
TRIAL EXAM C

Software Engineering using Formal Methods

TDA293 / DIT270

also serving as additional training material for the course

Formal Methods for Software Development, TDA294/DIT271

1

Exam/Tenta SEFM 2

Assignment 1 PROMELA (12p)

In this assignment, we model a small part of a wifi network. A number of devices,
modelled by the process Device, compete to get access to the network, which however
has limited capacity (3 in our example).

Consider the following PROMELA model.

#define numOfDevices 5

#define limit 3

byte numOfUsers = 0;

chan ch = [0] of { byte, bool };

proctype Device(byte i) {

bool answer;

do
(to be filled in by you)

od
}

active proctype AccessControl () {

byte id;

do
:: ch ? id , _ ->

i f
:: numOfUsers < limit -> ch ! id , true
:: e l se -> ch ! id, f a l s e

f i
od

}

i n i t {

byte i = 0;

atomic {

do
:: (i >= numOfDevices) -> break
:: e l se -> run Device(i); i++

od
}

}

Note that we do not actually model the network to be accessed. Rather, we only model
the competing devices, plus a single AccessControl process which grants or denies
access, depending on the number of devices currently accessing the network. A single
channel, called ch, is used to communicate access requests (where the second argument
does not matter), permissions (true), and denials (false).
Your answers to the questions below should remain valid even if the numbers in the
definitions of numOfDevices and limit change.
(For the continuation of this assignment, see next page.)

Exam/Tenta SEFM 3

(a) [8p]
Complete the process Device, according to the following instructions. Only the
place marked by “(to be filled in by you)” should be completed, everything else
in the above PROMELA model should be left unchanged. After being granted
access, device n enters the network by incrementing numOfUsers, and printing
out “device n enters network”. Devices whose request gets denied print
out “device n cannot enter now”. Those devices which entered the network
perform activities therein, here modelled by printing out “device n using

network”, and after that leave the network, by decrementing numOfUsers, and
printing out “device n leaves network”. In both cases (whether the device
was denied access, or granted access and entered-used-left the network), the
same device will start over by sending a new (identical) request, and all that
infinitely often.
Your solution has to ensure that numOfUsers never exceeds the limit. At the
same time, it would be too restrictive to only allow, for instance, that only one
device uses the network at once. Instead, your solution has to allow runs with
up to limit devices using the network at once.

(b) [1p]
Explain briefly why your solution guarantees that numOfUsers never exceeds
the limit.

(c) [1p]
Write a separate process that allows to verify this property with SPIN (without
using LTL).

(d) [1p]
Explain briefly why your solution allows numOfUsers to reach limit.

(e) [1p]
Write a separate process that allows to confirm this using SPIN (without using
LTL).

Solution
(a)

proctype Device(byte i) {

bool answer;

do
:: ch ! i, f a l s e ;

i f :: atomic { ch ? eval(i), true;
numOfUsers ++; }

print f ("device %d enters network\n", i);

print f ("device %d using network\n", i);

numOfUsers --;

print f ("device %d leaves network\n", i)

:: ch ? eval(i), f a l s e ;
print f ("device %d cannot enter now\n", i)

f i
od

Exam/Tenta SEFM 4

}

Another alternative:

proctype Device(byte i) {

bool answer;

do
:: ch ! i, f a l s e ;

atomic {

ch ? eval(i), answer;

i f
:: answer -> numOfUsers ++;

print f ("device %d enters network\n", i)

:: e l se -> print f ("device %d cannot enter now\n", i)

f i }

i f
:: answer -> print f ("device %d using network\n", i);

numOfUsers --;

print f ("device %d leaves network\n", i)

:: e l se
f i

od
}

(b+d)
(The explanation is not given here.)

(c)

active proctype VerifierB () {

assert (numOfUsers <= limit)

}

(e)

active proctype VerifierC () {

assert (numOfUsers != limit)

}

If SPIN finds a failing run, that shows that numOfUsers can reach limit, which is what
we wanted to show.

Exam/Tenta SEFM 5

Assignment 2 Linear Temporal Logic (LTL) (10p)

Consider the following Promela model:

byte x = 0;

bool b = f a l s e

active proctype P() {

do
:: x < 20 -> x = 20; b = true
:: x >= 0 -> i f

:: x < 30 -> x++

:: e l se -> x = 10

f i
od

}

Take your time to understand the behavior of P. Then consider the following properties,
each of which might or might not hold:

1. b will be true at some point.

2. x will always be ≥ 10.

3. At some point, x will be 10.

4. At some point, x will be 11.

5. From some point on, x will always be ≥ 10.

6. x will infinitely often be 11.

7. If b will never be true, then x will infinitely often be 11.

(a) [6p]
Formulate each of the properties 1. - 7. in Linear Temporal Logic.

(b) [4p]
For each of the properties 1. - 7., tell whether or not the property is valid in
the transition system given by the above Promela model. (You don’t need
to explain your answer.)

Solution
(a)

1. <>b

2. [](x >= 10)

3. <>(x == 10)

Exam/Tenta SEFM 6

4. <>(x == 11)

5. <>[](x >= 10)

6. []<>(x == 11)

7. (!<>b) -> []<>(x == 11)

(b)

1. invalid

2. invalid

3. valid

4. invalid

5. valid

6. invalid

7. valid

Exam/Tenta SEFM 7

Assignment 3 (Büchi Automata and Model Checking) (8p)

(a) [2p]
Give the ω expression describing the language accepted by the following Büchi
automaton:

q0 q1

a

c

b

Solution
(ac∗b)ω

(b) [3p]
Give the ω expression describing the language accepted by the following Büchi
automaton:

q0 q1 q2

a

b

c

b

Solution
a(ba + cb)ω

(c) [3p]
Give a Büchi automaton that accepts exactly those runs satisfying the LTL
formula:

�p ∨ ♦(p ∧ q)

Solution
Σ := 2{p,q}

q0 q1

q2
{p}

{p, q}

Σ

∅, {q}

∅, {p}, {q}

{p, q}

Exam/Tenta SEFM 8

Assignment 4 (First-Order Sequent Calculus) (8p)

Prove the validity of the following untyped first-order formulas, only using the sequent
calculus. You are only allowed to use the rules presented in the SEFM lectures! Provide
the name of each rule used in your proof as well as the resulting sequent, and make
clear on which sequent you have applied the rule. When applying a quantifier rule,
justify that the respective side condition is fulfilled.

(a) [4p]

¬(∀ x; (¬p(x) ∧ ¬q(x)))→ ∃ x; (p(x) ∨ q(x))

(b) [4p]

∃ x; (p(x) ∨ q(x))→ ¬(∀ x; (¬p(x) ∧ ¬q(x)))

Solution
In this document, we only provide the names of the used proof rules. In the exam, you
were requested to give more information, including the resulting sequents, for each proof
step. See the question text.

(a) impRight,
notLeft,
allRight, x 7→ c, c fresh constant,
exRight with c,
orRight, andRight, gives:
1) notRight with c, close for p(c)
2) notRight with c, close for q(c).

(b) impRight,
notRight,
exLeft, x 7→ c, c fresh constant,
allLeft with c,
andLeft,
notLeft on p(c) and q(c),
orLeft gives:
1) close on p(c),
2) close on q(c).

Exam/Tenta SEFM 9

Assignment 5 (Java Modeling Language) (10p)

Consider the Java classes Interval and IntervalSeq:

public class Interval {

private final int start, end;

public Interval(int start, int end) {

this.start = start;

this.end = end;

}

public int getStart() {

return start;

}

public int getEnd() {

return end;

}

}

/**

* Class to represent sequence of intervals.

*/

public class IntervalSeq {

protected int size = 0;

protected Interval[] contents = new Interval[1000];

/**

* Insert a new element in the sequence;

* it is not specified in which place

* the element will be inserted

*/

public void insert(Interval iv) {

// ...

}

// more methods

}

In the following, observe the usual restrictions under which Java elements can be used
in JML specifications.
(For the continuation of this assignment, see next page.)

Exam/Tenta SEFM 10

(a) [3p]
Augment class Interval with JML specification stating that getEnd() is al-
ways ≥ getStart().

(b) [7p]
In class IntervalSeq, the field size holds the number of Interval objects
which have yet been inserted into the IntervalSeq object. All inserted
Interval objects are stored in the beginning of the array. The remaining
cells of the array are null.
Augment class IntervalSeq with JML specification stating the following:

• The size field is never negative, and always ≤ contents.length.

• The contents of the array which are stored below index size are never
null.

• If the size is strictly smaller than contents.length, then all of the
following must hold:

– insert terminates normally

– insert increases size by one

– After insert(iv), the interval iv is stored in contents at some in-
dex i below size. Below index i, the array contents is unchanged.
The elements stored in between i and size were shifted one index
upwards (as compared to the old contents).

• If the size has reached contents.length, insert will throw an
IndexOutOfBoundsException.

Also, add assignable clauses where appropriate.

Solution
(a)

public class Interval {

private /*@ spec_public @*/ final int start, end;

/*@ public invariant getEnd() >= getStart();

@*/

public Interval(int start, int end) {

this.start = start;

this.end = end;

}

public /*@ pure @*/ int getStart() {

return start;

}

Exam/Tenta SEFM 11

public /*@ pure @*/ int getEnd() {

return end;

}

}

(b) Remark: nullable was not required.

/**

* Class to represent sequence of intervals.

*/

public class IntervalSeq {

//@ public invariant size >= 0;

protected /*@ spec_public @*/ int size = 0;

//@ public invariant contents.length >= size;

//@ public invariant (\forall int i;

//@ 0 <= i && i < size;

//@ contents[i] != null);

protected /*@ nullable spec_public @*/ Interval[] contents

= new Interval[1000];

/**

* Insert a new element in the sequence; it is not specified

* in which place the element will be inserted

*/

/*@

@ public normal_behavior

@ requires size < contents.length;

@ ensures size == \old(size) + 1;

@ ensures (\exists int i;

@ 0 <= i && i < size;

@ contents[i] == iv

@ && (\forall int j; 0 <= j && j < i;

@ contents[j] == \old(contents[j]))

@ && (\forall int k; i < k && k < size;

@ contents[k] == \old(contents[k-1])));

@ assignable contents, contents[*], size;

@

@ also

@

@ public exceptional_behavior

@ requires contents.length == size;

@ signals_only IndexOutOfBoundsException;

Exam/Tenta SEFM 12

@*/

public void insert(Interval iv) {

// ...

}

// more methods

}

Exam/Tenta SEFM 13

Assignment 6 (Loop Invariants) (12p)

Consider the following program:

/*@public invariant

@ (\forall int i;

@ (\forall int j;

@ i>=0 && j>=0 && j<=i && i<arr.length;

@ arr[j]<=arr[i]));

@*/

public int[] arr;

/*@public normal_behavior

@ requires true;

@ ensures ?

@*/

public int f(int x) {

int r=0;

/*@ loop_invariant ?

@ assignable ?

@ decreases ?

@*/

while(r<arr.length && arr[r]<x) {

r++;

}

return r;

}

(a) [1p] Explain in your own words what f does.

(b) [3p] Provide the postcondition for method f.

(c) [1p] What fields can f modify? Change the specification of f accordingly.

(d) [5p] Provide a loop invariant along with an assignable clause that would be suffi-
cient for proving the postcondition of f.

(e) [2p] Provide a decreases clause that would be sufficient for proving termination
of f.

Solution

class Loop{

Exam/Tenta SEFM 14

/*@ public invariant

@ (\forall int i;

@ (\forall int j;

@ i>=0 && j>=0 && j<=i && i<arr.length;

@ arr[j] <= arr[i]));

@*/

public int [] arr;

/*@ public normal_behaviour

@ requires true;

@ ensures \result >= 0 && \result <= arr.length &&

@ (\forall int i; i >= 0 && i < \result;

@ arr[i] < x) &&

@ (\forall int j; j >= \result && j < arr.length;

@ arr[j] >= x);

@*/

public int f(int x) {

int r = 0;

/*@ loop_invariant

@ r >= 0 && r <= arr.length &&

@ (\forall int i; i >= 0 && i < r; arr[i] < x);

@ assignable r;

@ decreases arr.length - r;

@*/

while (r < arr.length && arr[r] < x) {

r++;

}

return r;

}

}

(total 60p)

