
Formal Methods for Software Development
Proof Obligations

Wolfgang Ahrendt

18 October 2019

FMSD: Proof Obligations /GU 191018 1 / 39

This Part

making the connection between

JML

and

Dynamic Logic / KeY

I generating,

I understanding,

I and proving

DL proof obligations from JML specifications

FMSD: Proof Obligations /GU 191018 2 / 39

From JML Contracts via Intermediate Format
to Proof Obligations (PO)

public class A {

/*@ public normal_behavior

@ requires <Precondition>;

@ ensures <Postcondition>;

@ assignable <locations>;

@*/

public int m(params) {..}

}

Intermediate Format
(pre, post, div , var ,mod)

Proof obligation as DL formula

pre →
〈this.m(params);〉

(post ∧ frame)

Translation

PO
Generatio

n

FMSD: Proof Obligations /GU 191018 3 / 39

JML Translation: Normalizing JML Contracts

Normalization of JML Contracts

1. Flattening of nested specifications

2. Making implicit specifications explicit

3. Processing of modifiers

4. Adding of default clauses if not present

5. Contraction of several clauses

Tho following introduces principles of this process

FMSD: Proof Obligations /GU 191018 4 / 39

Normalisation:
Making Implicit Information Explicit

Implicit Information

I Meaning of normal and exceptional behavior

I non null by default

I \invariant for(this) in requires, ensures, signals clauses

Turn into general behavior spec. case

1. Add to
I normal behavior the clause signals (Throwable t) false;
I exceptional behavior the clause ensures false;

2. Replace normal behavior/exceptional behavior by behavior

FMSD: Proof Obligations /GU 191018 5 / 39

Normalisation:
Making Implicit Information Explicit

Implicit Information

I Meaning of normal and exceptional behavior

I non null by default

I \invariant for(this) in requires, ensures, signals clauses

Making non null explicit in method specifications

1. Where nullable is absent, add o != null to preconditions
(for parametersa) and postconditions (for return valuesa).
E.g., for method void m(Object o) add requires o != null;

2. Thereafter add nullable, where absent,
to all parametera and return typea declarations

aof reference type

FMSD: Proof Obligations /GU 191018 6 / 39

Normalisation:
Making Implicit Information Explicit

Implicit Information

I Meaning of normal and exceptional behavior

I non null by default

I \invariant for(this) in requires, ensures, signals clauses

Making \invariant for(this) explicit in method specifications

1. Add explicit \invariant for(this) to non-helper method specs:
I requires \invariant for(this);
I ensures \invariant for(this);
I signals (Throwable t) \invariant for(this);

2. Thereafter add helper, where absent, to all methods

FMSD: Proof Obligations /GU 191018 6 / 39

Normalisation: Example

/*@ public normal_behavior

@ requires c.id >= 0;

@ ensures \result == (...);

@*/

public boolean addCategory(Category c) {

becomes

/*@ public behavior

@ requires c.id >= 0;

@ ensures \result == (...);

@ signals (Throwable exc) false;

@*/

public boolean addCategory(Category c) {

FMSD: Proof Obligations /GU 191018 7 / 39

Normalisation: Example

/*@ public behavior

@ requires c.id >= 0;

@ ensures \result == (...);

@ signals (Throwable exc) false;

@*/

public boolean addCategory(Category c) {

becomes

/*@ public behavior

@ requires c.id >= 0;

@ requires c != null;

@ ensures \result == (...);

@ signals (Throwable exc) false;

@*/

public boolean addCategory(/*@ nullable @*/ Category c) {

FMSD: Proof Obligations /GU 191018 8 / 39

Normalisation: Example

/*@ public behavior

@ requires c.id >= 0;

@ requires c != null;

@ ensures \result == (...);

@ signals (Throwable exc) false;

@*/

public boolean addCategory(/*@ nullable @*/ Category c) {

becomes
/*@ public behavior

@ requires c.id >= 0;

@ requires c != null;

@ requires \invariant for(this);

@ ensures \result == (...);

@ ensures \invariant for(this);

@ signals (Throwable exc) false;

@ signals (Throwable exc) \invariant for(this);

@*/

public /*@ helper @*/

boolean addCategory(/*@ nullable @*/Category c) {
FMSD: Proof Obligations /GU 191018 9 / 39

Normalisation

Next Normalisation Steps (Not detailed)

I Expanding pure modifier:
I add to each specification case

I assignable \nothing;
I diverges false;

I remove pure

I Where clauses with defaults (e.g., diverges, assignable) are
absent, add explicit clauses

FMSD: Proof Obligations /GU 191018 10 / 39

Normalisation: Clause Contraction

Merge multiple clauses of the same kind into a single one of that kind.

For instance,

/*@ public behavior

@ requires R1;

@ requires R2;

@ ensures E1;

@ ensures E2;

@ signals (T1 exc) S1;

@ signals (T2 exc) S2:

@*/

/*@ public behavior

@ requires R1 && R2;

@ ensures E1 && E2;

@ signals (Throwable exc)

@ (exc instanceof T1 ==> S1)

@ &&

@ (exc instanceof T2 ==> S2);

@*/

FMSD: Proof Obligations /GU 191018 11 / 39

Translating JML into Intermediate Format

Intermediate format for contract of method m

(pre, post, div , var ,mod)

with

I a precondition DL formula pre,

I a postcondition DL formula post,

I a divergence indicator div ∈ {TOTAL,PARTIAL},

I a variant term var

I a modifies set mod , either of type LocSet or \strictly_nothing

FMSD: Proof Obligations /GU 191018 12 / 39

Translating JML Expressions to DL-Terms:
Arithmetic Expressions

Translation replaces arithmetic JAVA operators by generalized operators

Generic towards various integer semantics (JAVA, Math).

Example:
“+” becomes “javaAddInt” or “javaAddLong”
“-” becomes “javaSubInt” or “javaSubLong”
. . .

FMSD: Proof Obligations /GU 191018 13 / 39

Translating JML Expressions to DL-Terms:
The this Reference

The this reference, explicit or implicit, has only a meaning within a
program (refers to currently executing instance).

On logic level (outside the modalities) no such context exists.

this reference translated to a program variable (named by convention)
self

e.g., given class

public class MyClass {

int f;

}

JML expressions f and this.f

translated to
DL term select(heap, self, f), pretty-printed as self.f

FMSD: Proof Obligations /GU 191018 14 / 39

Translating Boolean JML Expressions

First-order logic treated fundamentally different in JML and KeY logic

JML

I Formulas no separate syntactic category

I Instead: JAVA’s boolean expressions extended with first-order
concepts (i.p. quantifiers)

Dynamic Logic

I Formulas and expressions completely separate

I true, false are formulas,
boolean constants TRUE, FALSE are terms

I Atomic formulas take terms as arguments; e.g.:
I x - y < 5
I b = TRUE

FMSD: Proof Obligations /GU 191018 15 / 39

Translating Boolean JML Expressions

F(v) = v = TRUE

F(o.f) = E(o.f) = TRUE

F(m()) = E(m)() = TRUE

F(!b 0) = !F(b 0)
F(b 0 && b 1) = F(b 0) & F(b 1)
F(b 0 || b 1) = F(b 0) | F(b 1)
F(b 0 ==> b 1) = F(b 0) -> F(b 1)
F(b 0 <==> b 1) = F(b 0) <-> F(b 1)
F(e 0 == e 1) = E(e 0) = E(e 1)
F(e 0 != e 1) = !(E(e 0) = E(e 1))
F(e 0 >= e 1) = E(e 0) >= E(e 1)

v/f/m() boolean variables/fields/pure methods
b 0, b 1 boolean JML expressions, e 0, e 1 JML expressions
E translates JML expressions to DL terms

FMSD: Proof Obligations /GU 191018 16 / 39

F Translates boolean JML Expressions to Formulas

Quantified formulas over reference types:

F((\forall T x; e 0; e 1)) =
\forall T x; (

(!x=null & x.<created> = TRUE & F(e 0))
-> F(e 1))

F((\exists T x; e 0; e 1)) =
\exists T x; (

(!x=null & x.<created> = TRUE & F(e 0))
& F(e 1))

FMSD: Proof Obligations /GU 191018 17 / 39

F Translates boolean JML Expressions to Formulas

Quantified formulas over primitive types, e.g., int

F((\forall int x; e 0; e 1)) =
\forall int x; ((inInt(x) & F(e 0)) -> F(e 1))

F((\exists int x; e 0; e 1)) =
\exists int x; (inInt(x) & F(e 0) & F(e 1))

inInt (similar inLong, inByte):
Predefined predicate symbol with fixed interpretation

Meaning: Argument is within the range of the Java int datatype.

FMSD: Proof Obligations /GU 191018 17 / 39

Translating Class Invariants

F(\invariant_for(e)) = Object ::<inv>(heap, E(e))

I \invariant_for(e) translated to built-in predicate Object ::<inv>,
applied to heap and the translation of e

I Object ::<inv> is considered a specification-only field <inv> of
class Object (inherited by all sub-types of Object)

I Given that o is of type T , KeY can expand (during proof
construction) ‘Object ::<inv>(heap, o)’ to the invariant of T

I Object ::<inv>(heap, o) pretty printed as o.<inv>

I Read ‘invariant of o’

FMSD: Proof Obligations /GU 191018 18 / 39

Translating JML into Intermediate Format

Intermediate format for contract of method m

(pre, post, div , var ,mod)

with

I a precondition DL formula pre 4,

I a postcondition DL formula post 4?almost,

I a divergence indicator div ∈ {TOTAL,PARTIAL},

I a variant term var

I a modifies set mod , either of type LocSet or \strictly_nothing

FMSD: Proof Obligations /GU 191018 19 / 39

Translation of Ensures Clauses

What is missing for ensures clauses?

I Translation of \result

I Translation of \old(.) expressions

Translating \result

For \result used in ensures clause of method T m(. . .):

E(\result) = result

where result ∈ PVar of type T does not occur in the program.

FMSD: Proof Obligations /GU 191018 20 / 39

Translating \old Expressions

\old(e) evaluates e in the prestate of the method

Accesses to heap must be evaluated w.r.t. to the ’old’ heap

1. Introduce a global program variables heapAtPre of type Heap
(Intention: heapAtPre refers to heap in method’s pre-state)

2. Define:
E(\old(e)) = EheapAtPre

heap (e)

(Ey
x (e) replaces all occurrences of x in E(e) by y)

Example

F(o.f == \old(o.f)+ 1) =
E(o.f) = E(\old(o.f)+ 1) =
E(o.f) = E(\old(o.f)) + E(1) =
E(o.f) = EheapAtPre

heap (o.f) + 1 =
select(heap, o, f) = select(heapAtPre, o, f) + 1 =
o.f = o.f@heapAtPre + 1 (by pretty printing)

FMSD: Proof Obligations /GU 191018 21 / 39

Translation of Ensures and Signals Clauses

Given the normalised JML contract

/*@ public behavior

@ ...

@ ensures E;

@ signals (Throwable exc) S;

@ ...

@*/

Define
Fensures = F(E)
Fsignals = F(S)

Recall (pp.7,11) that S is either false, or it has the form

(exc instanceof ExcType1 ==> ExcPost1) && ...;

In the following, assume exc is fresh program variable of type Throwable

FMSD: Proof Obligations /GU 191018 22 / 39

Combining Ensures and Signals to post

The DL formula post is then defined as

(exc = null → Fensures) ∧ (exc 6= null → Fsignals)

Important special case:

Normalisation of normal_behavior contract gives

signals (Throwable exc) false;

In that case, post is:

(exc = null → Fensures) ∧ (exc 6= null → Fsignals)
⇔ (exc = null → Fensures) ∧ (exc 6= null → F(false))
⇔ (exc = null → Fensures) ∧ (exc 6= null → false)
⇔ (exc = null → Fensures) ∧ exc = null

⇔ exc = null ∧ Fensures

FMSD: Proof Obligations /GU 191018 23 / 39

Translating JML into Intermediate Format

Intermediate format for contract of method m

(pre, post, div , var ,mod)

with

I a precondition DL formula pre 4,

I a postcondition DL formula post 4,

I a divergence indicator div ∈ {TOTAL,PARTIAL},4
I a variant term var (postponed to later lecture),

I a modifies set mod , either of type LocSet or \strictly_nothing

The Divergence Indicator

div ={
TOTAL if normalised JML contract contains clause diverges false;

PARTIAL if normalised JML contract contains clause diverges true;

FMSD: Proof Obligations /GU 191018 24 / 39

Translating Assignable Clauses:
The DL Type LocSet

Assignable clauses are translated to

a term of type LocSet or the special value \strictly_nothing

Intention: A term of type LocSet represents a set of locations

Definition (Locations)

A location is a tuple (o, f) with o ∈ DObject, f ∈ DField

FMSD: Proof Obligations /GU 191018 25 / 39

The DL Type LocSet

Predefined type with D(LocSet) = 2Location

and the functions (all with result type LocSet):

empty empty set of locations: I(empty) = ∅
allLocs set of all locations, i.e., I(allLocs) =

{(d , f)|f .a. d ∈ DObject, f ∈ DField}
singleton(Object, Field) singleton set
union(LocSet, LocSet)
intersect(LocSet, LocSet)
allFields(Object) set of all locations for the given object
allObjects(Field) set of all locations for the given field;

e.g., {(d , f)|f.a. d ∈ DObject}
arrayRange(Object, int, int) set representing all array locations in

the specified range (both inclusive)

FMSD: Proof Obligations /GU 191018 26 / 39

Translating Assignable Clauses—Example

Example

assignable \everything;

is translated into the DL term

allLocs

Example

assignable this.next, this.content[5..9];

is translated into the DL term

union(singleton(self, next),
arrayRange(self.content, 5, 9))

FMSD: Proof Obligations /GU 191018 27 / 39

Translating JML into Intermediate Format

Intermediate format for contract of method m

(pre, post, div , var ,mod)

with

I a precondition DL formula pre 4,

I a postcondition DL formula post 4,

I a divergence indicator div ∈ {TOTAL,PARTIAL} 4,

I a variant var a term of type any (postponed),

I a modifies set mod , either of type LocSet or \strictly_nothing 4

FMSD: Proof Obligations /GU 191018 28 / 39

From JML Contracts via Intermediate Format
to Proof Obligations (PO)

public class A {

/*@ public normal_behavior

@ requires <Precondition>;

@ ensures <Postcondition>;

@ assignable <locations>;

@*/

public int m(params) {..}

}

Intermediate Format
(pre, post, div , var ,mod)

Proof obligation as DL formula

pre →
〈this.m(params);〉

(post ∧ frame)

Translation

PO
Generatio

n

FMSD: Proof Obligations /GU 191018 29 / 39

Generating a PO from the Intermediate Format:
Idea

P
O

G
en

era
tio

n

Given intermediate format of contract of m implemented in class C:

(pre, post, TOTAL, var ,mod)

pre → 〈self.m(args)〉(post ∧ frame︸ ︷︷ ︸
correctness of
assignable

)

In case of div = PARTIAL, box modality is used
FMSD: Proof Obligations /GU 191018 30 / 39

Generating a PO from Intermediate Format:
Method Identification

pre → 〈self.m(args)〉(post ∧ frame)

I Dynamic dispatch: self.m(...) causes split into all possible
implementations

I Special statement Method Body Statement:

m(args)@C

Meaning: implementation of m in class C

FMSD: Proof Obligations /GU 191018 31 / 39

Generating a PO from Intermediate Format:
Exceptions

pre → 〈self.m(args)@C〉(post ∧ frame)

Postcondition post states either

I that no exception is thrown or

I that in case of an exception the exceptional postcondition holds

but: 〈throw exc;〉ϕ is trivially false

How to refer to an exception in post-state?

pre →〈 exc = null;

try {

self .m(args)@C
} catch (Throwable e){exc = e;}

〉
(post ∧ frame)

Recall: generation of post (pp.22,23) uses program variable exc

FMSD: Proof Obligations /GU 191018 32 / 39

The Generic Precondition genPre

pre → 〈exc=null; try {self.m(args)@C} catch ... 〉(post ∧ frame)

is still not complete.

Additional properties (known to hold in Java, but not in DL), e.g.,
I this is not null

I created objects can only point to created objects (no dangling
references)

I integer parameters have correct range
I . . .

Need to make these assumption on initial state explicit in DL.

Idea: Formalise assumption as additional precondition genPre

(genPre ∧ pre) →
〈exc=null; try {self.m(args)@C} catch ... 〉(post ∧ frame)

FMSD: Proof Obligations /GU 191018 33 / 39

The Generic Precondition genPre (background info)

genPre := wellFormed(heap)

∧ self 6= null

∧ self. <created> = TRUE

∧ C :: exactInstance(self)

∧ paramsInRange

I wellFormed(h): predefined predicate;
true iff h is regular Java heap

I C :: exactInstance(o): predefined predicate;
true iff o has exact type C (not just subtype of C)

I paramsInRange formula stating that method arguments are in range

FMSD: Proof Obligations /GU 191018 34 / 39

The Generic Precondition genPre

(genPre ∧ pre) →
〈exc=null; try {self.m(args)@C} catch ... 〉(post ∧ frame)

is still not complete.

I Need to refer to prestate in post, e.g. for old-expressions

(genPre ∧ pre) → {heapAtPre := heap}
〈exc=null; try {self.m(args)@C} catch ... 〉(post ∧ frame)

Recall: heapAtPre was used in translation of \old, p.21

FMSD: Proof Obligations /GU 191018 35 / 39

Generating a PO from Intermediate Format:
The frame DL Formula

(genPre ∧ pre) → {heapAtPre := heap}
〈exc=null; try {self.m(args)} catch ... 〉

(post ∧ frame)

If mod = \strictly_nothing then frame is defined as:

∀o;∀f ; (o.f = o.f @heapAtPre)

FMSD: Proof Obligations /GU 191018 36 / 39

Generating a PO from Intermediate Format:
The frame DL Formula

(genPre ∧ pre) → {heapAtPre := heap}
〈exc=null; try {self.m(args)} catch ... 〉

(post ∧ frame)

If mod is a location set, then frame is defined as:

∀o;∀f ;
(

(o, f) ∈ {heap := heapAtPre}mod
∨ o.<created>@heaptAtPre = FALSE

∨ o.f = o.f @heapAtPre
)

Says that every location (o, f) either

I belongs to the modifies set (evaluated in the pre-state), or

I was not (yet) created before the method invocation, or

I holds the same value before and after the method execution

FMSD: Proof Obligations /GU 191018 37 / 39

Generating a PO from Intermediate Format:
Result Value

(genPre ∧ pre) → {heapAtPre := heap}
〈exc=null; try {self.m(args)} catch ... 〉

(post ∧ frame)
is still not complete.

I For non-void methods, need to refer to result in post

(genPre ∧ pre) → {heapAtPre := heap}
〈exc=null; try {result = self.m(args)} catch ... 〉

(post ∧ frame)

Recall: \result was translated to program variable result, see p.20

FMSD: Proof Obligations /GU 191018 38 / 39

Examples

Demo

FMSD: Proof Obligations /GU 191018 39 / 39

	Proof Obligations
	From JML Contracts to Intermediate Format

