometry stage) B i) 5o
e 02 3DLabs WildCat Viper, P10
— Pixel shaders, integers,
e 02’ ATl Radion 9700, GeforceFX == ' fhkAA
- Vertex shaders and Pixel shaders with floats

e 06’ Geforce 8800
- Geometry shaders, integers and floats, logical operations
e Then:

— More general multiprocessor systems, higher SIMD-width, more cores

e 09 Tesselation Shaders (Direct3D '09, OpenGL '10)




Direct View Storage Tube

o

 Created by Tektronix

—Did not require constant refresh

—Standard interface to computers
 Allowed for standard software
 Plot3D in Fortran

—Relatively inexpensive

» Opened door to use of computer
graphics for CAD community

Tektronix 4014



Graphics Hardware History

In GeForce3: 600-800 pipeline stages!

2001 e

57 million transistors
First Pentium 1V: 20 stages, 42 million transistors,

e Evolution of cards:

2004
2005
2004
2005

2006

2008
2007

2010
2011

2012
2013
2014
2015
2016
2018

X800 — 165M transistors

X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s

GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem

GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, MHz core ( for
shaders), 1080 MHz mem (effective 2160 MHz), GDDR3

Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, MHz,GDDRS5, 256bit mem bus,

Geforce GTX480: 3Gtrans, MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,
40Gtexels/s

GXT580: 3Gtrans, , Mem: 2004/4008 MHz, 192.4GB/s, GDDRS5, 384bit mem bus,

49.4 Gtex/s

GTX680: 3.5Gtrans (7.1 for Tesla), 1006/1058, 192.2GB/s, 6GHz GDDRS5, 256-bit mem bus.
GTX780: 7.1G, core clock: 837MHz, 336 GB/s, Mem clock: 6GHz GDDR5, 384-bit mem bus
GTX980: 7.1G?, core clock: ~1200MHz, 224GB/s, Mem clock: 7GHz GDDRS5, 256-bit mem bus

GTX Titan X: 8Gtrans, core clock: ~1000MHz, 336GB/s, Mem clock: 7GHz GDDRS5, 384-bit mem bus
Titan X: 12/15Gtrans, core clock: ~1500MHz, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2
Nvidia Volta: 21.1Gtrans, core clock: ~1500MHz, 900GB/s, Mem: 4096-bit HBM2, (or GDDRG6)

Lesson learned: #trans doubles ~per 2 years. Core clock increases slowly. Mem clock —increases with
new technology DDR2, DDR3, GDDR5, HBM2 and with more memory busses (a 64-bit). Now stacked.

We want as fast memory as possible! Why?

e Parallelization can cover for slow core clock. Parallelization more energy efficient than high clock
frequency; power consumption proportional to freg?.

e Memory transfers often the bottleneck



GPU- Nvidia’s Pascal 2016 R

Overview:

60 cores a
Core 1 Core 60 64-SIMD width

(2*4*8)

L1S S ~64 KB per each
64 SIMD

768 KB L2 S

GPU core has much simpler Bandwidth

* instruction set ~480 GB/s
* cache hierarchy
than a CPU core Bus:
RAM — GDDR5X 256/384/4096
16 GB, ~10 Gbps bits
Wish: Compare to
3584 ALUs a 1 float/clock => 14KB/clock ATI 2900:
~1.5GHz core clock => 21500 GB/s request - 2x512bits
We have ~480GB/s. In reality we can do 20-40 instr. between each RAM- Larrabee:

read/write. Solved by L1$ + L2$ + latency hiding (warp switching) - 2x512bits



30

CPU - 2014-2016

Core 1 L1 dS Core 7 L1 dS
L1iS L1iS
L2 S 256 KB L2 S 256 KB

Core 2 L1 dS Core 8 L1 dS
L1iS L1iS
L2 S 256 KB L2 S 256 KB

L3 shared S 20 MB
MC

DDR3 / DDR4 RAM
68 GB/s

Intel’s Sandybridge
/ Haswell / Broadwell

32 KB
32 KB

1 -8 cores a
8 SIMD floats

e 8 cores a 8 floats

— We want 256 bytes/clock
(e.g. from RAM)

— 768 GByte/s, 3GHz CPU

* |n addition, x2, since:
rl=r2+r3;

In reality: 30-68 GB/s

Solved by S-hierarchy +
registers + thread switching



Memory bandwidth usage is huge!!

e On top of that bandwith usage is never 100%.

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
— Texture compression
- Z-compression
— Z-occlusion testing (HyperZ)



Bonus

Z-occlusion testing and Z-
compression

e One way of reducing bandwidth
— ATl Inc., pioneered with their HyperZ technology

e Very simple, and very effective
e Divide screen into tiles of 8x8 pixels

e Keep a status memory on-chip
— Very fast access
— Stores additional information that this algorithm uses

e Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears



Processing

A rc h ite ct ure Of 8x8 uncompressed updated
z-values + z,,,, z-values
Z-cull and Z-

compressed Z-buffer

e Store zmax per tile, and a flag (whether cleared,
compressed/uncompressed)

e Rasterize one tile at a time

e Test if zmin on triangle is farther away than tile’s zmax
— If so, don’t do any work for that tile!!!
—- Saves texturing and z-read for entire tile — huge savings!

e Otherwize read compressed Z-buffer, & unpack

e \Write to unpacked Z-buffer, and when finished compress and send
back to memory, and also: update zmax

e For fast Z-clears: just set a flag to "clear” for each tile
- Then we don’t need to read from Z-buffer, just send cleared Z for that tile



X1800 GTO

e Real example

Z-cull

/Z-compress

Also note texture compress
and color compress

Vertex Data

Vertex Shader Processors

Vertex
Shader
Engine

\ 4

Setup Engine

i .lnlcrpololors- . R i |
| Pixel
Shader
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Ultra-Threading
Dispatch Processor
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Taxonomy of hardware design

for how to resynchronize (sort) parallelized work.

Outputs to frame buffers must respect incoming triangle
order.

Take-aways: Sort-first, Sort-middle, Sort-Last Fragment,
Sort-Last Image



Taxonomy of Hardware

e \We can do many computations in parallel:

- Pixel shading, vertex shading, geometry shading
® X,y,zwW r,g,b,a

e But results need to be sorted somewhere
before reaching the screen.

- Operations can be parallelized but result on screen
must be as if each triangle where rendered one by
one in their incoming order (according to OpenGL
spec)

e |.e., for every pixel, the rasterized fragments must be merged to
the buffers in the original input triangle order

e E.g., for blending (transparency), (z-culling + stencil test)



Taxonomy of hardware
e Need to sort from model space to screen

space
e Gives four major

architectures:
— Sort-first
— Sort-middle
— Sort-Last Fragment
- Sort-Last Image

Application
<«— Sort-First
Geometry

stage _
«— Sort-Middle

Fragment

generation

Fragment Sort-Last Fragment
shading

Fragment

Merge
<«— Sort-Last Image Composition

e Will describe these briefly. Sort-last fragment
(and sort middle) are most common in

commercial hardware



Sorting/dividing work to parallel execution units.

Sort-First

e Sorts primitives before geometry stage
— Screen in divided into large regions

— A separate pipeline is responsible for each
region (or many)

— But vertex shader can change screen location!

e G is geometry, FG & FM is part of rasterizer (R)
— Afragment is all the generated information for a pixel on a triangle
- FG is Fragment Generation (finds which pixels are inside triangle)

- FM is Fragment Merge (merges the created fragments with various buffers (Z,
color))

e Not explored much at all, since:
e Poor load balancing if uneven triangle distribution between regions.

e \ertex shader can change triangle position
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Sort-Middle

QORT

e Sorts betwen G and R .—;—;
Pretty natural, since after G, we know the F(‘ FG
screen-space positions of the triangles

e Older/cheaper hardware uses this

— Examples include InfiniteReality (from SGl) £
KYRO architecture (from Imagination)

e Spread work arbitrarily among G’s

e Then depending on screen-space position, sort to different R’s

— Screen can be split into "tiles”. For example:

e Rectangular blocks (8x8 pixels)
e Every n scanlines

e The R is responsible for rendering inside tile

e Bads:
e Atriangle can be sent to many FG’s depending on overlap (over tiles)

e May give poor load balancing if triangles are unevenly distributed over
the screen tiles




Sort-Last Fragment

e Sorts betwen FG and FM II
e XBOX, PS3, nVidia use this ORT
e Again spread work among G’s __
e The generated work is sent to FG’s N7 _

e Then sort fragments to FM'’s
- An FM is responsible for a tile of pixels

e Atriangle fragment is only sent to one FG, so this
avoids doing the same work twice

e (Bad: many more fragments to sort than triangles)



Sort-Last Image

e Sorts after entire pipeline

e So each FG & FM has a separate frame
buffer for entire screen (Z and color)

e Typically: one whole graphics card per
pipeline.

H
L.I..l

DISPLAY

e After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

e Can be seen as a set of independent pipelines
e Huge memory requirements!

e Used in research, but not much commerically.
e Problematic for transparency.
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Application
PCI-E x16
Vertex Vertex o Vertex
shader shader shader
Primitive assembly
Geo Geo Geo
shader shader shader
Clipping
Fragment Generation
Fragment Fragment . Fragment
shader shader shader
V Sort
| 1 |
V W W
Fragment Fragment O Fragment
Merge Merge Merge

DISPLAY




Near-future GPUs



The history implies the future

Cell — 2005, Sony Playstation 3
— 8 cores a 4-float SIMD
— 256KB L2 cache/core
— 128 entry register file
— 3.2GHz
NVIDIA 8800 GTX — Nov 2006
— 16 cores a 8-float SIMD (GTX 280 - 30 cores a 8, june '08)
— 16 KB L1 cache, 64KB L2 cache (rumour)
— 1.2-1.625 GHz
Larrabee —”2010”

— 16-24 cores a 16-float SIMD (Xeon Phi: 61 cores, 2012)

— Core = 16-float SIMD (=512bit FPU) + x86 proc with loops, branches + scalar ops, 4 threads/core
— 32KB Llcache, 256KB L2-cache (512KB/core)

— 1.7-2.4 GHz (1.1 GHz)

NVIDIA Fermi GF100 — 2010, (GF110 2011)
— 16 cores a 2x16-float SIMD (1x16 double SIMD)
— 16/48 KB L1 cache, 768 KB L2 cache

NVIDIA Kepler 2012 - 16 cores a 2x3x16=96 float SIMD
NVIDIA Kepler 2013 - 16 cores a 2x6x16=192 float SIMD

NVIDIA Titan X 2016 - 60 cores a 2x4x8=64 float SIMD

NVIDIA Volta 2018 — 84 cores a 64 float SIMD + tensor cores (16-bit matrix mul+add)
NVIDIA Turing 2018 — 36 cores a 128 float SIMD + ~550 tensor cores (16-bit matrix mul+add) + 72 RT cores



If we have time...



How create efficient GPU
programs?

Answer: coallesced memory
accesses



Conceptual
layout:

Beyond Programmable Shading

Bad utilization of the
memory bus, which
typically is the
bottleneck!

B = memory element (32
bits) 47



Read 32
coallesced floats
for max
bandwidth usage

Beyond Programmable Shading

Much better utilization
of the memory bus!

B = memory element (32
bits)

48



Let’'s look at the GPU

4 GB RAM Memory

512 bits b

GPU
—_—

NVIDIA Fermi — GTX480, 2010. 16 cores
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Let’'s look 3

Lots of GB RAM

L2 Cache
Core 1 L1
cache
Core 2 L1
cache

Términology

CPU: Core ALU (SIMD lane)

NVIDIA: Streaming core
Multiprocessor

ATI SIMD core stream core

cache

Core 60

Pascal: 60 multi-processors

Core X

64 ALUs or "lanes”
(logically: 2 x 32-SIMD
width)

2x32 mul/add per 1-2
clocks

(64 "threads”)

SIMD = single
instruction multiple
data



Each core:
* executes one

program
(=shader).

Each cycle:
* 64 flops

« 2x32 SIMD
can be up to 4
different instr.

NVIDIA Pascal: 60 multi-processors 1-2 clock cycles depending
Beyond Programmable Shading on architecture 50




Each core:
* executes one

program
(=shader).

Each cycle:
* 64 flops

« 2x32 SIMD
can be up to 4
different instr.

NVIDIA Pascal: 60 multi-processors 1-2 clock cycles depending
Beyond Programmable Shading on architecture 53




Low level APIs for GPU programming

 CUDA
— C++ compiler
— Works best for NVIDIA GPUs

— CUDA SDK

* Numerous examples and documentation (most for single GPU)
* Has most functionality

* OpenCL
— Ccompiler

— Platform independent
* AMD
* NVIDIA

— Less control/functionality than CUDA
 Compute Shaders (DirectX, OpenGL).



CUDA

* A kernel (=CUDA program) is executed by 100:s- 1M S
threads S

— A”warp” = 32 threads, one thread per ALU
— Warps (one to ~32) are grouped into one block

— Block: executed on one core
* One to 48 warps execute on a core

Max one program
per block.

One program
counter per warp.

55



Thread 0

Address 128

Thread 0

Thread 1

Address 132

Address 128

Thread 1

Thread 2

Address 136

Address 132

Thread 2

Thread 3

Address 140

Address 136

Thread 3

Thread 4

Address 144

Address 140

Thread 4

Thread 5

Address 148

Address 144

Thread 5

Thread 6

Address 152

Address 148

Thread 6

Thread 7

Address 156

Address 152

Thread 7

Thread 8

Address 160

Address 156

Thread 8

Thread 9

Address 164

Address 160

Thread 9

Thread 10

Address 168

Address 164

Thread 10

Thread 11

Address 172

Address 168

Thread 11

Thread 12

Address 176

Address 172

Thread 12

Thread 13

Address 180

Address 176

Thread 13

Thread 14

Address 184

Address 180

Thread 15 |

Address 188

Thread 14

Address 184

Thread 15

Address 188

Memory Acceses — Global Memory

4 GB RAM

e Coalesced reads and
writes

* For maximum
performance, each thread
should read from the
same 16-float block (128
bytes)

—i.e., the same cache-line



Read whole cache blocks
(128 bytes)

e Global mem accesses.

* One transaction:

Bandwidth to GPU RAM is the
most precious resource, so
two transactions is often bad.

e Two transactions:

57 Fermi:

Aligned and sequential

Addresses: 96 128 160 192 224 256 288

I

T

Threads:
Compute capability: 1.0 and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

1x 64Bat128 | 1x 64Bat 128 | 1x128B at 128
1x 64Bat192 | 1x 64B at 192

Aligned and non-sequential

Addresses: 96 128 160 192 224 256 288

XTI

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128 |1x 64Bat128 | 1x128Bat128
8x 32Bat160 | 1x 64Bat 192
8x 32Bat192
8x 32Bat 224

Misaligned and sequential

Addresses: 96

128 160 192 224 256 288

N

8x 32Bat128 |1x128Bat128 | 1x128Bat128
8x 32Bat160 | 1x 64Bat 192 | 1 x 128B at 256
8x 32Bat192 | 1x 32B at 256
8x 32Bat224

4-Byte
Transa

Figure G-1. Examples of Global Memory Accesses by a Warp,

Word per Thread, and Associated Memory
ctions Based on Compute Capability




Efficient Programming

e If your program can be constructed
this way, you are a winner!
* More often possible than anticipated s=0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

A B C D E F G H
* Stream compaction ﬁﬁ | ]
H l l * Y ¥ v | |
* Prefix sums A[B/C/D[E[F|G[H
. s'=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* Sorting
input 1 309 |4 |2 |5 |7 1 8 |4 |5 |9 |3
output o |1 |4 |13 |15

% 19 5100 1 63 79

e

1 5 19 63 79 100

Fermi: 16 multi-processors a 2x16 SIMD width
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Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

Display screen window
showing polygon's
projection

/] Vertex Shader
#version 130

In vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{
gl_Position = model ViewProjectionMatrix *vec4(vertex,1);
outColor = color;

}

N
» Q) N
L] g
/ - T
// Fragment Shader:

#version 130
i vec3 outColor;

out vec4 fragColor;

void main()

{
fragColor = vec4(outColor,1);




Shaders and coallesced memory accesses

GPU
* Each core (e.g. 192-SIMD) executes the
same instruction per clock cycle for either a:

e VVertex shader:
— E.g. 192 vertices b b. b, voe

 Geometry shader

— E.g. 192 triangles ~
F . ] \\
* Fragment shader: ]
_ E.g. 192 pixels i/
in blocks of at least 2x2 pixels —/
=1

(to compute texture filter derivatives) .
Here is an example of blocks

4x8 = 32 pixels:
— However, many architectures can //IA\\
execute different instructions, of the \

same shader, for different warps
(warp = group of 32 ALUs)




Shaders and coallesced memory accesses

GPU

* For mipmap-filtered texture lookups in a
fragment shader, this can provide coallesced

Memaory accesses.

DN

~
\

I
\
\




Thread utilization

* Each core executes one program (=shader)
* Each of the 192 ALUs execute one thread” (a shader for a

vertex or fragment)
* Since the core executes the same 1nstruction for at least 32
threads (as far as the programmer 1s concerned)...

e If(...) ...the core must
—Then,a=b +¢; execute both paths
_ if any of the 32
threads need the if
and else-path.

But not if all need the
same path.

e Else

—a=c+d;



Summary



Linearly interpolate (u;/w;, vi/w;, 1/w;) in screenspace
from each triangle vertex 1.
Then at each pixel:

ulp (/W) / (1/w)s,

Need to know: = (W) (1w

where 1p = screen-space interpolated value from
the triangle vertices.

e Perspective correct

interpolation (e.g. for textures) Sort-
: first
e [axonomy: -
— Sort first
— sort middle Sort-last
_ sort last fragment e g
: Sort-last
— sort last image image

e Bandwidth

-~ Why it is a problem and how to "solve” it
e L1/L2 caches
e Texture caching with prefetching, (warp switching)
e Texture compression, Z-compression, Z-occlusion testing (HyperZ)

e Be able to sketch the functional blocks and relation to hardware for a
64 modern graphics card (next slide—)
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The graphics-pipeline’s funcional
blocks and their relation to hardware

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

» Fixed function hardware

Application
PCI-E x16

Vertex Vertex Vertex
shader shader *° shader

Primitive assembly
Geo Geo Geo
shader shader shader

Clipping

Fragment Generation
Fragment Fragment Fragment
shader shader e shader

\V Sort

Fragment Fragment O Fragment
Merge Merge Merge

» Fixed function hardware




